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Abstract

In this paper we study a nonlinear boundary eigenvalue problem
governed by the one-dimensional p-Laplacian operator with impulse,
we give some properties of the first eigenvalue λ1 and we prove the
existence of eigenvalues sequence {λn}n∈N∗ by using the Lusternik-
Schnirelman principle, as well as by the characterization of the se-
quence of eigenvalues, we discuss the strict monotonicity of the first
eigenvalue and we prove that the eigenfunction corresponding to sec-
ond eigenvalue λ2 changes sign only once on [0, 1].
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1. Introduction

Impulsive differential equations describe several phenomena in many fields.
The idea of studying processes which can change state suddenly is natural
and appears to be a good model for some applications in real world. For
example, one of these applications cited in [1], is a pharmacokinetic model,
involving first-order processes for drug release, this last is known as Kruger-
Thiemer model. In this model the authors assume that the drug taken by
a patient is nearly digested. Thus the time of the very process of absorbing
is abandoned. Such a model of the process leads to impulsive differential
equations, with impulses which take place when the drug is taken. Impul-
sive differential equation also study models in epidemiology [2], chemistry
[3], economics [4], optimal control theory [5], nonlinear mechanics [6]. For
the general theory of impulsive differential equations, we refer the reader to
the references [7] and [8]. Some approaches have been used to study such
problems in the literature. These approaches include the degree theory [9],
the techniques of upper and lower solutions [10], and the fixed point the-
orems [11]. On the other hand, many researchers have used a variational
method to the existence and multiplicity of solutions with impulsive effect
(see [12], [13], [14], [15], [16] and [17]). The spectrum of the equations that
involve the one-dimensional p-Laplacian operator with the different bound-
ary condition, has been studied by several authors, for literature we quote
here some works [18], [19], [20] and [21].

In the latter the authors studied the linear eigenvalue problem of the
second order impulsive differential equation

− (p(t)u0(t))0 + q(t)u(t) = λρ(t)u(t), t 6= tk, a.e. t ∈ J,(1.1)

∆u0(tk) = aku(tk), k = 1, . . . , i,(1.2)

with the Dirichlet boundary conditions

u(0) = u(1) = 0,(1.3)

where the functions ρ(t),q(t) and p(t) are such that ρ ∈ C(J, [0,+∞[), q ∈
C(J, [0,+∞[) and p ∈ C1(J, [δ,+∞[), where J = [0, 1] and δ is a positive
constant. ∆u0(tk) = u0(t+k )− u0(t−k ), 0 = t0 < t1 < t2 < . . . < ti < ti+1 = 1,
u0(t+k ) and u0(t−k ) represents the right limit also the left one of u

0(t) at
tk respectively. In [21], the authors characterized the first eigenvalue λ1
related to the problem (1.1)− (1.3), by
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λ1 = inf

(Z 1

0
[p(t)(u0(t))2 + q(t)(u(t))2]dt+

iX
k=1

ak(u(tk))
2 |u ∈ Ω1

)
,(1.4)

where Ω1 =

½
u ∈ H1

0 ([0, 1]) :

Z 1

0
ρ(t)(u(t))2dt = 1

¾
.

They have shown that the infimum λ1 in (1.4) is achieved at some
u ∈ Ω1. Moreover, the latter is an eigenfunction associated to λ1 which has
a constant sign. Also, they have established the existence of an eigenvalues
sequence for the problem (1.1)− (1.3) that is unbounded, and when ak = 0
for all k = 1, 2, . . . , i, the problem (1.1) − (1.3) becomes an eigenvalue
problem of the following ordinary differential
equation

−(p(t)u0(t))0 + q(t)u(t) = λρ(t)u(t), t ∈ J,
u(0) = u(1) = 0.

Several results have been obtained on this type of eigenvalue problems of
differential equations, see, for instance, [22], [23] and [24]. A principal result
is that (1.5)− (1.6) has a non-decreasing sequence of eigenvalues {λn}n∈N∗
which tend to ∞ as n −→ ∞. More precisely, in [24] the authors studied
a eigenvalue problems of differential equations with impulsive effects which
is given as below
by

−p(t)u0(t))0 + q(t)u(t) = λρ(t)u(t), t ∈ [0, a[∪]a, b],
u(a−) = αu(a+), u0(a−) = βu0(a+),
u(0) = u(b) = 0.

They proved that the eigenvalue problem (1.7)−(1.9) has an unbounded
sequence of eigenvalues {λn}n∈N∗ . In the present paper, we will study the
general case of problem (1.1)− (1.3) when p 6= 2. That is, we consider the
following nonlinear eigenvalue problem with impulsive
effects

−(r(t)|u0(t)|p−2u0(t))0 + s(t)|u(t)|p−2u(t) = λm(t)|u(t)|p−2u(t), t 6= tk, a.e. t ∈ J,
∆pu

0(tk) = ak|u(tk)|p−2u(tk), k = 1, . . . , i,
u(0) = u(1) = 0,

where s(t),m(t) and r(t) are such that s ∈ C(J, ]0,+∞[),m ∈ C(J, ]0,+∞[),
r ∈ C1(J, [δ,+∞[), J = [0, 1], δ a positive constant and ∆pu

0(tk) =
|u0(t+k )|p−2u0(t

+
k )− |u0(t

−
k )|p−2u0(t

−
k ).
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A function u ∈W 1,p
0 ([0, 1]) is not a solution of (1.10)− (1.12), because

this latter is not continuous throughout the interval J = [0, 1].

So, let’s define a set Γ = {u ∈W 1,p
0 ([0, 1]) : u|]tk,tk+1[ ∈W 2,p(]tk, tk+1[), k =

0, 1, . . . , i}, which makes it possible to give a meaning to the solution of the
problem (1.10)− (1.12).

Motivated by [21], we will establish some new properties for the eigen-
value problem (1.10)−(1.12). This paper is organized as follows. In Section
2, we present some preliminary results. In Section 3, the main results of
this paper will be presented.

2. Preliminaries

Let W 1,p
0 ([0, 1]) and Lp([0, 1]) respectively be the Sobolev and Lebesgue

spaces equipped by the norms

kuk =
µZ 1

0
|u0(t)|pdt

¶ 1
p

, for all u ∈W 1,p
0 ([0, 1]) and kukLp =

µZ 1

0
|u(t)|pdt

¶ 1
p

,

for all u ∈ Lp([0, 1]).

Lemma 2.1. The impulsive differential equation (1.10), (1.11) with initial
value condition

u(0) = u0, u
0(0) = u0(2.1)

has a unique solution. Denote the initial value problem (1.10), (1.11) and
(2.1) by IVP(u0, u0).

Proof. Let y(t) = r(t)|u0(t)|p−2u0(t) = r(t)Φp(u
0(t)) and h(t) = s(t) −

λm(t), where Φp(s) = |s|p−2s if s 6= 0, Φp(0) = 0, p > 1, and Φq = Φ
−1
p

with
1

p
+
1

q
= 1. Then, for k = 1, the problem IVP(u0, u0) is lied as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y0(t) = h(t)|u(t)|p−2u(t), u0(t) = Φq
µ
y(t)

r(t)

¶
, t 6= t1 and t ∈ [0, 1],

Φp(u
0(t+1 ))− Φp(u0(t−1 )) = a1|u(t1)|p−2u(t1),

u(0) = u0, u
0(0) = u0.

(2.2)
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We reformulate the problem (2.2) to a Cauchy problem through which
we distinguish two cases.
Firstly, when t ∈ [0, t1[, we have the following Cauchy problem⎧⎪⎨⎪⎩

X 0
1(t) = f(t,X1(t)), t ∈ [0, t1[,

X1(0) = (y(0), u(0))
T ,

(2.3)

where X1(t) = (y(t), u(t))
T and f(t,X1(t)) =

µ
h(t)Φp(u(t)),Φq

µ
y(t)

r(t)

¶¶T
which is locally Lipschitzian with respect to the second variable X1 in a
neighborhood V1 which contains X1(0). In fact, we provide the spaceR

2 by
the Euclidean norm and let W (t) = (y(t), u(t))T , Z(t) = (z(t), v(t))T ∈ V1,
such that we have

kf(t,W (t))− f(t, Z(t))k2
=

°°°°h(t) (Φp(u(t))−Φp(v(t))) ,Φq µy(t)r(t)

¶
− Φq

µ
z(t)

r(t)

¶°°°°
2

=

s
h2(t)|Φp(u(t))−Φp(v(t))|2 +

¯̄̄̄
Φq

µ
y(t)

r(t)

¶
− Φq

µ
z(t)

r(t)

¶¯̄̄̄2
≤

s
h2(t)K2

p |u(t)− v(t)|2 +K2
q

¯̄̄̄
y(t)

r(t)
− z(t)

r(t)

¯̄̄̄2
≤

s
h2+K

2
p |u(t)− v(t)|2 +

K2
q

δ2
|y(t)− z(t)|2

≤ K
p
|u(t)− v(t)|2 + |y(t)− z(t)|2 = KkW (t)− Z(t)k2

where h+ = max
t∈[0,1]

h(t), K =

vuutmaxÃh2+K2
p ,
K2

q

δ2

!
, as well that Kp and Kq

are the Lipschitz constants of Φp and Φq respectively.

Then by Cauchy-Lipschitz theorem, we have the existence and unique-
ness of solution in a neighborhood which contains 0.

Finally, when t ∈ [t1, 1], we have a new Cauchy problem that is given
as follows ⎧⎪⎨⎪⎩

X 0
2(t) = f(t,X2(t)), t ∈ [t1, 1],

X2(t1) = (y(t1), u(t1))
T ,

(2.4)

where y(t1) = r(t1)Φp(u
0(t1)), u(t1) = u(t−1 ) and u0(t1) = u0(t−1 ) + a1u(t1).
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Similarly to the above, by applying the Cauchy-Lipschitz theorem we
show the existence and uniqueness of solution in a neighborhood which
contains t1. Thus, for k = 1, the problem (2.2) has a unique solution as
follows

X(t) =

⎧⎪⎨⎪⎩
X1(t), if t ∈ [0, t1[,

X2(t), if t ∈ [t1, 1].

The other cases k = 2, 3, . . . , i are treated in the same way as in the
case k = 1. Consequently, we have the existence and uniqueness of solution
for the problem (2.2), which is given as follows

X(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X1(t), t ∈ [0, t1[
X2(t), t ∈ [t1, t2[
...
Xn+1(t), t ∈]tn, 1].

2

Lemma 2.2. Let y and z, the two solutions of (1.10), (1.11) with the same
value λ. Then, there exists a constant c such that y = cz or z = cy.

Proof. If y0(0) = z0(0), by Lemma 2.1, we have y(t) = z(t). If y0(0) 6=
z0(0), then at least one of y0(0) and z0(0) is not equal to zero. Choose y0(0) 6=
0 and let c = z0(0)/y0(0). Since y is a unique solution of IVP(0, y0(0)), cy
is a unique solution of IVP(0, cy0(0)). On the other hand, z is a unique
solution of IVP(0, z0(0)). Thus, z = cy. 2

Lemma 2.3. Let u ∈W 1,p
0 ([0, 1]), then

max
t∈[0,1]

|u(t)|p ≤ 1

2p
kukp.

Proof. Let u(ξ) = max
t∈[0,1]

|u(t)| with ξ ∈]0, 1[ and 1
p
+
1

q
= 1. By Hölder’s

inequality, we have

|u(ξ)|p ≤ (1− ξ)
p
q

Z 1

ξ
|u0(t)|pdt and |u(ξ)|p ≤ (ξ)

p
q

Z ξ

0
|u0(t)|pdt,
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which implies that"
1

ξ
p
q

+
1

(1− ξ)
p
q

#
|u(ξ)|p ≤

Z 1

0
|u0(t)|pdt.

We consider the function g defined on ]0, 1[ by g(ξ) =

"
1

ξ
p
q

+
1

(1− ξ)
p
q

#
,

for all ξ ∈]0, 1[.

We see that g is differentiable on ]0, 1[ with g0(ξ) =
p

q

⎡⎣(1− ξ)
p
q
−1

(1− ξ)
2p
q

− ξ
p
q
−1

ξ
2p
q

⎤⎦,
for all ξ ∈]0, 1[.

In addition, g0(ξ) = 0 if and only if ξ =
1

2
, then g admits a minimum

at ξ =
1

2
. So, we have

g(ξ) ≥ g

µ
1

2

¶
= 2

p
q
+1 = 2p and |u(ξ)|p ≤ 1

2p

Z 1

0
|u0(t)|pdt, for all ξ ∈]0, 1[.

Hence,

max
t∈[0,1]

|u(t)|p ≤ 1

2p
kukp.

2

Definition 2.1. For u ∈W 1,p
0 ([0, 1]), we define the norm

kuk1,p =
µZ 1

0

£
r(t)|u0(t)|p + s(t)|u(t)|p

¤
dt

¶ 1
p

.

Lemma 2.4. For the space W 1,p
0 ([0, 1]), the norms kuk1,p and kuk are

equivalent, and there is c∞ > 0 such that kuk∞ ≤ c∞kuk.

Proof. Let krk∞ = max
t∈[0,1]

r(t) and ksk∞ = max
t∈[0,1]

s(t). We have

kuk1,p =

µZ 1

0

£
r(t)|u0(t)|p + s(t)|u(t)|p

¤
dt

¶ 1
p

≥
∙Z 1

0
r(t)|u0(t)|pdt

¸ 1
p

≥ δ
1
p

∙Z 1

0
|u0(t)|pdt

¸ 1
p

= δ
1
p kuk.



224 Mohamed Bouabdallah, Omar Chakrone and Mohammed Chehabi

On the other hand, we have

kuk1,p =

µZ 1

0

£
r(t)|u0(t)|p + s(t)|u(t)|p

¤
dt

¶ 1
p

≤ 2
1
p
−1

⎡⎣∙Z 1

0
r(t)|u0(t)|pdt

¸ 1
p

+

∙Z 1

0
s(t)|u(t)|pdt

¸ 1
p

⎤⎦
≤ 2

1
p
−1

⎡⎣krk 1p∞ ∙Z 1

0
|u0(t)|pdt

¸ 1
p

+ ksk
1
p
∞

∙Z 1

0
|u0(t)|pdt

¸ 1
p

⎤⎦
≤ 2

1
p
−1
µ
krk

1
p
∞ + ksk

1
p
∞

¶ ∙Z 1

0
|u0(t)|pdt

¸ 1
p

= 2
1
p
−1
µ
krk

1
p
∞ + ksk

1
p
∞

¶
kuk.

For u ∈W 1,p
0 ([0, 1]), it follows from the mean value theorem that

u(ζ) =

Z 1

0
u(τ)dτ

for some ζ ∈ [0, 1]. Hence, for t ∈ [0, 1], using Hölder’s inequality with
1

p
+
1

q
= 1

|u(t)| =

¯̄̄̄
u(ζ) +

Z t

ζ
u0(τ)dτ

¯̄̄̄
≤
Z 1

0
|u(τ)τ +

Z 1

0
|u0(τ)|dτ

≤
µZ 1

0
|u(τ)|pdτ

¶ 1
p

+

µZ 1

0
|u0(τ)|pdτ

¶ 1
p

≤ 1

(ess inf s(t))
t∈[0,1]

1
p

µZ 1

0
s(τ)|u(τ)|pdτ

¶ 1
p

+ 1

(ess inf r(t))
t∈[0,1]

1
p

µZ 1

0
r(τ)|u0(τ)|pdτ

¶ 1
p

≤ 2
1
q max

⎧⎪⎨⎪⎩ 1

(ess inf s(t))
t∈[0,1]

1
p
, 1

(ess inf r(t))
t∈[0,1]

1
p

⎫⎪⎬⎪⎭ kuk1,p ,
which completes the proof. 2

Theorem 2.1. ([25]) Suppose V is a reflexive Banach space with the norm
k.kV and let M ⊂ V be a weakly closed subset of V . Suppose E : M −→
R ∪ {+∞} is coercive and (sequentially) weakly lower semi-continuous on
M with respect to V, that is, suppose the following conditions are fulfilled
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(1) E(u) −→∞ as kukV −→∞, u ∈M .

(2) For any u ∈M , any sequence {un} in M such that un u weakly in
V there holds

E(u) ≤ lim inf
n−→∞

E(un).

Then, E is bounded from below on M and is attained its infimum in
M .

3. Main results

Let Ω1 =

½
u ∈W 1,p

0 ([0, 1]) :

Z 1

0
m(t)|u(t)|pdt = 1

¾
and

F (u) =

Z 1

0

£
r(t)|u0(t)|p + s(t)|u(t)|p

¤
dt+

iX
k=1

ak|u(tk)|p.

In what follows, we assume that
iX

k=1

a−k < 2pδ, where a−k = max{−ak, 0}

for ak ∈ R.

Theorem 3.1. There exists a function u1 ∈W 1,p
0 ([0, 1]) such that F (u1) =

inf
u∈Ω1

F (u) = λ1 and λ = λ1 is the minimal eigenvalue of (1.10)− (1.12).

Proof. For all u ∈W 1,p
0 ([0, 1]), by Lemma 2.3, we have

F (u) =

Z 1

0

£
r(t)|u0(t)|p + s(t)|u(t)|p

¤
dt+

iX
k=1

ak|u(tk)|p

≥
Z 1

0
r(t)|u0(t)|pdt+

iX
k=1

ak|u(tk)|p

≥ δkukp +
iX

k=1

ak|u(tk)|p

≥
Ã
δ − 1

2p

iX
k=1

a−k

!
kukp = c0kukp.

Let {un}n∈N be a minimizing sequence on Ω1 such that F (un) −→ λ1
as n −→ +∞. Hence, the above inequality implies that there exists c0 > 0
such that F (un) ≥ c0kunkp. Therefore, the sequence {un}n∈N is bounded.
Since W 1,p

0 ([0, 1]) is a reflexive Banach space, up to a subsequence, still
denoted by {un} such that un u in W 1,p

0 ([0, 1]) and

un −→ u in Lp([0, 1]),
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un(t) −→ u(t) a.e t ∈ [0, 1].

Notice that

F (u) =

Z 1

0

£
r(t)|u0(t)|p + s(t)|u(t)|p

¤
dt+

iX
k=1

ak|u(tk)|p

= kukp1,p +
iX

k=1

ak|u(tk)|p

≤ lim inf
n→+∞

kunkp1,p + lim infn→+∞

iX
k=1

ak|un(tk)|p

= lim inf
n→+∞

(kunkp1,p +
iX

k=1

ak|un(tk)|p)

= lim inf
n→+∞

F (un) = λ1.

Since u ∈ Ω1, by Theorem 2.1 there exists u1 ∈ W 1,p
0 ([0, 1]) such that

F (u1) = inf
u∈Ω1

F (u) = λ1.

It remains to show that u1 is a solution of (1.10)− (1.12), we have

λ1 = inf
u∈W1,p

0 ([0,1])
u 6=0

F (u)Z 1

0
m(t)|u(t)|pdt

,(3.1)

let u ∈W 1,p
0 ([0, 1]), and consider the function

ϕ(s) =
F (u1(t) + su(t))Z 1

0
m(t)|u1(t) + su(t)|pdt

.

We set ϕ1(s) = F (u1(t) + su(t)) and ϕ2(s) =

Z 1

0
m(t)|u1(t) + su(t)|pdt.

By (3.1), we have ϕ(s) ≥ ϕ(0) = λ1 which implies that ϕ1(s) ≥ λ1ϕ2(s)
for all s ∈ R. Next, by applying Taylor’s formula for ϕ1 and ϕ2, we get

ϕ1(s) = F (u1(t)) + sp[

Z 1

0
r(t)|u01(t)|p−2u01(t)u0(t)dt

+

Z 1

0
s(t)|u1(t)|p−2u1(t)u(t)dt]+sp

iX
k=1

ak|u1(tk)|p−2u1(tk)u(tk)+
s2ϕ

(2)
1 (0)

2
+O(s2),
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and

ϕ2(s) =

Z 1

0
m(t)|u1(t)|pdt+ps

Z 1

0
m(t)|u1(t)|p−2u1(t)u(t)dt+

s2ϕ
(2)
2 (0)

2
+O(s2).

As ϕ1(0) = F (u1) = λ1 and ϕ2(0) =

Z 1

0
m(t)|u1(t)|pdt = 1. Then, for

s > 0, we have

ϕ1(s)− ϕ1(0) ≥ λ1ϕ2(s)− ϕ1(0) = λ1(ϕ2(s)− ϕ2(0)),

which implies that

ϕ1(s)− ϕ1(0)

s
≥ λ1

ϕ2(s)− ϕ2(0)

s
,

by passing to the limit when s −→ 0+, we obtain ϕ01(0) ≥ λ1ϕ
0
2(0).

Similarly, in the case where s < 0, we have ϕ01(0) ≤ λ1ϕ
0
2(0). Thus, for

all s ∈ R, we get

ϕ01(0) = λ1ϕ
0
2(0).(3.2)

From (3.2) it follows thatZ 1

0
r(t)|u01(t)|p−2u01(t)u0(t)dt+

Z 1

0
s(t)|u1(t)|p−2u1(t)u(t)dt

+
iX

k=1

ak|u1(tk)|p−2u1(tk)u(tk) = λ1

Z 1

0
m(t)|u1(t)|p−2u1(t)u(t)dt.(3.3)

For k ∈ {0, 1, . . . , i}, choose u ∈ W 1,p
0 ([0, 1]) with u(t) = 0 for all

t ∈ [0, tk] ∪ [tk+1, 1], thenZ tk+1

tk

r(t)|u01(t)|p−2u01(t)u0(t)dt+
Z tk+1

tk

s(t)|u1(t)|p−2u1(t)u(t)dt

= λ1

Z tk+1

tk

m(t)|u1(t)|p−2u1(t)u(t)dt,

which implies that

− (r(t)|u01(t)|p−2u01(t))0 + s(t)|u1(t)|p−2u1(t) = λ1m(t)|u1(t)|p−2u1(t)(3.4)
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a.e. on t ∈]tk, tk+1[. Hence, u1 ∈ W 2,p(]tk, tk+1[) and u1 satisfy (1.1) a.e.
on [0, 1].

Now, multiplying the above equation by u ∈ W 1,p
0 ([0, 1]) and integrat-

ing between 0 to 1, we getZ 1

0
r(t)|u01(t)|p−2u01(t)u0(t)dt+

Z 1

0
s(t)|u1(t)|p−2u1(t)u(t)dt

+
iX

k=1

u(tk)∆pu
0
1(tk) = λ1

Z 1

0
m(t)|u1(t)|p−2u1(t)u(t)dt.(3.5)

Combining (3.3) with (3.5), we have

iX
k=1

u(tk)∆pu
0
1(tk) =

iX
k=1

ak|u1(tk)|p−2u1(tk)u(tk).

Hence, ∆pu
0
1(tk) = ak|u1(tk)|p−2u1(tk), for all k ∈ {1, 2, . . . , i}. This means

that u1 is a solution of (1.10)− (1.12). 2

Corollary 3.1.1. Let u1 ∈ Ω1 such that F (u1) = inf
u∈Ω1

F (u), then u1 is

either positive or negative in ]0, 1[.

Proof. Let u1 ∈ Ω1 be an eigenfunction that corresponds to the first
eigenvalue λ1. Then, u1 satisfies the following equationsZ 1

0
m(t)|u1(t)|pdt = 1,

Z 1

0

£
r(t)|u01(t)|p + s(t)|u1(t)|p

¤
dt+

iX
k=1

ak|u1(tk)|p = λ1.

The eigenfunction y = |u1| satisfies the above equations. Hence, y is also
a solution of (1.10)− (1.12) with λ = λ1. By Lemma 2.2 there exists c 6= 0
such this u1 = cy or y = cu1. Hence, u1 does not change its sign. Let’s
assume that u1 ≥ 0 then u1 > 0 because if there exists x0 ∈]0, 1[ such that
u1(x0) = 0, by Harnack’s inequality for all positive eigenfunction, we have

max
Bε

u1 ≤ Cpmin
Bε

u1,

with Bε = B(x0, ε) =]x0 − ε, x0 + ε[ and B(x0, 2ε) ⊂ [0, 1]. It follows that
u1 ≡ 0 on Bε for all ε > 0. In conclusion, u1 ≡ 0 which is impossible,
because u1 is an eigenfunction. Therefore, |u1| > 0 on [0, 1]. Thus, u1 is of
constant sign. 2



Eigenvalue problem of an impulsive differential equation ... 229

Proposition 3.1. The first eigenvalue λ1 is simple, i.e., if u and v are two
eigenfunctions associated with λ1, then there exists a constant c such that
u = cv.

Proof. See lemma 2.2. 2

Theorem 3.2. ([26]) Let v > 0, u ≥ 0 be functions on an interval Ω and
differentiable a.e. on Ω. Denote

L(u, v) =
¯̄
u0
¯̄p
+ (p− 1)u

p

vp
¯̄
v0
¯̄p − p

up−1

vp−1
¯̄
v0
¯̄p−2

v0u0

R(u, v) =
¯̄
u0
¯̄p
+
¯̄
v0
¯̄p−2

v0
µ

up

vp−1

¶0
.

Then, we have

(1) L(u, v) = R(u, v).

(2) L(u, v) ≥ 0 a.e. on Ω.

(3) L(u, v) = 0 a.e. on Ω if and only if u = ξv for some ξ ∈ R.

Proposition 3.2. Let u be an eigenfunction which corresponds to λ 6= λ1.
Then, u changes sign on J = [0, 1].

Proof. Assume by contradiction that u ≥ 0. By strong maximum princi-
ple, it follows that u(t) > 0 for all t ∈ [0, 1]. Let u1 > 0 be an eigenfunction
associated to λ1. For any ε > 0, we apply the Picone’s identity to the pair
(u1(t), u(t) + ε). Then, we haveZ 1

0
r(t)L(u1(t), u(t) + ε)dt =

Z 1

0
r(t)R(u1(t), u(t) + ε)dt ≥ 0,

and Z 1

0
r(t)R(u1(t), u(t) + ε)dt =

Z 1

0
r(t)

¯̄
u01(t)

¯̄p
dt

−
Z 1

0
r(t)

¯̄
u0(t)

¯̄p−2
u0(t)

Ã
up1(t)

(u(t) + ε)p−1

!0
dt,

where Z 1

0
r(t)

¯̄
u01(t)

¯̄p
dt = λ1

Z 1

0
m(t) |u1(t)|p dt−

Z 1

0
s(t) |u1(t)|p dt



230 Mohamed Bouabdallah, Omar Chakrone and Mohammed Chehabi

−
iX

k=1

ak |u1(tk)|p ,(3.6)

also Z 1

0
r(t)

¯̄
u0(t)

¯̄p−2
u0(t)

Ã
up1(t)

(u(t) + ε)p−1

!0
dt

= λ

Z 1

0
m(t) |u(t)|p−2 u(t)

Ã
up1(t)

(u(t) + ε)p−1

!
dt

−
Z 1

0
s(t) |u(t)|p−2 u(t)

Ã
up1(t)

(u(t) + ε)p−1

!
dt

−
iX

k=1

ak |u(tk)|p−2 u(tk)
Ã

up1(tk)

(u(tk) + ε)p−1

!
.(3.7)

Combining (3.6) with (3.7), we have

Z 1

0
r(t)R(u1(t), u(t) + ε)dt

=

Z 1

0
m(t)

Ã
λ1 |u1(t)|p − λ |u(t)|p−2 u(t) up1(t)

(u(t) + ε)p−1

!
dt

+

Z 1

0
s(t)

Ã
|u(t)|p−2 u(t) up1(t)

(u(t) + ε)p−1
− |u1(t)|p

!
dt

+
iX

k=1

ak

Ã
|u(tk)|p−2 u(tk)

up1(tk)

(u(tk) + ε)p−1
− |u1(tk)|p

!
.(3.8)

Tending ε tend towards 0 in (3.8), we obtain

Z 1

0
m(t)(λ1 − λ) |u1(t)|p dt ≥ 0,(3.9)

Since λ > λ1 and

Z 1

0
m(t) |u1(t)|p dt > 0, we get a contradiction. Therefore,

u changes sign in [0, 1]. 2
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3.1. The Ljusternik-Schnirelman principle

LetW 1,p
0 ([0, 1]) be a real reflexive Banach space and F,G be two functionals

on W 1,p
0 ([0, 1]). Consider the following eigenvalue problem

G
0
(u) = µF

0
(u), u ∈ SF , µ ∈ R.(3.10)

where SF = {u ∈W 1,p
0 ([0, 1]) : F (u) = 1}. We assume that

(H1) F,G :W 1,p
0 ([0, 1]) −→ R are even functionals and that

F,G ∈ C1(W 1,p
0 ([0, 1]), R) with F (0) = G(0) = 0.

(H2) G0 is strongly continuous (i.e. un u inW 1,p
0 ([0, 1]) impliesG0(un) −→

G0(u)) and hG0(u), ui = 0, u ∈ coSF implies G(u) = 0, where coSF is
the closed convex hull of SF .

(H3) F
0
is continuous, bounded, and satisfies condition (S0), i.e. as n −→

+∞,

un u,F
0
(un) v, hF 0

(un), uni −→ hv, ui implies un −→ u.

(H4) The set SF is bounded and u 6= 0 implies

hF 0
(u), ui > 0, lim

t−→∞
F (tu) = +∞, inf

u∈SF
hF 0
(u), ui > 0.

It is known that (u, µ) solves (3.10) if and only if u is a critical point of
G with respect to SF .

For any positive integer n, denoted by Cn the class of all compact,
symmetric subsets K of SF such that G(u) > 0 on K and γ(K) ≥ n,
where γ(K) denotes the genus of K, i.e., γ(K) = inf{k ∈ N : ∃h : K −→
Rk\{0} such that h is continuous and odd }. Let

bn =

⎧⎨⎩ sup
H∈Cn

inf
u∈H

G(u), Cn 6= ∅,

0 Cn = ∅
and χ =

(
sup{n ∈ N : bn > 0} if b1 > 0,
0 if b1 = 0.

(3.11)

Lemma 3.1. ([27]) Let Ω be a domain in R and let Φ : R+ −→ R+ be a
Young function which satisfies a ∆2-condition, i.e., there is c > 0 such that
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Φ(2t) ≤ cΦ(t) for all t ≥ 0. If {un} be a sequence of integrable functions
on [0, 1], such that

lim
n−→+∞

un(t) = u(t), a.e. t ∈ [0, 1] and
Z 1

0
Φ(|u(t)|)dt = lim

n−→+∞

Z 1

0
Φ(|un(t)|)dt,

then

lim
n−→+∞

Z 1

0
Φ(|un(t)− u(t)|)dt = 0.

Theorem 3.3. ([28]) Under the assumptions (H1) − (H4), the following
assertions hold:

(1) If bn > 0, then (3.10) possesses a pair (−un,+un) of eigenfunctions
and eigenvalues µn 6= 0. Furthermore, G(un) = bn.

(2) If χ =∞, (3.10) has infinitely many pairs (−u,+u) of eigenfunctions
which correspond to nonzero eigenvalues.

(3) ∞ > b1 ≥ b2 ≥ · · · ≥ 0 and bn −→ 0 as n −→ +∞.

(4) If χ = ∞ and G(u) = 0,u ∈ coSF (coSF is a convex envelope of SF )
implies hG(u), ui = 0, then there exists an infinite sequence {µn} of
distinct eigenvalues of (3.10) such that µn −→ 0 as n −→ +∞.

(5) Assume that G(u) = 0, u ∈ coSF implies u = 0. Then χ = ∞ and
there exists a sequence of eigenpairs {(un, µn)} of (3.10) such that
un 0, µn −→ 0 as n −→ +∞ and µn 6= 0 for all n.

Proof. For the proof, we can see [25] or [29]. 2

We define on W 1,p
0 ([0, 1]) the norm k.k1,p and let be the following func-

tionals

G(u) =

Z 1

0
m(t)|u(t)|pdt and F (u) =

Z 1

0

£
r(t)|u0(t)|p + s(t)|u(t)|p

¤
dt

+
iX

k=1

ak|u(tk)|p,(3.12)

as before, we define SF = {u ∈W 1,p
0 ([0, 1]) : F (u) = 1}. The functionals F

and G are the class C1([0, 1]).
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Let A =
1

p
G
0
, B =

1

p
F
0
and ak ∈ R. Then for all u, v ∈W 1,p

0 ([0, 1]), we

have

hA(u), vi =
Z 1

0
m(t)|u(t)|p−2u(t)v(t)dt,(3.13)

and

hB(u), vi =
Z 1

0

h
r(t)|u0(t)|p−2u0(t)v0(t) + s(t)|u(t)|p−2u(t)v(t)

i
dt

+
iX

k=1

ak|u(tk)|p−2u(tk)v(tk),(3.14)

We consider the eigenvalue problem Au = µBu, where µ ∈ R and
F (u) = 1. Thus for any v ∈W 1,p

0 ([0, 1]),Z 1

0
m(t)|u(t)|p−2u(t)v(t)dt

= µ

µZ 1

0

h
r(t)|u0(t)|p−2u0(t)v0(t) + s(t)|u(t)|p−2u(t)v(t)

i
dt

+
iX

k=1

ak|u(tk)|p−2u(tk)v(tk).(3.15)

We claim that F and G satisfy the already mentioned hypotheses (H1)-
(H4).

Proposition 3.3. Let G be defined in (3.12), then G0 satisfies (H2).

Proof. We show thatA is strongly continuous. Let un u inW 1,p
0 ([0, 1]),

we want to show thatAun −→ Au in (W 1,p
0 ([0, 1]))∗. For any v ∈W 1,p

0 ([0, 1]),
by Hölder’s inequality, it follows that

|hAun −Au, vi| ≤
¯̄̄̄Z 1

0
m(t)(|un(t)|p−2un(t)− |u(t)|p−2u(t))v(t)dt

¯̄̄̄
≤ kmk∞

Z 1

0

¯̄̄
|un(t)|p−2un(t)− |u(t)|p−2u(t)

¯̄̄
|v(t)| dt

≤ kmk∞k|un|p−2un − |u|p−2uk
L

p
p−1
kvkLp ,

where kmk∞ = max
t∈[0,1]

m(t).
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Next, we show that |un|p−2un −→ |u|p−2u in L
p

p−1 ([0, 1]). To check that,
let wn = |un|p−2un and w = |u|p−2u. Since un u ∈ W 1,p

0 ([0, 1]),un −→
u ∈ Lp([0, 1]), it follows that

wn(t) −→ w(t), a.e.in [0, 1] and

Z 1

0
|wn(t)|

p
p−1 dt −→

Z 1

0
|w(t)|

p
p−1 dt.

(3.16)

By Lemma 3.1, we deduce that wn −→ w in L
p

p−1 ([0, 1]), which implies
that Aun −→ Au in (W 1,p

0 ([0, 1]))∗. 2

Proposition 3.4. LetB be defined in (3.14). Then for any u, v ∈W 1,p
0 ([0, 1]),

one has

hBu−Bv, u− vi ≥ (kukp1,p − kvk
p
1,p)(kuk1,p − kvk1,p)

+
iX

k=1

ak(|u(tk)|p−1 − |v(tk)|p−1)(|u(tk)|− |v(tk)|).

Proof. Through technical calculations, we have

hBu−Bv, u− vi =

Z 1

0
r(t)[|u0(t)|p + |v0(t)|p − |u0(t)|p−2u0(t)v0(t)

− |v0(t)|p−2v0(t)u0(t)]dt

+

Z 1

0
s(t)[|u(t)|p + |v(t)|p − |u(t)|p−2u(t)v(t)

− |v(t)|p−2v(t)u(t)]dt

+
iX

k=1

ak[|u(tk)|p + |v(tk)|p − |u(tk)|p−2u(tk)v(tk)

− |v(tk)|p−2v(tk)u(tk)].
Since

iX
k=1

ak
h
|u(tk)|p + |v(tk)|p − |u(tk)|p−2 u(tk)v(tk)− |v(tk)|p−2 v(tk)u(tk)

i
≥

iX
k=1

ak
h
|u(tk)|p + |v(tk)|p − |u(tk)|p−1 v(tk)− |v(tk)|p−1 u(tk)

i
≥

iX
k=1

ak(|u(tk)|p−1 − |v(tk)|p−1)(|u(tk)|− |v(tk)|).
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Therefore

hBu−Bv, u− vi

≥
Z 1

0
r(t)

h¯̄
u0(t)

¯̄p
+
¯̄
v0(t)

¯̄p − ¯̄u0(t)¯̄p−2 u0(t)v0(t)− ¯̄v0(t)¯̄p−2 v0(t)u0(t)i dt
+

Z 1

0
s(t)

h
|u(t)|p + |v(t)|p − |u(t)|p−2 u(t)v(t)− |v(t)|p−2 v(t)u(t)

i
dt

= kukp1,p + kvk
p
1,p −

Z 1

0
[r(t)

¯̄
u0(t)

¯̄p−2
u0(t)v0(t) + s(t) |u(t)|p−2 u(t)v(t)]dt

−
Z 1

0

h
r(t)

¯̄
v0(t)

¯̄p−2
v0(t)u0(t) + s(t) |v(t)|p−2 v(t)u(t)

i
dt.

By Hölder’s inequality, we getZ 1

0
[r(t)

¯̄
u0(t)

¯̄p−2
u0(t)v0(t) + s(t) |u(t)|p−2 u(t)v(t)]dt

≤
µZ 1

0
r(t)

¯̄
u0(t)

¯̄p
dt

¶ p−1
p
µZ 1

0
r(t)

¯̄
v0(t)

¯̄p
dt

¶ 1
p

+

µZ 1

0
s(t) |u(t)|p dt

¶p−1
p
µZ 1

0
s(t) |v(t)|p dt

¶ 1
p

.(3.17)

Using the following inequality

(a+ b)ζ(c+ d)1−ζ ≥ aζc1−ζ + bζd1−ζ ,

which holds for any ζ ∈]0, 1[ and a > 0, b > 0, c > 0, d > 0. Set ζ =
p− 1
p

and

a =

Z 1

0
r(t)|u0(t)|pdt, b =

Z 1

0
s(t)|u(t)|pdt,

c =

Z 1

0
r(t)|v0(t)|pdt, d =

Z 1

0
s(t)|v(t)|pdt.

Then, we can deduce thatZ 1

0
[r(t)

¯̄
u0(t)

¯̄p−2
u0(t)v0(t) + s(t) |u(t)|p−2 u(t)v(t)]dt ≤ kukp−11,p kvk1,p,

andZ 1

0
[r(t)

¯̄
v0(t)

¯̄p−2
v0(t)u0(t) + s(t) |v(t)|p−2 v(t)u(t)]dt ≤ kvkp−11,p kuk1,p.
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Therefore, we have

hBu−Bv, u− vi ≥ kukp1,p + kvk
p
1,p − kuk

p−1
1,p kvk1,p − kvk

p−1
1,p kuk1,p

+
iX

k=1

ak(|u(tk)|p−1 − |v(tk)|p−1)(|u(tk)|− |v(tk)|)

≥ (kukp−11,p − kvk
p−1
1,p )(kuk1,p − kvk1,p) +

iX
k=1

ak(|u(tk)|p−1

− |v(tk)|p−1)(|u(tk)|− |v(tk)|).
2

Proposition 3.5. The functionals F and G satisfy the hypotheses (H1)
and (H4).

Proof. Let’s show that F 0 and G0 are continuous. Denote by k.k∗
the norm of the dual space W 1,p

0 ([0, 1]). Let {un}n∈N be a sequence in
W 1,p
0 ([0, 1]), such that un −→ u in W 1,p

0 ([0, 1])

|hF 0(un)− F 0(u), vi| ≤
Z 1

0
r(t)||u0n(t)|p−2u0n(t)− |u0(t)|p−2u0(t)||v0(t)t

+

Z 1

0
s(t)||un(t)|p−2un(t)− |u(t)|p−2u(t)||v(t)t

+
iX

k=1

|ak|||un(tk)|p−2un(tk)− |u(tk)|p−2u(tk)||v(tk)|.

By Hölder’s inequality with the compact embedding of W 1,p
0 ([0, 1]) in

Lp([0, 1]) and Lemma 2.4, we have

|hF 0(un)− F 0(u), vi| ≤ krk∞k|u0n|p−2u0n − |u0|p−2u0k
L

p
p−1
kv0kLp

+ksk∞k|un|p−2un − |u|p−2u|
L

p
p−1
kvkLp

+ max
k=1,...,i

|ak|kvk∞
iX

k=1

||un(tk)|p−2un(tk)− |u(tk)|p−2u(tk)|

≤ krk∞k|u0n|p−2u0n − |u0|p−2u0k
L

p
p−1
kvk+ cpksk∞k|un|p−2un

−|u|p−2uk
L

p
p−1
kvk

+c∞kvk max
k=1,...,i

|ak|
iX

k=1

||un(tk)|p−2un(tk)− |u(tk)|p−2u(tk)|,

dividing the last inequality by kvk, we obtain
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kF 0(un)− F 0(u)k∗ ≤ krk∞k|u0n|p−2u0n − |u0|p−2u0k
L

p
p−1

+cpksk∞k|un|p−2un − |u|p−2uk
L

p
p−1

+c∞ max
k=1,...,i

|ak|
iX

k=1

||un(tk)|p−2un(tk)

−|u(tk)|p−2u(tk)|,

as in Proposition 3.3, we show that |u0n|p−2u0n −→ |u0|p−2u0 in L
p

p−1 ([0, 1])

and |un|p−2un −→ |u|p−2u in L
p

p−1 ([0, 1]) and we also have
iX

k=1

||un(tk)|p−2un(tk)− |u(tk)|p−2u(tk)| −→ 0 as n −→ +∞.

Which implies the continuity of F 0. The proof of the continuity of G0

is the same as F 0.

On the other hand, from (3.14), we have hF 0(u), ui > 0 and so
inf
u∈SF

hF 0(u), ui > 0, also by (3.12) the functions F,G are even and F (0) =

G(0) = 0. Finally by Theorem 3.1, there exists c0 > 0 such that F (u) ≥
c0kukp that implies lim

t−→∞
F (tu) = +∞. 2

Proposition 3.6. Let F be defined in (3.12), then F 0 satisfies (H3).

Proof. We have already shown that B =
1

p
F
0
is continuous and bounded

in Proposition 3.5. Now, it remains to show that B satisfies the condition
(S0). This means, if {un}n∈N is a sequence inW 1,p

0 ([0, 1]) such that remains
to show that B satisfies the condition (S0). This means, if {un}n∈N is a
sequence in W 1,p

0 ([0, 1]) such that

un u,Bun v and hBun, uni −→ hv, ui,

for some v ∈ (W 1,p
0 ([0, 1]))∗ and u ∈ W 1,p

0 ([0, 1]). By the Sobolev compact
embedding theorem, we have un −→ u in Lp([0, 1]), and un(t) −→ u(t)
uniformly for t ∈ [0, 1].

Since W 1,p
0 ([0, 1]) is a reflexive Banach space, then it is isomorphic to

a locally uniformly convex Banach space. Thus, to show un −→ u in
W 1,p
0 ([0, 1]), we need to show kunk1,p −→ kuk1,p. Firstly, remark that

lim
n−→+∞

hBun−Bu, un−ui = lim
n−→+∞

(hBun, uni−hBun, ui−hBu, un−ui) = 0.

Now, it follows from Proposition 3.4 that
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hBun −Bu, un − ui−
iX

k=1

ak(|un(tk)|p−1 − |u(tk)|p−1)(|un(tk)|− |u(tk)|)

≥ (kunkp1,p − kuk
p
1,p)(kunk1,p − kuk1,p),

and when un(tk) −→ u(tk) as n −→ +∞, we have
iX

k=1

ak(|un(tk)|p−1 −

|u(tk)|p−1)(|un(tk)| − |u(tk)|) −→ 0 as n −→ +∞. So, we deduce that
kunk1,p −→ kuk1,p as n −→ +∞. Then, un −→ u inW 1,p

0 ([0, 1]). Therefore,
B satisfies condition (S0). 2

Theorem 3.4. ([28]) Let F , G be the two functionals defined onW 1,p
0 ([0, 1])

in (3.16). Then, there exists a nonincreasing sequence of nonnegative
eigenvalues {µn} obtained from the (L-S) principle such that µn −→ 0
as n −→∞ where

µn = sup
H∈Cn

inf
u∈H

G(u)(3.18)

and each {µn} is an eigenvalue of G0(u) = µF 0(u).

Proof. By the Theorem 3.3-(5), we have the existence of such a sequence
{µn}. To verify (3.18) we observe, using (3.12), (3.13) and (3.14), that

µn = µnF (un) = µnhBun, uni = hAun, uni = G(un) = bn,

compared this latter with bn in (3.11), we obtain (3.18). 2

Theorem 3.5. ([28]) Let F , G be the two functionals defined onW 1,p
0 ([0, 1])

in (3.12). Then there exists a nondecreasing sequence of nonnegative eigen-

values {λn} −→ ∞ as n −→ ∞, λn =
1

µn
where {µn} is an eigenvalue of

the corresponding equation G0(u) = µF 0(u) defined in (3.18).

Proof. G0(u) = µF 0(u) is equivalent toZ 1

0
m(t)|u(t)|p−2u(t)v(t)dt =

µ

µZ 1

0

h
r(t)|u0(t)|p−2u0(t)v0(t) + s(t)|u(t)|p−2u(t)v(t)

i
dt
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+
iX

k=1

ak|u(tk)|p−2u(tk)v(tk),∀v ∈W 1,p
0 ([0, 1])

orZ 1

0

h
r(t)|u0(t)|p−2u0(t)v0(t) + s(t)|u(t)|p−2u(t)v(t)

i
dt+

iX
k=1

ak|u(tk)|p−2u(tk)v(tk)

=
1

µ

Z 1

0
m(t)|u(t)|p−2u(t)v(t)dt.

By applying Theorem 3.5, we obtain the result. 2

3.2. Characterization of the eigenvalues sequence

By (3.18), the eigenvalues sequence is given by

1

λn(m,J)
= sup

C∈Cn
min
u∈C

G(u)

F (u)
,∀n ∈ N(3.19)

where J = [0, 1] and G(u), F (u) are defined in (3.12), Cn = {H ⊂ SF :
H compact, H = −H, γ(H) ≥ n},

SF = {u ∈W 1,p
0 ([0, 1]) :

Z 1

0

£
r(t)|u0(t)|p + s(t)|u(t)|p

¤
dt+

iX
k=1

ak|u(tk)|p = 1}.

γ is the genus function defined below.

Definition 3.1. ([30]) Let X be a Banach space, and Σ = {A ⊂ X :
A closed, A symmetric }. The genus function γ is defined as follows

γ : Σ −→N ∪ {∞}
A 7−→ γ(A),

where γ(A) = min{k ∈ N : ∃ϕ ∈ C(A,Rk\{0}), ϕ(u) = −ϕ(−u)}, and we
define γ(A) = +∞ if the infimum does not exist.

We also define the set Bn = {C ∈ Cn : C ⊂ Ω}. Then, (3.19) can be
rewritten as

1

λn(m,J)
= sup

H∈Bn
min
u∈H

Z 1

0
m(t)|u(t)|pdt.(3.20)
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A simple variational formulation is given by

1

λn(m,J)
= sup

E∈En
min

u∈E∩SF

Z 1

0
m(t)|u(t)|pdt,(3.21)

where En = {E : E is a k-dimensional subspace of W 1,p
0 ([0, 1])}.

Definition 3.2. ([18]) A nodal domain is a set defined by J\Z(u), where
Z(u) = {t ∈ J : u(t) = 0}, where u is a solution of the problem (1.10) −
(1.12).

Lemma 3.2. ([18]) The restriction of a solution (u, λ(m,J)) of the prob-
lem (1.10) − (1.12), on a nodal interval I is an eigenfunction of the same
problem on I, and we have

λ(m,J) = λ1(m/I , I).(3.22)

Proposition 3.7. ([18]) The first eigenvalue λ1(m,J) satisfies the strict
monotonicity property with respect to the weight m and the domain J ,
i.e., if m1,m2 > 0, m1(t) ≤ m2(t) and m1(t) < m2(t) on a subset of J of
non-zero measure for all t ∈ J and m1(t) < m2(t) in some subset of J of
nonzero measure, then

λ1(m2, J) < λ1(m1, J),(3.23)

and, if I is a strict sub-interval of J such that m/I is positive, then

λ1(m,J) < λ1(m/I , I).(3.24)

Proof. Let m1 and m2 be such that m1(t) < m2(t), for all t ∈ J .
We know previously that the first eigenfunction u1 ∈ SF corresponding to
λ1(m,J) has no zero in J , i.e u1(t) 6= 0 for all t ∈ J .

According to (3.20), we have

1

λ1(m1, J)
=

Z 1

0
m1(t)|u1(t)|pdt <

Z 1

0
m2(t)|u1(t)|pdt

≤ sup
u∈SF

Z 1

0
m2(t)|u(t)|pdt

=
1

λ1(m2, J)
.
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To prove the second inequality, we consider I a sub interval of J and
m/I a weight defined on I. Let u1 ∈ SF be a positive eigenfunction asso-
ciated to λ1(m/I , I), and denote by u1 the extension by zero on J . Then,
we have

λ1(m/I , I) =

Z
I
m(t)|u1(t)|pdt =

Z
J
m(t)|u1(t)|pdt

< sup
u∈SF

Z
J
m(t)|u(t)|pdt

=
1

λ1(m,J)
.

Therefore, the last strict inequality holds from the fact that u1 vanishes
in J\I. Thus, the latter cannot be a eigenfunction which correspond to the
first eigenvalue λ1(m,J). 2

Proposition 3.8. Any solution (u, λ(m,J)) of problem (1.10)−(1.12) has
a finite number of simple zeros.

Proof. We start by showing that un has a finite number of nodal do-
mains. Assume that there exists a sequence Jk, k ≥ 1, of nodal domains,
Il ∩ Il0 = ∅ for l 6= l

0
. Combining Lemma 3.2 with Proposition 3.7, we get

λ(m,J) = λ1(m,Jk) ≥ λ1(kmk∞, Jk) =
λ1(1, Jk)

kmk∞
=

λ1(1, ]0, 1[)

kmk∞(meas (Jk))p
,

(3.25)

where kmk∞ = max
t∈[0,T ]

m(t). Therefore, by (3.25), we get

meas (Jk) ≥
µ

λ1(1, ]0, 1[)

kmk∞λ1(m,J)

¶ 1
p

, for all k ∈ N∗,

which implies that

meas (J) =
X
k≥1

meas (Jk) = +∞.

which is a contradiction with the fact that J is bounded.
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Let {J1, J2, . . . , Jk} a finite set of nodal domains for u. Put Jj =]aj , bj [,
j ∈ {1, 2, . . . , k} where 0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ ak < bk < 1. It
is evidently that the restriction of u on ]0, b1[ is a nontrivial eigenfunction
with constant sign that correspond to λ(m,J). By the principal maximum,
we have u(t) > 0 or u(t) < 0 for all t ∈]0, b1[, then a1 = 0, u

0(a1) 6= 0 and
u0(b1) 6= 0. Similarly, we prove that b1 = a2, b2 = a3, . . . , bk = 1. Hence,
any eigenfunction associated to an eigenvalue λ(m,J) has a finite number
of simple zeros. 2

Proposition 3.9. The eigenfunction u which correspond to the second
eigenvalue λ2(m,J), has a unique zero c2 in ]0, 1[, i.e., u(c2) = 0.

Proof. We need to show u changes the sign only once on J . Consider
J1 =]0, c[ and J2 =]c

0, 1[, two nodal domains of u. By Lemma 3.2, we have

λ2(m,J) = λ1(m/J1 , J1) = λ1(m/J2 , J2).

Assume that c < c0(similarly for c0 < c), choose d ∈]c, c0[ and put I1 =]0, d[
and I2 =]d, 1[. Hence, I1 ∩ I2 = ∅ and it is easy to see that for k = 1, 2, we
have Jk ⊂ Ik strictly and m/Ik > 0 on a set of non-zero measure. Thus, by
applying the inequality (3.24) in Proposition 3.7, we get

λ1(m/I1 , I1) < λ1(m/J1 , J1) = λ2(m,J),(3.26)

and

λ1(m/I2 , I2) < λ1(m/J2 , J2) = λ2(m,J).(3.27)

Let uk ∈ SF be an eigenfunction which correspond to λ1(m/Ik , Ik), we
have for k = 1, 2

1

λ1(m, Ik)
=

Z
Ik

m(t)|uk(t)|pdt.(3.28)

Let uk the extension by zero of uk for k = 1, 2, and consider the two
dimensional subspace E = Vect(u1, u2). Let K2 = E ∩ SF ∈ W 1,p

0 ([0, 1]),
evidently γ(K2) = 2, and remark that

w = αu1 + βu2, F (w) = 1⇐⇒ |α|p + |β|p = 1.

Hence, by (3.20), (3.26), (3.27) and (3.28), we obtain



Eigenvalue problem of an impulsive differential equation ... 243

1

λ2(m,J)
≥ min

w∈K2

Z
J
m(t)|w(t)|pdt

= min
w=αu1+βu2

µ
|α|p

Z
I1
m(t)|u1(t)|pdt+ |β|p

Z
I2
m(t)|u2(t)|pdt

¶
= |α0|p

Z
I1
m(t)|u1(t)|pdt+ |β0|p

Z
I2
m(t)|u2(t)|pdt

>
|α0|p + |β0|p
λ2(m,J)

=
1

λ2(m,J)
,

which give a contradiction. Therefore, c = c0. Let v a further one eigen-
function which correspond to λ2(m,J) such that v(d) = 0, where d is the
unique zero in ]0, 1[. Assume that d < c, then by Lemma 3.2 and (3.24),
we obtain

λ2(m,J) = λ1(m/]d,1[, ]d, 1[) < λ1(m/]c,1[, ]c, 1[) = λ2(m,J).

This is a contradiction, then c = d. 2
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