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Abstract
In this manuscript, the influence of time delay in the transmission

of Japanese encephalitis without vaccination model has been studied.
The time delay is because of the existence of an incubation period
during which the Japanese encephalitis virus reproduces enough in
the mosquitoes with the goal that it tends to be transmitted by the
mosquitoes to people. The motivation behind this manuscript is to as-
sess the influence of the time delay it takes to infect susceptible human
populations after interacting with infected mosquitoes. The steady-
state and the threshold value R0 of the delay model were resolved.
This value assists with setting up the circumstance that ensures the
asymptotic stability of relating equilibrium points. Utilizing the delay
as a bifurcation parameter, we built up the circumstance for the pres-
ence of a Hopf bifurcation. Moreover, we infer an express equation to
decide the stability and direction of Hopf bifurcation at endemic equi-
librium by using center manifold theory and normal structure strategy.
It has been seen that delay plays a vital role in stability exchanging.
Furthermore, the presence of Hopf bifurcation is affected by larger
values of virus transmission rate from an infected mosquito to sus-
ceptible individuals and the natural mortality of humans in a model.
Finally, to understand some analytical outcomes, the delay framework
is simulated numerically.

Keywords: JEV. DDEs. Intrinsic incubation period. Delay differ-
ential model. Bifurcation analysis
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1. Introduction

In the current year, the incidence of Japanese encephalitis (JE) has risen
significantly across the world. The disease is currently prevalent in over 24
countries in Southeast Asia and the Western Pacific. It is evaluated that
over 3 billion individuals are in danger from the Japanese encephalitis virus
(JEV) and this disease in numerous nations of Asia is 68,000 medical cases
per year, with roughly 13,600 to 20,400 deaths, [1]. The case casualty rate
among those with encephalitis can be as high as 30%, [27] and permanent
neurologic can happen in 30%-50% of those of encephalitis, Centers for
Disease Control, (CDC) 2018. JE is an infection caused by a virus that has
been linked to West Nile and St. Louis encephalitis. People are infected
with JEV through the bite of infected Culex species mosquitoes, especially
Culex tritaeniorhynchus. Mosquitoes and pigs keep the infection going in a
cycle. People are coincidental or dead-end hosts because their circulation
systems do not contain enough high convergences of JE infection to infect
feeding mosquitoes. The transmission of the JE virus occurs primarily
in rural agrarian areas, and is frequently linked to rice production and
flooding water systems. These conditions can occur near urban centers in
some Asian regions. In milder regions of Asia, JE infection transmission is
occasional. Human infection normally tops in the mid-year and fall.

Infected mosquitoes can spread the infection for an unprecedented amount
of time after being infected. After being bitten by infected mosquitoes, an
infected person will show symptoms after a 5-15 day incubation period, [1].
There is no cure for such infection. Treatment is centered around soothing
extreme medical signs and supporting the patient to conquer the infection.
Protected and valuable immunizations are accessible to prevent JE. WHO
suggests that JE inoculation be incorporated into national vaccination plans
for all territories where JE disease is perceived as a general medical prob-
lem. We can view that the intrinsic incubation period of the infection is
impressively long and thus huge. There have been a few JE mathematical
models published to date, in which the dynamics of JE infection have been
explored and analyzed. First of all Mukhopadhyay et al., [10] have con-
sidered a mathematical framework on Japanese encephalitis, in which they
talked about the basic properties like positivity, boundedness, and stability
of the framework. The basic reproduction number, which is further speci-
fied, is a significant quantity that provides information about the potential
spread of Japanese encephalitis. Following that, some manuscripts on the
mathematical model of Japanese encephalitis infection were produced, in-
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cluding [3, 5, 9, 10]. Likewise, mathematical frameworks have been gener-
ally used to quantify the transmission of different infectious infections, such
as, [2, 4, 7, 11, 12, 14, 33, 34]. These models are compartmental models
where a population is separated into various compartments relating to the
various courses of infection. Since transmission dynamics of JEV is still
now unexplored, thus due to this pandemic each year numerous individuals
are died, because of the attack of JEV. In this way, an investigation of the
dynamics of JEV transmission and the methodology for its control is funda-
mental. The modified model of Japanese encephalitis has been constructed
by the work of Tapaswi et al., [9], De et al., [16] and Baniya et al., [13, 17].

Time delays have recently been extended to pandemic systems to gain
a better understanding of an ever-increasing number of perplexing marvels
for portraying a few aspects of disease transmission. We realize that the
impressive characteristic intrinsic incubation time of JEV is available in
JE transmission. Time delay has certainly been widely used to frame the
incubation time of pathogens of several infectious infections such as malaria,
dengue fever, Hepatitis C Virus, and so on, time delay has been extensively
used, [8, 14, 15]. The delayed system experiences Hopf bifurcation, periodic
solution and once in chaos may likewise happen, [11, 14, 19, 21, 22, 25, 26,
28]. Gandhi et al., [18] have discussed the dynamical characteristic of a
VL framework with time delay and established criteria for stability and
the presence of Hopf bifurcation. Kumar et al., [23] have constructed the
SIR pandemic model with the deterministic time-delayed system. In his
work they have taken the Holling type III function as a treatment rate
and nonlinear functional as the incidence rate of infection, Finally, Hopf
bifurcation occurs in his system. Qi et al., [24] have studied the SEIRS time-
delayed framework with vertical transmission and nonlinear incidence rate.
They have shown that the vertical transmission and immunity period can
affect the dynamics dealing with the SEIRS system. Goel et al., [20] have
constructed and analyzed a SIR epidemic framework with time-delayed,
saturated functional-type treatment rate and Beddington-DeAngelis-type
incidence rate. In his work, they have derived the circumstances for the
occurrence of backward bifurcation and Hopf bifurcation.

The implementation of delays in the JE model has, for the most part,
focused on the incorporation of the incubation period. Japanese encephali-
tis model with time delay will have gotten a lot of consideration, since time
delay may change the subjective conduct of the frameworks, for example,
it can destabilize steady states and therefore lead to periodic solutions by
Hopf bifurcation. Baniya et al., [17] have studied the impact of vaccination
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on the control of JEV, by using basic reproduction number and sensitivity
analysis, have discussed the impressive role of immunization on the control
of JEV in the human population. Thus, considering the effect of time delay
on the study of the DDEs without vaccination of the JEV system with a
standard incidence rate is interesting. However, in the existing literature,
there are no JEV frameworks with time delay. Inspired by this, the main
point of this manuscript is to build up a compartmental framework with a
time delay without vaccination that makes susceptible humans infectious
after interaction with infected mosquitoes. We study the influence of such
time delays on the transmission of Japanese encephalitis.

The rest part of this work is as per the following: In sect. 2, the math-
ematical formulation and explanation of the essential properties of the JE
model with time delay are examined. Sect. 3 deals with the positivity
and boundedness of the disease framework as they represent populations.
The dynamical behavior of the model, such as the occurrences of steady
states, basic reproduction number, and stability analysis of the model are
discussed in sect. 4. Sect. 5 manages the presence of Hopf bifurcation and
utilizing the Hopf bifurcation hypothesis, we show the event of Hopf bifur-
cation when time delay goes through the critical point. The direction and
stability of Hopf bifurcation at endemic equilibrium are discussed in Sect.
6. Furthermore, numerical simulations and their biological involvement are
presented in Sect. 7, and lastly, the manuscript ends with a conclusions
section.

2. A mathematical formulation of Japanese encephalitis frame-
work

In inferring the framework conditions, we previously considered a logistic
growth rate for mosquito population and standard incidence rate in both
human and pig populations. In the mosquito compartment, there is no
recovered class, because it acts as a transmitter of JEV only. The mosquito
population is exposed to quick change, the size is assumed to be fluctuating,
Tapaswi et al., [9]. Without loss of any all-inclusive statement, we expect
that in this manuscript there is no recovered class in the human population
since we have just considered the time delay to makes susceptible humans
infected after interacting with an infected mosquito. Following De et al.,
[16] it is expected that the human and pig population varying in constant
size. According to WHO, JE infection does not spread through direct
contact between pig-pig, pig-human, or human-human. Mosquitoes, which
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serve as transmitters from an infected pig population to both susceptible pig
and human populations, help to spread the disease. Let X1(t), X2(t) and
X3(t) denote the susceptible, vaccinated and infected human population
respectively and N1 be the total human population at time t which is
constant, equal to N1 = X1(t) + X2(t) + X3(t); V1(t) and V2(t) denote
the susceptible and infected mosquito population respectively such that
V (t) = V1(t) + V2(t); Z1(t) and Z2(t) denote the susceptible and infected
pig population respectively such that Z1(t) +Z2(t) = N2 where N2 is total
pig population at time t. In human, suppose continuous vaccination rate v
such that vµhN1 is recruitment rate of vaccinated humans and rest (1− v)
goes to susceptible class, hence (1 − v)µhN1 becomes the recruitment of
susceptible humans. Since vaccination does not give 100% protection [1], so
δX2 amount of vaccinated humans goes to susceptible class. The Japanese
encephalitis spreads among X1 and Z1 from V2, so disease transmission
to human and pig populations should be in the form of β1V2X1

N1
and β3V2Z1

N2
respectively. Also, susceptible mosquitoes V1 gets an infection from infected
pig Z2, so Japanese encephalitis transmission from pig to mosquitoes should
be in the form of β2Z2V1

V . Since the growth rate α1 of mosquitoes decreases
as the population reaches carrying capacity K. Therefore, the mosquito
population is considered in logistic growth, which is in the form ofµ
α1 − rV

K

¶
V . Thus, keeping the above discussion in mind, the proposed

Japanese encephalitis model can be expressed mathematically using the
following system of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1
dt = µh(1− v)N1 + δX2 − β1V2X1

N1
− µhX1

dX2
dt = vµhN1 − (µh + δ)X2

dX3
dt =

β1V2X1
N1

− (µh + �)X3

dV1
dt =

³
α1 − rV

K

´
V − β2Z2V1

V − α2V1

dV2
dt =

β2Z2V1
V − α2V2

dZ1
dt = µpN2 − β3Z1V2

N2
− µpZ1

dZ2
dt =

β3Z1V2
N2

− (µp + γ1)Z2

(2.1)
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Parameter
Descriptions

α1 Natural birth rate of mosquito population

α2 The mortality rate of mosquito population

r Intrinsic growth rate of mosquito population

K Carrying capacity of mosquito population

µp The mortality rate of pig population

β1 The rate of disease transmission from infected
mosquitoes to susceptible individuals in the human
population

β2 The rate of disease transmission from infected pigs to
susceptible individuals in mosquito population

β3 The rate of disease transmission from infected
mosquitoes to susceptible individuals in pig population

γ1 The rate at which infected pig population get partially
recovered and goes to susceptible class

µh The mortality rate of humans

v Vaccination rate of humans

δ The rate at which a vaccinated individual falls into the
susceptible group of human

� Death rate of infected individuals in human population
due to disease

Table 1: Biological description of the parameters used in the Japanese
encephalitis framework (2.1)

In this case, we consider the model without vaccination. It is observed
that if the vaccination rate v is zero, the second equation of the system
(2.1) is meaningless. Also, if V be the total mosquito population then
susceptible mosquitoes can be excluded, So these two equations can be
excluded without loss of any all-inclusive statement. This permits us to
assault the system (2.1) by examining the subsystem;
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1
dt = µhN1 + δX2 − β1V2X1

N1
− µhX1

dX3
dt =

β1V2X1

N1
− (µh + �)X3

dV
dt = r

³
1− V

K

´
V

dV2
dt =

β2Z2(V−V2)
V − α2V2

dZ1
dt = µpN2 − β3Z1V2

N2
− µpZ1

dZ2
dt =

β3Z1V2
N2

− (µp + γ1)Z2

(2.2)

When susceptible humans are bitten by infected mosquitoes, they are
not answerable for the clinical side effects, during the intrinsic incubation
time frame. To represent a class of people in this time period who are
infected but do not show any symptoms. Let τ be the time delay to makes
susceptible individuals infectious in the human population after interaction
with infected mosquitoes. i.e. intrinsic incubation period. At that point,
the quantity of recently happened infectious human per unit time t is

β1V2(t− τ)X1(t− τ)

N1

Hence, the system (2.2), which is a representation of the system (2.1)
is converted to a system of delay differential equations (DDEs):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1
dt = µhN1 − β1V2(t−τ)X1(t−τ)

N1
− µhX1

dX3
dt =

β1V2(t−τ)X1(t−τ)
N1

− (µh + �)X3

dV
dt = r

³
1− V

K

´
V

dV2
dt =

β2Z2(V−V2)
V − α2V2

dZ1
dt = µpN2 − β3Z1V2

N2
− µpZ1

dZ2
dt =

β3Z1V2
N2

− (µp + γ1)Z2

(2.3)

The framework (2.3) satisfies the initial conditions in the interval [−τ, 0]
defined in the space

C+ =

½
φ ∈ C

µ
[−τ, 0],R6+

¶
: X1(θ) = φ1(θ), X3(θ) = φ2(θ), V (θ) = φ3(θ),

V2(θ) = φ4(θ), Z1(θ) = φ5(θ), Z2(θ) = φ6(θ)

¾
(2.4)
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where φ =
³
φ1, φ2, φ3, φ4, φ5, φ6

´
∈ C

µ
[−τ, 0],R6+

¶
, the Banach space of

all continuous mapping in the interval [−τ, 0] to R6+ with
φi(θ) ≥ 0 (θ ∈ [−τ, 0], i = 1, 2, 3, 4, 5, 6) and³
φ1(0), φ2(0), φ3(0), φ4(0), φ5(0), φ6(0)

´
,R6+ =

½
(X1,X3, V, V2, Z1, Z2) :

X1 > 0,X3 > 0, V > 0, V2 > 0, Z1 > 0, Z2 > 0

¾
.

3. Positivity and boundedness of solutions

The positivity and boundedness of the system (2.3) as they represent pop-
ulations are presented in this section. Positivity means that the population
cannot be negative, that is, it must always be positive. Boundedness can
be defined as a natural constraint to development as a result of limited
resources. From the ”fundamental theory of functional differential equa-
tions” [30], satisfying initial history (2.4), framework (2.3) has a exactly
one solution. The boundedness and non-negativity of the solution with an
initial history (2.4) are guaranteed by the following theorem:

Theorem 1. All the solutions (X1(t),X3(t), V (t), V2(t), Z1(t), Z2(t)) of
framework (2.3) starting in R6+ are bounded and enter the set

Ω =

(
(X1,X3, V, V2, Z1, Z2) ∈ R6+ : Xi(t) ≥ 0, V (t) ≥ 0, V2(t) ≥ 0, Zj(t) ≥

0, i = 1, 3, j = 1, 2 : ΣXi(t) ≤ N1, V (t) = K,V2(t) ≤ Kβ2Z0
β2Z0+α2K

, ΣZj(t) ≤

N2

)

Remark 1. In this region Ω, the elementary outcomes such as local ex-
istence, uniqueness and continuation of solutions are valid for framework
(2.3). Hence, there exists a unique solution (X1(t),X3(t), V (t), V2(t), Z1(t), Z2(t))
of framework (2.3) starting in the interior of Ω that exists on a maximal
interval [0,∞), if solution remain bounded, [35].

Theorem 2. All state variables (X1(t),X3(t), V (t), V2(t), Z1(t), Z2(t)) of
framework (2.3) with initial conditions (2.4) exists in [−τ, 0) are positive
for all t0.

Proof. Let us consider the framework (2.3) in vector form by setting

Y = (X1,X3, V, V2, Z1, Z2)
T ∈ R6
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and

f(Y ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(Y )

f2(Y )

f3(Y )

f4(Y )

f5(Y )

f6(Y )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µhN1 − β1V2(t−τ)X1(t−τ)
N1

− µhX1

β1V2(t−τ)X1(t−τ)
N1

− (µh + �)X3

r
³
1− V

K

´
V

β2Z2(V−V2)
V − α2V2

µpN2 − β3Z1V2
N2

− µpZ1

β3Z1V2
N2

− (µp + γ1)Z2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the mapping f : C+ → R6 and f ∈ C∞(R6), then the framework
(2.3) reduces to

dY

dt
= f(Yt)(3.1)

with initial history Yt(φ) = Y (t + φ), φ ∈ [−τ, 0). It is easy to verify that
in Eq. (3.1), whenever we choose Y (φ) ∈ C+ in such a way that Yi = 0, it
is obtained that

fi(Y )|Yi(t)=0,Yt∈C+ = fi(0) ≥ 0, ∀ i = 1, 2, 3, 4, 5, 6.

Due to lemma [36] and subsection (3.1) in [2], any solution of framework
(2.3) with Yt(φ) ∈ C+, say Y (t) = Y (Y (0), t), is such that Y (t) ∈ R6+0
∀ t ≥ 0, i.e. it remains non-negative throughout the region R6+. 2

4. Dynamical behavior of the framework

4.1. Steady-states and basic reproductive number

The Japanese encephalitis disease transmission model formulated in delay
framework (2.3) possess two types of equilibria:

1. Virus-free steady-state: The virus-free steady-state (disease-free equi-
librium) is denoted by E0 = (X̄1, X̄3, V̄ , V̄2, Z̄1, Z̄2) and is given as

X̄1 = N1, X̄3 = 0, V̄ = K, V̄2 = 0, Z̄1 = N2, Z̄2 = 0.

The existence of virus-free steady-state E0 is obvious. This equilib-
rium state means that the JE virus cannot spread to the population.
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To measure disease transmission potential, the basic reproduction
number R0 can be established by using the next generation matrix
method, as described in, [2, 3, 5, 17].

R0 =
β2β3

α2(µp + γ1)

Biologically, this parameter R0 is stated as: the average number of
secondary infections generated by a typical single JE infected indi-
vidual in the entirely susceptible individuals in which a few people
have been immunized, [31].

2. Endemic steady-state: The endemic steady-state (positive steady-
state) is denoted by E1 = (X

∗
1 ,X

∗
3 , V

∗, V ∗2 , Z
∗
1 , Z

∗
2) and is given as

X∗
1 =

N2
1µh

N1µh + β3V ∗2
, X∗

3 =
β1V

∗
2 X

∗
1

N1(µh + �)
, V ∗ = K,

V ∗2 =
β2Z

∗
2K

α2K + β2Z∗2

Z∗1 =
N1(µp + γ1)Z

∗
2

β3V ∗2
, Z∗2 =

KN2α2(µp + γ1)(R0 − 1)
N2(µp + γ1) + β3K

It is observed that steady-state E1 is feasible if R0 > 1. This steady-
state means that the infection would be spread to the susceptible
population if infected humans, mosquitoes, and pigs remain in the
system.

4.2. Stability analysis

In the analysis of dynamical systems, one approach to consider the local
stability of steady states through linearization. This is built by character-
izing E = (X̃1, X̃3, Ṽ , Ṽ2, Z̃1, Z̃2) as equilibrium of framework (2.3). Then
the linearized framework of (2.3) at equilibrium is given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1
dt = −

β1Ṽ2
N1

X1(t− τ)− µhX1(t)− β1V2(t−τ)X̃1

N1

dX3
dt =

β1Ṽ2X1(t−τ)
N1

− (µh + �)X3(t) +
β1V2(t−τ)X̃1

N1

dV
dt = r

³
1− 2Ṽ

K

´
V (t)

dV2
dt =

β2Z̃2Ṽ2V (t)

Ṽ 2 − V2(t)(
β2Z̃2
Ṽ
+ α2) + β2(

Ṽ−Ṽ2
Ṽ
)Z2(t)

dZ1
dt = −

β3Z̃1V2(t)
N2

− (β2Ṽ2N2
+ µp)Z1(t)

dZ2
dt =

β3Z̃1V2(t)
N2

+ β3Z1(t)Ṽ2
N2

− (µp + γ1)Z2(t)

(4.1)

The Jacobian matrix of linearized system (4.1) of system (2.3) is given
by

J(E) =

Ã
J11 J12
O J22

!
(4.2)

where,

J11 =

⎛⎝ −β1Ṽ2
N1

e−λτ − µh 0

β1Ṽ2
N1

e−λτ −(µh + �)

⎞⎠ , J12 =

⎛⎝ 0 −β1X̃1

N1
e−λτ 0 0

0 β1X̃1
N1

e−λτ 0 0

⎞⎠

J22 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r(1− 2Ṽ
K ) 0 0 0

β2Z̃2Ṽ2
Ṽ 2

−(β2Z̃2
Ṽ
+ α2) 0 β2(Ṽ−Ṽ2)

Ṽ

0 −β3Z̃1
N2

−(β3Ṽ2N2
+ µp) 0

0 β3Z̃1
N2

β3Ṽ2
N2

−(µp + γ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.2.1. Stability of virus-free steady-state

Theorem 3. The virus-free steady-state E0 of framework (2.3) is abso-
lutely stable for τ ≥ 0 if R0 < 1.
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Proof. The characteristic roots of the Jacobian matrix J(E) at E0 of
Eq.(4.2) for linearized system of Eq.(4.1) are −µh, −(µh + �), −r, −µp
− 1

2

∙
(α2 + γ1 + µp) ±

q
(α2 + γ1 + µp)2 − 4α2(µp + γ1)(1−R0)

¸
. Hence,

all its roots are negative if R0 < 1. Therefore, E0 is absolutely stable for
τ ≥ 0. 2

Remark 2. In order to get Hopf bifurcation around the equilibrium E0,
it is sufficient to show that J(E0) of Eq.(4.1) has purely imaginary roots.
But at the equilibrium E0, J(E0) has no purely imaginary roots. So, the
system (4.1) does not undergoes Hopf bifurcation around E0, [32].

4.2.2. Stability of endemic steady-state

The Jacobian matrix J(E) at E1 of Eq.(4.1) for the linearized system of
Eq.(2.3) have the characteristic roots are

−r,−
∙
α2 +

β2Z
∗
2

K

½
1− N1K

R0N2V ∗2

µ
1− V ∗2

K

¶
(1−K∗)

¾¸
,−

µ
β3V

∗
2

N2
+ µp

¶
,

−(µp + γ1)

where, K∗ =
β3V ∗2

β3V ∗2 +µ1N2
< 1 and the roots of the polynomial equation of

degree two

λ2 + (2µh + �)λ+ µh(µh + �) +
β1V

∗
2

N1
(λ+ µh + �)e−λτ = 0(4.3)

If τ = 0, then Eq.(4.3) reduced to

λ2 + (2µh + �)λ+ µh(µh + �) +
β1V

∗
2

N1
(λ+ µh + �) = 0

From above, it is seen that the endemic steady-state E1 is LAS if
R0 > 1, τ = 0.
If τ > 0, put λ = iw,w > 0 in Eq.(4.3), we get.

β1V
∗
2

N1
w sin(wτ) +

β1V
∗
2

N1
(µh + �) cos(τw) = w2 − µh(µh + �)(4.4)

and
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β1V
∗
2

N1
(µh + �) sin(τw)− β1V

∗
2

N1
w cos(wτ) = w(µh + �)

(4.5)

Figuring out and including Eqs. (4.4) and (4.5), we get

w4 +

(
2µ2h + �2 + 2µh�−

β21V
∗2
2

N2
1

)
w2 +

Ã
µ2h −

β21V
∗
2 2

N2
1

!
(µh + �)2 = 0

or

y21 + y1c1 + c2 = 0(4.6)

where,

y1 = w2, c1 =

(
2µ2h + �2 + 2µh�−

β21V
∗2
2

N2
1

)
, c2 =

Ã
µ2h −

β21V
∗
2 2

N2
1

!
(µh + �)2

From above, we see that if c2 > 0 then obviously c1 > 0, so we can
consider two case as-

Case 1. If R0 > 1 and c2 > 0, then by Descarte’s rule of signs all the
solutions of Eq.(4.6) have negative real parts ∀ τ ≥ 0, along these lines, by
Definition 3.1, [2] the accompanying theorem is acquired.

Theorem 4. If R0 > 1 and c2 > 0, then endemic steady-state E1 of the
framework (2.3) is absolutely stable ∀ τ ≥ 0.

Lemma 1. [29] For the equation of a quadratic transcendental polynomial

λ2 + p1λ+ p2 + (p3λ+ p4)e
−λτ = 0(4.7)

If,

1. p1 + p3 > 0;
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2. p2 + p4 > 0;

3. either p23−p21+2p2 < 0 and p22−p24 > 0 or (p23−p21+2p2)2 < 4(p22−p24);

4. either p22−p24 < 0 or p23−p21+2p2 > 0 and (p23−p21+2p2)2 = 4(p22−p24);

Then there are the following outcomes,

1. All the solutions of (4.7) have negative real parts ∀τ ≥ 0, if (a)-(c)
holds.

2. If (a), (b), and (d) holds and τ = τ0 then Eq. (4.7) has purely imag-
inary roots ±iw and all others solutions of Eq. (4.7) have negative
real parts.

3. If λ = 0, p1 + p3 > 0 and p2 + p4 > 0 then, all the solutions of (4.7)
have negative real parts.

Case 2. If R0 > 1 and c2 < 0, then by Descarte’s rule of signs Eq.(4.6) has
positive solutions. Thus, the Eq.(4.3) has pair of purely imaginary roots
(say) λ = ±iw0. Put w = w0 in Eq.(4.7) and solve it for τ , we get the
corresponding τj > 0, j = 0, 1, 2, ... such that

τ0 =
1

w0
arc cos

⎛⎝Ap1(µh + �) +Aw0
q
A2((µh + �)2 + w20)− p21

A2N1(w20 + (µh + �)2)

⎞⎠(4.8)

where A =
β1V ∗2
N1

, p1 = 1−µh(µh+�). Using the Lemma (1) all the solutions
of Eq.(11) are have negative real parts for τ ∈ [0, τ0). Consequently, by
Lemma 3.5 (ii)[2] the accompanying theorem is acquired.

Theorem 5. If R0 > 1 and c2 < 0 then positive steady-state E1 of the
framework (2.3) is conditionally steady ∀ τ ∈ [0, τ0).

5. Hopf bifurcation analysis

Here, we have taken the time delay τ as bifurcation parameter. Let λ(τ) =
α(τ)+iw(τ), w > 0 be the root of Eq.(4.3) to such an extent that α(τ0) = 0
and w(τ0) = w0 for some underlying estimation of the bifurcation parameter
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τ0. To build up Hopf bifurcation at τ = τ0, it have to check λ(τ0) = iw0 is

a simple and
³
d(Re(λ))

dτ

´
τ=τ0

> 0. Diff. Eq.(4.3) w.r.t. τ , we get

³
2λ+ 2µh + �+A((1− τ(λ+ µh + �)e−λτ )

´dλ
dτ
= Aλ

µ
λ+ µh + �

¶
e−λτ(5.1)

Suppose λ(τ) = iw0 is not simple, so
³
d(Re(λ))

dτ

´
τ=τ0

= 0. At that point,

Eq.(4.3) can be composed as-

λA(λ+ µh + �)e−λτ = 0(5.2)

Put λ = iw0 in Eq.(4.4), we get

Aw0(µh + �) sin(w0τ0)−Aw20 cos(τ0w0) = 0

Aw20 sin(τ0w0) +Aw0(µh + �) cos(w0τ0) = 0(5.3)

Putting w = w0 and τ = τ0 in Eqs.(4.4) and (4.5), we get

Aw20 sin(τ0w0) +Aw0(µh + �) cos(w0τ0) = w30 −wµh(µh + �)

Aw0(µh + �) sin(w0τ0)−Aw20 cos(τ0w0) = w20(µh + �)(5.4)

Using Eq.(5.3) in Eq.(5.4), we get w0 = 0, this is not possible. This
contradict our supposition that λ(τ) = iw0 is not simple. Hence λ(τ) = iw0
is a simple root of Eq.(4.3).

Now, we will show that
³
d(Re(λ))

dτ

´
τ=τ0

> 0.

Eq.(5.1) can be composed as-

µ
dλ

dτ

¶−1
=

(2λ+ 2µh + �)

Aλ(λ+ µh + �)e−λτ
+

1

λ(λ+ µh + �)
− τ

λ

or,

µ
dλ

dτ

¶−1
=

−(2λ+ 2µh + �)

λ(λ2 + (2µh + �)λ+ µh(µh + �))
+

1

λ(λ+ µh + �)
− τ

λ

µ
dλ

dτ

¶−1
=

∙ −(2λ+ 2µh + �)

λ(λ2 + (2µh + �)λ+ µh(µh + �))
+

1

λ(λ+ µh + �)
− τ

λ

¸
λ=iw0
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=

"
−(λ2 − µh(µh + �))

λ2(λ2 + (2µh + �)λ+ µh(µh + �))
− µh + �

λ2(λ+ µh + �)
− τ

λ

#
λ=iw0

After separating real and imaginary parts, we obtain the following sim-
plified real part equation

Re

"µ
dλ

dτ

¶−1#
=
1

w20

"
(µh + �)2

w20 + (µh + �)2
+

µ2h(µh + �)2 − w40
(µ2h + w20)((µh + �)2 + w20)

#
Thus,

sign

"µ
dλ

dτ

¶−1#
τ=τ0

=
1

w20
sign

"
(µh + �)2

w20 + (µh + �)2
+

µ2h(µh + �)2 − w40
(µ2h + w20)((µh + �)2 + w20)

#
(5.5)

The expression on right hand side of Eq.(5.5) is positive if µh(µh+ �) >
w20 (since µh + � is mortality rate of mosquitoes, it never surpass unity).

Hence, the transversality condition for example
³
d(Re(λ))

dτ

´
τ=τ0

> 0 is

fulfilled. As the above outcomes, the solution of characteristic Eq.(4.3) goes
through imaginary axis from left to right as τ changes from a number less
than τ0. Hence, the condition for Hopf bifurcation are fulfilled at τ = τ0.
From the above investigation, we have obtained the Theorem (6) as:

Theorem 6. If R0 > 1, the positive steady-state E1 of the framework
(2.3) is

1. If c2 > 0, absolutely stable ∀ τ ≥ 0.

2. If c2 < 0, conditionally stable ∀ τ ∈ [0, τ0). Moreover, the system
experiences Hopf bifurcation at E1 when τ = τ0.

3. The largest positive simple root of the Eq.(4.3) is w0, then E1 of the
delay induced framework (2.3) is asymptotically steady when τ < τ0
and unstable when τ > τ0, where,

τ0 =
1

w0
arc cos

⎛⎝Ap1(µh + �) +Aw0
q
A2((µh + �)2 + w20)− p21

A2N1(w20 + (µh + �)2)

⎞⎠
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At τ goes through the critical point τ = τ0, a group of periodic solutions
bifurcates from E1.

6. Direction and stability of the Hopf bifurcation

In this part, we have acquired the condition for Hopf bifurcation at the crit-
ical value τ = τ0 and prevailing with regards to getting unequivocally the
articulation for τ0 by utilizing the normal structure strategy and manifold
theory presented by Hassard et al. [7]. In this investigation, our underlying
supposition that will be that the system (4.3) shows Hopf bifurcation and
±iw0 is corresponding purely imaginary roots of the characteristic equation
at positive steady-state E1(X

∗
1 ,X

∗
3 , V

∗, V ∗2 , Z
∗
1 , Z

∗
2). Let us think about the

transformation

v1(t) = X1(t)−X∗
1 , v2(t) = X3(t)−X∗

3 , v3(t) = V (t)− V ∗, v4(t) = V2(t)− V ∗2
v5(t) = Z1(t)− Z∗1 , v6(t) = Z2(t)− Z∗2 ,

¯vi(t) = vi(tτ), (i = 1, 2, 3, 4, 5, 6) and

τ = τ0 + µ

the system (4.3) is converted to a functional differential equation (FDE) in
C = C([−1, 0],R6).

dy

dt
= Lµ(yt) + f(µ, yt)(6.1)

where,

(y1(t), y2(t), y3(t), y4(t), y5(t), y6(t)) ∈ R6

and Lµ : C → R6, f : R× C → R6 are respectively given by
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Lµ(φ) =

(τ0+µ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−µh 0 0 0 0 0

0 −(µh + �) 0 0 0 0

0 0
³
r − 2V ∗

K

´
0 0 0

0 0
β2Z∗2V

∗
2

V ∗2 −
³
β2Z∗2
V ∗ + α2

´
0

β2(V ∗−V ∗2 )
V ∗

0 0 0 −β3Z∗1
N2

−
³
β3V ∗2
N2

+ µp
´
0

0 0 0
β3Z∗1
N2

β3V ∗2
N2

−(µp + γ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.2)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1(0)

φ2(0)

φ3(0)

φ4(0)

φ5(0)

φ6(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ (τ0 + µ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β1V ∗2
N1

0 0 −β1X∗1
N1

0 0

β1V ∗2
N1

0 0
β1X∗1
N1

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1(−1)
φ2(−1)
φ3(−1)
φ4(−1)
φ5(−1)
φ6(−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

f(µ, φ) = (τ0 + µ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β1φ1(−1)φ4(−1)
N1

β1φ1(−1)φ4(−1)
N1

−rφ23(0)
K

−β2φ6(0)φ4(0)
φ3(0)

−β3φ5(0)φ4(0)
N2

β3φ5(0)φ4(0)
N2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.3)

By the Riesz representation theorem, we can locate a bounded variation
function η(θ, µ) for θ ∈ [−1, 0] with the end goal that

For φ ∈ C,Lµ(φ) =

Z 0

−1
φ(θ)dη(θ, µ)(6.4)

We can choose,
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η(θ, µ) =

(τ0 + µ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−µh 0 0 0 0 0

0 −(µh + �) 0 0 0 0

0 0
³
r − 2V ∗

K

´
0 0 0

0 0
β2Z∗2V

∗
2

V ∗2 −
³
β2Z∗2
V ∗ + α2

´
0

β2(V ∗−V ∗2 )
V ∗

0 0 0 −β3Z∗1
N2

−
³
β3V ∗2
N2

+ µp
´
0

0 0 0
β3Z∗1
N2

β3V ∗2
N2

−(µp + γ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
δ(θ)(6.5)

(6.6)

+ (τ0 + µ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β1V ∗2
N1

0 0 −β1X∗1
N1

0 0

β1V ∗2
N1

0 0
β1X∗1
N1

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
δ(θ + 1)(6.7)

where δ is the Dirac delta function, let

M(µ)(φ) =

⎧⎨⎩
dφ(θ)
dθ , θ ∈ [−1, 0)R 0
−1 dη(µ, t1)φ(t1), θ = 0

(6.8)

and

S(µ)(φ) =

⎧⎨⎩ 0, θ ∈ [−1, 0)

f(µ, φ), θ = 0
(6.9)

Then, the Eq.(6.1) can be composed as-

dyt
dt
=M(µ)yt + S(µ)yt(6.10)
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where, yt(θ) = y(t+ θ) for θ ∈ [−1, 0]. Also let,

M∗ψ(t) =

⎧⎨⎩ −
dψ(t)
dt , t ∈ (0, 1]R 0

−1 dη
T (s, 0)ψ(−s), t = 0

(6.11)

for ψ ∈ C1
¡
[0, 1], (R6)∗

¢−1
We define bilinear inner product (here, η(θ) = η(θ, 0))

< ψ(t), φ(θ) >= ¯ψ(0)φ(0)−
Z 0

−1

Z θ

ξ=0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ(6.12)

At that point M(0) and M∗ are called adjoint operators. Presently it very
well may be effectively demonstrated that ±iw0τ0 are eigenvalues of M(0).
Consequently, ±iw0τ0 are likewise eigenvalues of M∗.

Let P (θ) = (1, e1, e2, e3, e4, e5)
T eiw0τ0θ be the eigenvector of M(0) cor-

responding to iw0τ0, then M(0)P (θ) = iw0τ0P (θ). Then, from Eqs.(6.2),
(6.4), (6.5) and definition of M(0), we obtain, P (0) = (1, e1, 0, e3, e4, e5)

T

where,

e1 =
β1e

−iw0τ0(V ∗2 +X∗
1e3)

N1(iw0 + µh + �)
, e3 = −

µ
N1(iw0 + µh)

β1X1e−iw0τ0
− V ∗2

X∗
1

¶
e4 =

N2e5(iw0 + µp + γ1)− e3β3Z
∗
1

β3V ∗2
, e5 =

e3(iw0V
∗ + β2Z

∗
2 + α2V

∗)

β2(V ∗2 − V ∗)

Similarly, let P ∗(θ∗) = D(1, e∗1, e
∗
2, e

∗
3, e

∗
4, e

∗
5)e

−iw0τ0θ∗ be the eigenvector
of M∗ corresponding to the eigenvalue −iw0τ0. In the same manner we
have obtain,

e∗1 = 0, e∗2 =
e∗5(iw0 + µp + γ1)Kβ2Z

∗
2V

∗
2

β2V ∗(V ∗ − V ∗2 )(iw0K − rK + 2V ∗)
,

e∗3 =
e∗5V

∗(iw0 + µp + γ1)

β2(V ∗2 − V ∗)
, e∗4 =

e∗5β2V
∗
2

iw0N2 + β3V ∗2 + µpN2
,

e∗5 =
β1X

∗
1e
−iw0τ0

N1
³

β3Z∗1 (µp+iw0)
β3V ∗2 +N2(µp+iw0)

+
(iw0+µp+γ1)(α2V ∗+iw0V ∗+β2Z∗2 )

β2(V ∗−V ∗2 )

´
To assure hP (θ), P ∗(θ∗)i = 1, we use Eq.(6.12) to calculateD as follows:

hP ∗(θ∗), P (θ)i = ¯P ∗(0)P (0)−
Z 0

θ=−1

Z θ

ξ=0
P̄ ∗(ξ − θ)dη(θ)P (ξ)dξ(6.13)
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= D̄(1, 0, e∗2, e
∗
3, e

∗
4, e

∗
5)(1, e1, 0, e3, e4, e5)−Z 0

θ=−1

Z θ

ξ=0
D̄(1, 0, e∗2, e

∗
3, e

∗
4, e

∗
5)e

−iw0τ0(ξ−θ)dη(θ)(1, e1, 0, e3, e4, e5)e
iw0τ0ξdξ

= D̄(1 + ē∗3e3 + ē∗4e4 + ē∗5e5)

Ã
1−

Z 0

θ=−1

Z θ

ξ=0
eiw0τ0θdη(θ)dξ

!

= D̄(1 + ē∗3e3 + ē∗4e4 + ē∗5e5)

Ã
w20τ

2
0 − 1 + e−iw0τ0 + iw0τ0e

−iw0τ0

w20τ
2
0

!

Choosing,

D =
w20τ

2
0

(1 + ē∗3e3 + ē∗4e4 + ē∗5e5)(w
2
0τ
2
0 − 1 + e−iw0τ0 + iw0τ0e−iw0τ0)

Thus, we achieve the property hP (θ), P ∗(θ∗)i = 1. To figure the direc-
tions portraying the center manifold C0 at µ = 0, we utilize the possibility
of Hassard et al. [7]. Let yt be the solution of Eq.(6.10) at µ = 0, we define
a function as follows:

Z(t) = hP ∗(θ∗), yti and W (t, θ) = yt(θ)− 2Re{Z(t), P (θ)}(6.14)

On center manifold C0, we have

W (t, θ) =W (Z(t), ¯Z(t), θ)

where,

W (Z(t), ¯Z(t), θ) = W20(θ)
Z2

2
+W02(θ)

Z̄2

2
+W11(θ)ZZ̄ +W30(θ)

Z3

6

+ W03(θ)
Z̄3

6
+W12(θ)

ZZ̄2

2
+ ...(6.15)

Here, Z and Z̄ are local coordinates for center manifold C0 toward P ∗

and P̄ ∗ respectively. The expression W (Z, Z̄, θ) will be real, if yt is real
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and we are keen on real solution as it were. For real solution yt ∈ C0 of
Eq.(6.10), (since µ = 0) we have,

dZ(t)

dt
= iw0τ0Z(t) + ¯P ∗(0)f(0,W (Z, Z̄, 0) + 2Re{ZP (θ)})

= iw0τ0Z(t) + ¯P ∗(0)f0(Z, Z̄)

= iw0τ0Z(t) + h(Z, Z̄)(6.16)

where,

h(Z, Z̄) = ¯P ∗(0)f0(Z, Z̄) = h20
Z2

2
+ h02

Z̄2

2
+ h11ZZ̄ + h21

Z2Z̄

2
+ ...(6.17)

From Eq.(6.14),

yt(θ) = W (t, θ) + 2Re(Z(t), P (θ))

= W20(θ)
Z2

2
+W02(θ)

Z̄2

2
+W11(θ)ZZ̄ + ZP (θ) + Z̄ ¯P (θ) + ...

where,

P (θ) = (1, e1, 0, e3, e4, e5)
T eiw0τ0θ and ¯P (θ) = (1, ē1, 0, ē3, ē4, ē5)

T e−iw0τ0θ

Eq.(6.16) can also be written as

h(Z, Z̄) = ¯P ∗(0)f0(Z, Z̄)

= ¯P ∗(0)f(0, xt)

= τ0D̄(1, 0, ē∗2, ē
∗
3, ē

∗
4, ē

∗
5)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β1y1t(−1)y4t(−1)
N1

β1y1t(−1)y4t(−1)
N1

−ry23t(0)
K

−β2y6t(0)y4t(0)
y3t(0)

−β3y5t(0)y4t(0)
N2

β3y5t(0)y4t(0)
N2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −τ0D̄
h
β1y1t(−1)y4t(−1)

N1
+ ē∗2

ry23t(0)
K + ē∗3

β2y6t(0)y4t(0)
y3t(0)

+ ē∗4
β3y5t(0)y4t(0)

N2
− ē∗5

β3y5t(0)y4t(0)
N2

i
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= −τ0D̄
(
β1
N1

∙
W
(1)
20 (−1)

Z2

2
+W

(1)
02 (−1)

Z̄2

2
+W

(1)
11 (−1)ZZ̄ + Zeiw0τ0 + Z̄e−iw0τ0

+ O(|(Z, Z̄)|3)
¸∙
W
(4)
20 (−1)

Z2

2
+W

(4)
02 (−1)

Z̄2

2
+W

(4)
11 (−1)ZZ̄ + e3Ze

iw0τ0 + ē3Z̄e
−iw0τ0

+ O(|(Z, Z̄)|3)
¸
+

ē∗2r

K

∙
W
(3)
20 (−1)

Z2

2
+W

(3)
02 (−1)

Z̄2

2
+W

(3)
11 (−1)ZZ̄ +O(|(Z, Z̄)|3)

¸2
+ ē∗3β2

∙
W
(6)
20 (−1)

Z2

2
+W

(6)
02 (−1)

Z̄2

2
+W

(6)
11 (−1)ZZ̄ + e5Z + ē5Z̄ +O(|(Z, Z̄)|3)

¸
∙
W
(4)
20 (−1)

Z2

2
+W

(4)
02 (−1)

Z̄2

2
+W

(4)
11 (−1)ZZ̄ + e3Z + ē3Z̄ +O(|(Z, Z̄)|3)

¸
∙
W
(3)
20 (−1)

Z2

2
+W

(3)
02 (−1)

Z̄2

2
+W

(3)
11 (−1)ZZ̄ +O(|(Z, Z̄)|3)

¸−1
− β3

N2
(ē∗3 − ē∗5)∙

W
(4)
20 (−1)

Z2

2
+W

(4)
02 (−1)

Z̄2

2
+W

(4)
11 (0)ZZ̄ + e3Z + ē3Z̄ +O(|(Z, Z̄)|3)

i
∙
W
(5)
20 (0)

Z2

2
+W

(5)
02 (0)

Z̄2

2
+W

(5)
11 (0)ZZ̄

+e4Z + ē4Z̄ +O(|(Z, Z̄)|3)
¸)

Comparing the coefficient with (6.17), we get

h20 = −2τ0D̄
∙
β1
N1

e3e
2iw0τ0 +

β3
N2
(ē∗4 − ē∗5)e3e4

¸
,

h02 = −2τ0D̄
∙
β1
N1

ē3e
−2iw0τ0 +

β3
N2
(ē∗4 − ē∗5)ē3ē4

¸

h11 = −τ0D̄
h
β1
N1
(ē3 + e3) +

β3
N2
(ē∗4e3 − ē∗3e4)

i
,

h21 = −2τ0D̄
"
β1
N1

Ã
e3e

iw0τ0W
(1)
11 (−1) + eiw0τ0W

(4)
11 (−1)

+1
2 ē3e

−iw0τ0W (1)
20 (−1) + 1

2e
−iw0τ0W (4)

20 (−1)
!

+ β3
N2

Ã
e4W

(4)
11 (0) +

ē4
2 W

(4)
20 (0) + e3W

(5)
11 (0) +

ē3
2 W

(5)
20 (0)

!#
(6.18)
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Next, we center around the calculation ofW20(θ) andW11(θ), since they
are in the outflow of h21. Putting (6.10) and (6.16) into (6.14), we get

W
0
(t) = y

0
t(θ)− Z

0
(t)P (θ)− ¯Z 0(t) ¯P (θ)

=

⎧⎪⎪⎨⎪⎪⎩
M(0)W − 2Re

½
¯P ∗(0)f0(Z, Z̄)P (θ)

¾
, θ ∈ [−1, 0)

M(0)W − 2Re
½

¯P ∗(0)f0(Z, Z̄)P (θ)
¾
+ f0(Z, Z̄), θ = 0

∼= M(0)W + L(Z, Z̄, θ)(6.19)

where,

L(Z, Z̄, θ) = L20(θ)
Z2

2
+ L02(θ)

Z̄2

2
+ L11(θ)(ZZ̄) + . . .(6.20)

Using the value of Eqs.(6.15) and (6.20) in Eq.(6.19) and comparing the
coefficient, we have³

M(0)− 2iw0τ0I
´
W20(θ) = −L20(θ)

M(0)W11(θ) = −L11(θ)(6.21)

From Eq.(6.18), it is found that for θ ∈ [−1, 0)

L(Z, Z̄, θ) = −2Re
n

¯P ∗(0)f0(Z, Z̄)P (θ)
o

= − ¯P ∗(0)f0(Z, Z̄)P (θ)− P ∗(0)f̄0(Z, Z̄) ¯P (θ)

= −h(Z, Z̄)P (θ)− h̄(Z, Z̄) ¯P (θ)

= −
µ
h20

Z2

2 + h02
Z̄2

2 + h11ZZ̄ + . . .

¶
P (θ)−

µ
h̄20

Z̄2

2 + h̄02
Z2

2 + h̄11ZZ̄ + . . .

¶
¯P (θ)

(6.22)

Comparing the coefficient of Eqs.(6.20) and (??), we obtain

L20(θ) = −h20P (θ)− h̄02 ¯P (θ)(6.23)

L11(θ) = −h11P (θ)− h̄11 ¯P (θ)(6.24)

From definition of M(0), Eqs.(6.21), (6.23) and (6.24), we get

M(0)W20(θ) =W
0
20(θ) = 2iw0τ0W20(θ) + h20P (θ) + h̄02 ¯P (θ)(6.25)
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M(0)W11(θ) =W
0
11(θ) = h11P (θ) + h̄11 ¯P (θ)(6.26)

Putting P (θ) = (1, e1, 0, e3, e4, e5)
T eiw0τ0θ in the last equation, we ob-

tain the solution

W20(θ) =
ih20
w0τ0

P (0)eiw0τ0θ +
ih̄02
3w0τ0

¯P (0)e−iw0τ0θ + J1e
2iw0τ0θ(6.27)

and similarly,

W11(θ) =
−ih11
w0τ0

P (0)eiw0τ0θ +
ih̄11
3w0τ0

¯P (0)e−iw0τ0θ + J2(6.28)

where,

J1 = (J
(1)
1 , J

(2)
1 , J

(3)
1 , J

(4)
1 , J

(5)
1 , J

(6)
1 )T , J2 = (J

(1)
2 , J

(2)
2 , J

(3)
2 , J

(4)
2 , J

(5)
2 , J

(6)
2 )T

are constant vectors. Presently, we need to locate a fitting consistent vector
J1 and J2 which fulfills the above conditions. From the definition ofM and
Eq.(6.26), we getZ 0

−1
dη(θ)W20(θ) =M(0)W20(θ) = 2iw0τ0W20(0)− L20(0)(6.29)

and Z 0

−1
dη(θ)W11(θ) =M(0)W11(θ) = −L11(0)(6.30)

From Eq.(6.19),

L(Z, Z̄, 0) = −h(Z, Z̄)P (0)− h̄(Z, Z̄) ¯P (0) + f0(Z, Z̄)

= −
µ
h20

Z2

2
+ h02

Z̄2

2
+ h11ZZ̄ + . . .

¶
P (0)−

µ
h20

Z2

2
+ h02

Z̄2

2
+ h11ZZ̄ + . . .

¶
P (θ) + 2τ0M1

Z2

2
+M2τ0ZZ̄ + . . .(6.31)

where,
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M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− β1
N1

e3e
2iw0τ0

β1
N1

e3e
2iw0τ0

0

0

− β3
N2

e3e4

β3
N2

e3e4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− β1
N1
(ē3 + e3)

β1
N1
(ē3 + e3)

0

0

− β3
N2
(e3ē4 + ē3e4)

β3
N2
(e3ē4 + ē3e4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Comparing the coefficients of the Eq.(6.31), we get

L20(0) = −h20P (0)− h̄02 ¯P (0) + 2τ0M1(6.32)

L11(0) = −h11P (0)− h̄11 ¯P (0) + τ0M2(6.33)

Since iw0τ0 is the eigenvalue of M(0) and P (0) is the corresponding
eigenvector, thenµ
iw0τ0I −

Z 0

−1
eiw0τ0dη(θ)

¶
P (0) = 0 and

µ
− iw0τ0I −

Z 0

−1
e−iw0τ0dη(θ)

¶
¯P (0)

= 0

Using the Eqs.(6.27) and (6.32) in Eq.(6.29), we getµ
2iw0τ0I −

Z 0

−1
e2iw0τ0θdη(θ)

¶
J1 = 2τ0M1

That is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0 β1
N1

X∗1 e
−2iw0τ0 0 0

b11 b12 0 − β1
N1

X∗1e
−2iw0τ0 0 0

0 0 2iw0 −
³
r − 2V ∗

K

´
0 0 0

0 0 −β2Z
∗
2V
∗
2

V ∗2 2iw0 +
³
β2Z

∗
2

V ∗ + α2

´
0 −β2(V

∗−V ∗2 )
V ∗

0 0 0
β3Z

∗
1

N2
c11 0

0 0 0 −β3Z
∗
1

N2
−β3V

∗
2

N2
(2iw0 + µp + γ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J
(1)
1

J
(2)
1

J
(3)
1

J
(4)
1

J
(5)
1

J
(6)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− β1
N1

e3e
2iw0τ0

β1
N1

e3e
2iw0τ0

0

0

− β3
N2

e3e4

β3
N2

e3e4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where,

a11 = 2iw0 + µh +
β1
N1

V ∗2 e
−2iw0τ0 , b11 = −

β1
N1

V ∗2 e
−2iw0τ0 , b12 = 2iw0 + (µh + �)

c11 = 2iw0 +

µ
β3V

∗
2

N2
+ µp

¶
From above we can undoubtedly figure a constant vector

J1 =
³
J
(1)
1 , J

(2)
1 , J

(3)
1 , J

(4)
1 , J

(5)
1 ,

J
(6)
1

´T
∈ R6. Similarly, using Eqs.(6.28) and (6.33) into (6.30), we get

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
³
µh +

β1
N1

V ∗2

´
0 0 − β1

N1
X∗1 0 0

β1
N1

V ∗2 −(µh + �) 0 β1
N1

X∗1 0 0

0 0
³
r − 2V ∗

K

´
0 0 0

0 0
β2Z

∗
2V
∗
2

V ∗2 −
³
β2Z

∗
2

V ∗ + α2

´
0

β2(V
∗−V ∗2 )
V ∗

0 0 0 −β3Z
∗
1

N2
−
³
β3V

∗
2

N2
+ µp

´
0

0 0 0
β3Z

∗
1

N2

β3V
∗
2

N2
−(µp + γ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J
(1)
2

J
(2)
2

J
(3)
2

J
(4)
2

J
(5)
2

J
(6)
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− β1
N1
(ē3 + e3)

β1
N1
(ē3 + e3)

0

0

− β3
N2
(e3ē4 + ē3e4)

β3
N2
(e3ē4 + ē3e4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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In a similar way we can compute the constant vector

J2 =
³
J
(1)
2 , J

(2)
2 , J

(3)
2 , J

(4)
2 , J

(5)
2 , J

(6)
2

´T
∈ R6. Thus, finally we can deter-

mine W20(0) and W11(0) from Eq.(6.27) and (6.28). Hence, at last we
can decide W20(0) and W11(0) from Eq.(6.27) and (6.28). Also, hij from
Eq.(6.18) can be dictated by the parameters of the model. Therefore, we
can register the accompanying qualities:

C11(0) =
i

2w0τ0

Ã
h20h11 − 2|h11|2 −

|h02|2
3

!
+

h21
2

µ22 = −Re{C11(0)}
Re{λ0(τ0)}

β22 = 2Re{C11(0)}

T22 = −Im{C11(0) + µ22Im{λ
0
(τ0)}}

w0τ0
(6.34)

where, λ
0
(τ0) =

dλ(τ)
dτ |τ=τ0 . Therefore, we have the following results:

Theorem 7. The expressions in (6.34) give the evaluation of the bifurcat-
ing periodic solutions in the center manifold at the critical value τ0, for the
delayed model (2.3). Then,

1. The indication of µ22 decides the direction of Hopf bifurcation. The
Hopf bifurcation is forward or in backward proportionately as µ22 > 0
or µ22 and the bifurcating periodic solution exists for τ > τ0 and
τ < τ0 respectively.

2. The indication of β22 evaluates the stability of the bifurcating periodic
solutions; if β22 << 0, bifurcating periodic solutions are stable and if
β22 > 0, bifurcating periodic solutions are unstable.

3. The indication of T22 quantifies the period of the bifurcating periodic
solutions; if T22 < 0, period decreases and if T22 > 0, period increases.
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7. Numerical simulations and its biological involvement

To validate our theoretical results of the delayed model (2.3), we used
MATLAB (R2014a) and MATHEMATICA 11 with the following set of
parameters to integrate numerically, [1, 17, 27]:

α1 = 1.51, α2 = 0.06, r = 1.45, µh = 0.001538, µp = 0.01, β1 = 0.08, β3 = 0.1

γ1 = 0.25, δ = 0.001, � = 0.0222, K = 1000, N1 = 2500, N2 = 50

(7.1)

where β2 and τ are varied and R0 = 6.41β2. Utilizing the parameter values
(7.1), virus-free and positive steady-state of the delay model (2.3) are given
by E0 = (2500, 0, 1000, 0, 50, 0) and E1 = (X

∗
1 ,X

∗
3 , V

∗, V ∗2 , Z
∗
1 , Z

∗
2) where,

X∗
1 =

125.525− 14.4408β2 + 92.5658β22
0.0502101− 0.156006β2 + 1.25β22

, X∗
3 =

124.783β2(1.25β
2
2 − 0.156006)

0.05021− 0.156006β2 + 1.25β22
V ∗ = K = 1000, V ∗2 =

6902.65β2(6.14β2 − 1)
60 + 6.90265β2(6.41β2 − 1)

, Z∗2 = 6.9026(6.41β2 − 1)

Z∗1 = 287.597β2 +
390

β2
− 44.8669

Putting R0 = 1 and solving it for β2, gives

β2 = β∗2 =
α2(µp + γ1)

β3
= 0.156

where β∗2 has taken as a bifurcation parameter. In proposed framework the
impact of virus transmission rate β2 on the stabilities of the framework (2.3)
is explored as β2 goes through β∗2 . The acquired outcomes are arranged in
Table (7.1).
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β2 β2 < β∗2 β2 < β∗2 β2 < β∗2 β2 = β∗2 β2 < β∗2 β2 < β∗2 β2 < β∗2

0.05 0.08 0.10 0.156 0.20 0.40 0.60

R0
0.3201 0.5128 0.6510 1 1.2820 2.5641 3.8461

X1
2500 2500 2500 2500 2141.03 910.36 474.35

X3
0.0 0.0 0.0 0.0 18.60 82.39 104.99

V
1000 1000 1000 1000 1000 1000 1000

V2
0.0 0.0 0.0 0.0 6.44 67.13 164.19

Z1
50 50 50 50 1962.62 1024.17 777.69

Z2
0.0 0.0 0.0 0.0 1.940 10.790 19.640

Stable E0 E0 E0 E0 E1 E1 E1
state

Table 7.1: The effect of β2 on R0,X1,X3, V, V2, Z1andZ2 at equilibrium
points of delayed model (2.3):
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According to the table (7.1), increasing β2 causes an increase in the
basic reproduction number, R0, which leads to an increase in the quantity
of disease and a decrease in the quantity of susceptible.

Example 1. In this example, the stability of virus-free steady-state E0
is explored by reproducing the delayed model (2.3) as follows. Utiliz-
ing the parametric values in (7.1) and β2 = 0.05, gives R0 = 0.3201 <
1. It is seen that the model (2.3) has the virus-free steady-state E0 =
(2500, 0, 1000, 0, 50, 0). Fig. (1) shows that E0 is absolutely stable for all
τ ≥ 0 as in accordance with Theorem (3). By looking at the estimation
of τ , the profiles of susceptible individuals initially decrease, but as time
goes on, these are continuously increasing and then go on saturated, see
Fig. 1(a). Similarly, the profiles of the mosquito population continuously
increase and then saturated, see Fig.1(c), and the susceptible pigs are ini-
tially decreasing, but as time goes on, these are continuous increases and
then go on saturated, see Fig. 1(e). while the profiles of infected individu-
als in 1(b) and 1(d) are given off an impression of being pandemic at first
and are at the end terminated but in Fig. 1(f) infected individuals are
continuous decreases. It has been determined that the virus is eradicated
from the population. As a consequence of the above discussion, we have
concluded that the number of susceptible individuals will increase while the
number of infected individuals will remain constant. It is predicted that
the population will be free of viruses.
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Fig. 1: The stability behavior of delayed model (2.1) at virus-free steady-
state E0 for τ = 0, 8, 16 and the parametric values are taken from (7.1),
when the basic reproduction number R0 < 1.
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f-1
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Example 2. Here, the stability of positive steady-state E1 is examined by
simulating the framework (2.3) as follows. Utilizing the parameters in (7.1)
and β2 = 0.4, gives R0 = 2.5641 and the condition c2 > 0 holds. Hence,
the delayed model (2.3) have an equilibrium
E1(910.360, 82.390, 1000, 67.130, 1024.17, 10.79). It is shown in Fig. (2),
this signifies that E1 is absolutely stable ∀ τ ≥ 0 as guaranteed by Theorem
(4). This result shows that the influence of time delay in the transmission
of Japanese encephalitis. From Figs. 2(a) -(b) it is more clear that a higher
value of τ increases the infection in the human population. This is because
of increasing the value of τ , susceptible humans decrease whereas infected
humans increase monotonically before the convergence to the steady-state
E1. While Figs. 2(c)-(f) shows that the profiles of individuals without time
delay. These figures only show the stability of a positive steady-state as
shown in Theorem (4).

Example 3. In this example, we are going to analyze the stability and
Hopf bifurcation of the delayed model, when R0 > 1 and c1 < 0. If the para-
metric values are β1 = 0.6, β2 = 0.7, β3 = 0.7, γ1 = 0.025, µh = 0.01538, � =
0.222 and the remaining values are in (7.1), then R0 = 85 and the delayed
model passes a unique endemic equilibrium point (133, 37, 1000, 227, 37, 29).
The critical-time delay value τ0 is τ = τ0 = 7.43922. Consequently, the
behaviors of the model for different values of τ are manifested in Fig.
3(a)-(d) and Fig. 4(a)-(b). It is found that as τ passes through τ0, the
steady-state E1 losses its stability and a Hopf bifurcation happened as
guaranteed by Theorem 6(2). Furthermore, using the Theorem (7), we can
determine the value of C11(0), µ22, β22 and T22 as C11(0) = −5.38742 ×
10−7 + 1.15966 × 10−7i, µ22 = 6.37095 × 10−5, β22 = −1.07748 × 10−6,
T22 = 1.60986 × 10−7 > 0. Since µ22 > 0 and β22 < 0, therefore by
Theorem (7), the Hopf bifurcation is supercritical and the periodic solu-
tion bifurcating from E1 is steady, which can be further demonstrated by
Fig. 5(a)-(b). From Fig. (6), we also observe that on increasing the value
of τ , the periodic solutions have a smaller period and they disappear for
large enough. Thus, the numerical estimation shows that if the τ is suffi-
ciently large then nonexistence periodic solution and for a small value of
τ , the periodic solution exists. Since we realize that the steady-state E1
is asymptotically steady if τ < τ0. When τ goes through τ0, the state E1
losses its stability and a Hopf bifurcation happens. The solution plots for
τ > τ0 (”unstable positive equilibrium and stable periodic solution”) have
appeared in Fig. 5(a)- (b). Fig. (6) shows that the period and amplitude
of the periodic solutions of the delayed (2.3) turns out to be large as the
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delay increases. From the top line to the base the delays are τ = 60, τ = 61
and τ = 62, respectively. These plots show that the instability strong and
stronger with an increasing value of τ .

Example 4. The effect of β1 and µh on the occurrence of Hopf bifurcation
has been discussed in this example. The influence of disease transmission
rate from an infected mosquito to susceptible individuals and the natural
death rate of humans is investigated of the delayed model (2.3) with various
values of β1 and µh. For β2 = 0.6, the critical value of β1 and µh of the
model (2.3) is determined by the value of c1 from Theorem (4) as β1 > 0.3
and µh > 0.001. For β1 > 0.3 and µh > 0.001, the stable and unstable
regions of the model (2.3) have appeared in Fig. (7). This figure gives
the base estimation of time delay for various estimations of β1 and µh so
the model gets stable inside the endorsed them. Figures show that as β1
and µh increase, the critical time delay τ0 increases. These outcomes can
be deciphered that the event of Hopf bifurcation in the delayed model is
delayed as a bigger infers a more drawn out intermingling time.
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Fig. 2: The stability behavior of delayed model (2.3) at positive steady-
state E1 for τ = 0, 8, 16 and the parametric values are taken from (7.1),
when the basic reproduction number R0 > 1.
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Fig. 3: The stability of delayed model (2.3) at positive state E1 for R0 > 1,
when β1 = 0.6, β2 = 0.7, β3 = 0.7, � = 0.222, γ1 = 0.025, µh = 0.01538 and
different time delay (a): τ = 0, (b): τ = 5.8, (c): τ = 20, (d): τ = 30.
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Fig. 4: The delayed model (2.3) is unstable and Hopf bifurcation happens
for R0 > 1, when β1 = 0.6, β2 = 0.7, β3 = 0.7, � = 0.222, γ1 = 0.025,
µh = 0.01538 and different time delay (a): τ = 65, (b): τ = 70

Fig. 5: The state E1 is asymptotically stable when τ < τ0, where, β1 = 0.6,
β2 = 0.65, β3 = 0.65, � = 0.222, γ1 = 0.027, µh = 0.01538 and different
time delay (a): τ = 45, (b): τ = 50
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Fig. 6: Periods and amplitudes of periodic solutions of delayed model
(2.3), when τ = 60, 61, 62 respectively, where β1 = 0.7, β2 = 0.6, β3 = 0.6,
� = 0.222, γ1 = 0.027, µh = 0.01538.

Fig. 7: The graphs showing that variation of time delay w.r.t. β1 and
µh, which indicates that the stable and unstable regions of the delayed
model (2.3). where β1 = 0.3, β2 = 0.6, β3 = 0.6, � = 0.222, γ1 = 0.027,
µh = 0.01538.
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8. Conclusions

We investigated the impact of time delay on the dynamics of the Japanese
encephalitis system in this study. In particular, we considered a six-dimensional
delay differential model of Japanese encephalitis after removing the vaccina-
tion strategies from the human population. Our theoretical and numerical
simulation outcomes show that the time delay incredibly influences the dy-
namics of the framework. Beginning from the more reasonable actuality
that when people get an infection from JEV, they do not turn out to be
sick or infected with the disease in a split second. It implies that the in-
fective class requires time to have the option of transferring the disease to
a defenseless level. As a result, it considers a delayed effect on the dynam-
ics of the Japanese encephalitis model. The models are thoroughly broke
down to pick up bits of knowledge into the impact of time delay and their
subjective dynamics. The existence and stability of steady-states, the Hopf
bifurcation and the stability sharing marvels, and the direction and sta-
bility of Hopf bifurcation are all considered as dynamical properties of the
system. The main finding of the work is summarized below.

1. The proposed delayed model confirms R0, called the basic reproduc-
tion number and it have two steady-state, namely virus-free E0 and
positive E1. The existence of E0 is obvious while E1 exists if R0 > 1.

2. If R0 < 1, E0 is absolutely stable ∀ τ ≥ 0 and it is unstable if R0 > 1.
This signifies that if R0 < 1 then virus dies out from the population
and if R0 > 1 then virus is present in the population.

3. If R0 > 1, there exist different form of stability and Hopf bifurcation
incidence at E1, including (1) If c2 > 0, E1 is absolutely stable ∀
τ ≥ 0, (2) there exist a unique critical-delay τ0 > (0) such that
E1 is conditionally stable ∀ τ0 ∈ [0, τ) and E1 is unstable and Hopf
bifurcation happens when τ = τ0. Moreover, τ goes through the
critical point τ0, a groups of periodic solutions bifurcates from E1.

4. If R0 > 1, the direction and stability of Hopf bifurcation have talked
about, see Theorem (7). Furthermore, it is viewed as supercritical
and steady for the considered data.

5. By numerical simulations, it is shown that the larger values of virus
transmission rate from an V2 to X1 and the natural death rate of hu-
mans of a delayed model (2.3) affect the existence of Hopf bifurcation
(it can be verified by Fig. (7)).
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Finally, the introduction of a time delay in the JEV transmission term
can balance out the structure as the DDEs framework is consistent ∀ τ ≥ 0.
It can moreover destabilize the system and occasional arrangements can
arise through Hopf bifurcation while using the time delay as a bifurcation
boundary. It has been pointed out that just R0 accepts a huge occupation
in the elements of the delayed model. That is, R0 changes the stability of
steady-state when it experiences unity. The τ changes the strength of the
positive state employing Hopf bifurcation when it goes through τ0. This
infers the framework will be unsteady and the virus can not be viably
controlled. Truly, different components can influence the infection episode.
The paper centers around breaking down the impact of a time delay with
different parameters. In our future work, we can contemplate the effect of a
period delay with vaccination on the DDEs of encephalitis framework with
time-varying parameters.
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