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Abstract

In this paper, we determine the Randić energy of the m-splitting
graph, the m-shadow graph and the m-duplicate graph of a given
graph, m being an arbitrary integer. Our results allow the construction
of an infinite sequence of graphs having the same Randić energy. Fur-
ther, we determine some graph invariants like the degree Kirchhoff in-
dex, the Kemeny’s constant and the number of spanning trees of some
special graphs. From our results, we indicate how to obtain infinitely
many pairs of equienergetic graphs, Randić equienergetic graphs and
also, infinite families of integral graphs.
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energy, Randić energy, equienergetic graphs, integral graphs.

10.22199/issn.0717-6279-4616

Scielo

Scielo



856 Jahfar T. K. and Chithra A. V.

1. Introduction

In this paper, we consider simple connected graphs. Let G = (V,E) be a
simple graph of order p and size q with vertex set V (G) = {v1, v2, ..., vp}
and edge set E(G) = {e1, e2, ..., eq}. The degree of a vertex vi in G is the
number of edges incident to it and is denoted by di = dG(vi). The adjacency
matrix A(G) = [aij ] of the graph G is a square symmetric matrix of order
p whose (i, j)th entry is defined by

ai,j =

(
1, if vi and vj are adjacent,
0, otherwise.

The eigenvalues λ1, λ2, ..., λp of the graph G are defined as the eigenval-
ues of its adjacency matrix A(G). If λ1, λ2, ..., λt are the distinct eigenvalues
of G, the spectrum of G can be written as

Spec(G) =

Ã
λ1 λ2 ... λt
m1 m2 ... mt

!
,

wheremj indicates the algebraic multiplicity of the eigenvalue λj , 1 ≤ j ≤ t

of G. The energy [11] of the graph G is defined as ε(G) =
pX

i=1

|λi|. More

results on graph energy are reported in [3,11]. The Randić matrix R(G) =
[Ri,j ] of a graph G is a square matrix of order p whose (i, j)th entry is

Ri,j =

( 1√
didj

, if vi and vj are adjacent,

0, otherwise.
.

The eigenvalues of R(G) are called Randić eigenvalues of G and it is
denoted by ρi, 1 ≤ i ≤ p. If ρ1, ρ2, ..., ρs are the distinct Randić eigenvalues
of G, then the Randić spectrum of G can be written as

RS(G) =

Ã
ρ1 ρ2 ... ρs
m1 m2 ... ms

!
,

where mj indicates the algebraic multiplicity of the eigenvalue ρj ,1 ≤ j ≤ s
of G. If G has no isolated vertices, then R(G) = D−1/2A(G)D−1/2, where
D1/2 is the diagonal matrix with diagonal entries 1√

di
for every i, 1 ≤ i ≤ p

[4]. Randić energy of G is defined as εR(G) =
pX

i=1

|ρi| [4, 12]. More results
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on Randić energy are reported in [1, 10]. A graph is said to be integral if all
the eigenvalues of its adjacency matrix are integers. of H, and by joining
each vertex of the ith copy of H to the ith vertex of G, 1 ≤ i ≤ n. The join
G+H of two graphs G and H is obtained by joining all the vertices of G
to the vertices of H. Two non-isomorphic graphs G1 and G2 of the same
order are said to be equienergetic if ε(G1) = ε(G2) [18]. In analogy to this,
two graphs G1 and G2 of same order are said to be Randić equienergetic
if εR(G1) = εR(G2) [2]. The normalized Laplacian matrix L(G) = (Lij) is
the square matrix of order p whose (i, j)th entry is defined as,

Lij =

⎧⎪⎨⎪⎩
1, if vi = vj and di 6= 0,
− 1√

didj
, if vi and vj are adjacent in G,

0, otherwise.

.

For a graph G without isolated vertices, the normalized Laplacian ma-
trix can be written as

L(G) = In −D−
1
2 (G)A(G)D−

1
2 (G).

The eigenvalues of the matrix L(G) are called the normalized Laplacian
eigenvalues of G and it is denoted by 0 = µ̃1(G) ≤ µ̃2(G)... ≤ µ̃p(G). Let
G be a graph without isolated vertices. Then its normalized Laplacian
matrix L(G) and Randić matrix R(G) are related by L(G) = I − R(G).
The normalized Laplacian eigenvalues µ̃i(G) and Randić eigenvalues ρi(G)
are related by µ̃i(G) = 1 − ρi(G), for i = 1, 2, ..., p. The degree Kirchhoff
index of connected graph G is defined in [6] as

Kf∗(G) =
X
i<j

dir
∗
i,jdj

where r∗i,j denotes the resistance distance [15] between vertices vi and vj in
a graph G. In [6], the authors proved that

Kf∗(G) = 2q
pX

i=2

1

µ̃i(G)
.

In general, the computation of the degree Kirchhoff index of a graph is a dif-
ficult thing. Here we obtained the formula for finding the degree Kirchhoff
index of some families of graphs.

The Kemeny’s constant K(G) of a connected graph G [5] is defined in
terms of normalized Laplacian as

K(G) =
pX

i=2

1

µ̃i(G)
.
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The various applications of the Kemeny’s constant to perturbed Markov
chains, random walks on directed graphs are studied in [13]. The number
of spanning trees (distinct spanning subgraphs of G that are trees) of G [8]
can be expressed in terms of the normalized Laplacian eigenvalues as

t(G) =

Qp
i=1 di

Qp
i=2 µ̃i(G)Pp

i=1 di
.

We use the notations Kn, Cn and K1,n−1 throughout this paper to de-
note the complete graph, the cycle and the star graph on n vertices respec-
tively. Let Jm be the m × m matrix of all ones and Im be the identity
matrix of order m.

The rest of the paper is organized as follows. In Section 2, we give a
list of some previously known results which are useful for further reference
in this paper. In Section 3, Randić energy of the m-splitting graph, the
m-shadow graph and the m-duplicate graphs are obtained. In Section 4,
our results allow the construction of an infinitely many integral and Randić
integral graphs. Also, our results show how to construct equienergetic and
Randić equienergetic graphs. In Section 5, we discuss the graph invariants
like the degree Kirchhoff index, the Kemeny’s constant and the number of
spanning trees of resulting graphs from various graph operations.

2. Preliminaries

In this section, we recall the concepts of the m-splitting graph, the m-
shadow graph and the m-duplicate graph of a graph and list some results
that will be used in the subsequent sections.

Definition 2.1. The Kronecker product of two graphs G1 and G2 is the
graph G1×G2 with vertex set V (G1)×V (G2) and the vertices (x1, x2) and
(y1, y2) are adjacent if and only if (x1, y1) and (x2, y2) are edges in G1 and
G2 respectively.

Definition 2.2. Let A ∈ Rm×n,B ∈ Rp×q. Then the Kronecker product of
A and B is defined as follows

A⊗B =

⎡⎢⎢⎢⎢⎣
a11B a12B a13B . . . a1nB
a21B a22B a23B . . . a2nB
...

...
...

. . .
...

am1B am2B am3B . . . amnB

⎤⎥⎥⎥⎥⎦ .
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Proposition 2.1. Let A,B ∈ Rn×n. Let λ be an eigenvalue of matrix
A with corresponding eigenvector x and µ be an eigenvalue of matrix B
with corresponding eigenvector y, then λµ is an eigenvalue of A⊗ B with
corresponding eigenvector x⊗ y.

Definition 2.3. Let G be a simple (p, q) graph. Then the m-splitting
graph of a graph G, Splm(G) is obtained by adding to each vertex v of G
new m vertices say, v1, v2, ..., vm such that vi ,1 ≤ i ≤ m is adjacent to each
vertex that is adjacent to v in G. The adjacency matrix of the m-splitting
graph of the graph G is

A(Splm(G)) =

⎡⎢⎢⎢⎢⎣
A(G) A(G) A(G) . . . A(G)
A(G) O O . . . O
...

...
...

. . .
...

A(G) O O . . . O

⎤⎥⎥⎥⎥⎦
(m+1)p

.

If m = 1, the m-splitting graph of the graph G is known as splitting
graph of G[21], denoted by Spl(G). The number of vertices and the number
of edges in Splm(G) are (m+ 1)p and (m+ 1)q respectively.

Proposition 2.2. The energy of them-splitting graph ofG is ε(Splm(G)) =√
1 + 4mε(G).

Definition 2.4. Let G be a simple (p, q) graph. Then them-shadow graph
Dm(G) of a connected graph G is constructed by taking m copies of G
say, G1, G2, ..., Gm then join each vertex u in Gi to the neighbors of the
corresponding vertex v in Gj , 1 ≤ i ≤ m, 1 ≤ j ≤ m. The adjacency matrix
of the m-shadow graph of G is

A(Dm(G)) =

⎡⎢⎢⎢⎢⎣
A(G) A(G) A(G) . . . A(G)
A(G) A(G) A(G) . . . A(G)
...

...
...

. . .
...

A(G) A(G) A(G) . . . A(G)

⎤⎥⎥⎥⎥⎦
mp

.

If m = 2, the m-shadow graph of G is known as shadow graph of G[16].
The number of vertices and the number of edges in Dm(G) are pm and m2q
respectively.

Proposition 2.3. The energy of the m-shadow graph of G is ε(Dm(G)) =
mε(G).
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Definition 2.5. Let G = (V,E) be a simple (p, q) graph with vertex set
V and edge set E. Let V 0 be a set such that V

T
V 0 = ∅, |V | = |V 0| and

f : V → V 0 be bijective (for a ∈ V we write f(a) as a0 for convenience ). A
duplicate graph of G is D(G) = (V1, E1), where the vertex set V1 = V ∪ V 0
and the edge set E1 of D(G) is defined as, the edge ab is in E if and only
if both ab0 and a0b are in E1.

In general the m-duplicate graph of the graph G, Dm(G) is defined as
Dm(G) = Dm−1(D(G)).

The number of vertices and the number of edges in the m-duplicate
graph of the graph are 2mp and 2mq respectively. With suitable labeling of
the vertices, the adjacency matrix of D(G) is

A(D(G)) =

"
Op×p A(G)
A(G) Op×p

#
.

Proposition 2.4. The energy of the duplicate graph of G is ε(D(G)) =
2ε(G).

In [17], authors remarked that, the m-duplicate graph of G, Dm(G) =
G×K2×K2...×K2 (K2 repeats m-times). The energy of the m-duplicate
graph of G is ε(Dm(G)) = ε(G).ε(K2)...ε(K2) = 2

mε(G)[3].

3. Randić energy of the m-splitting, the m-shadow and the
m-duplicate graphs

In this section, we present the Randić energy of the m-splitting graph, the
m-shadow graph and the m-duplicate graphs of G. Also, we obtain some
new families of Randić equienergetic graphs. In addition, our results show
how to construct infinitely many families of integral graphs.

Theorem 3.1. Let G be a simple (p, q) graph without isolated vertices.
Then the Randić energy of the m-splitting graph of G is εR(Splm(G)) =
2m+1
m+1 εR(G).

Proof. The Randić matrix of m- splitting graph of G is R(Splm(G))

=

⎡⎢⎢⎢⎢⎢⎣
((m+ 1)D)−

1
2 O · · · O

O D−
1
2 · · · O

...
...

. . .
...

O O · · · D−
1
2

⎤⎥⎥⎥⎥⎥⎦
p(m+1)
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·

⎡⎢⎢⎢⎢⎣
A (G) A (G) A (G) · · · A (G)
A (G) O O · · · O
...

...
...

. . .
...

A (G) O O · · · O

⎤⎥⎥⎥⎥⎦
p(m+1)⎡⎢⎢⎢⎢⎢⎣

((m+ 1)D)−
1
2 O · · · O

O D−
1
2 · · · O

...
...

. . .
...

O O · · · D−
1
2

⎤⎥⎥⎥⎥⎥⎦
p(m+1)

=

⎡⎢⎢⎣
((m+ 1)D)

− 12 A (G) ((m+ 1)D)
− 12 ((m + 1)D)

− 12 A (G) D−
1
2 · · · · ((m+ 1)D)

− 12 A (G)D−
1
2

((m+ 1)D)
− 1
2 A (G)D

− 12 0 0 · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

((m+ 1)D)
− 12 A (G)D−

1
2 0 0 · · · 0

⎤⎥⎥⎦
p(m+1)

=

⎡⎢⎢⎢⎢⎣
1√
m+1

1 1 · · · 1

1 0 0 · · · 0
...

...
...
. . .

...
1 0 0 · · · 0

⎤⎥⎥⎥⎥⎦
m+1

⊗ 1√
m+1

D
−1
2 A (G)D

−1
2

= B⊗ 1√
m+1

D
−1
2 A (G)D

−1
2 , where B =

⎡⎢⎢⎢⎢⎣
1√
m+1

1 1 · · · 1

1 0 0 · · · 0
...

...
...
. . .

...
1 0 0 · · · 0

⎤⎥⎥⎥⎥⎦
(m+1)

The eigenvalues of B are
√
m+ 1, −m√

m+1
and 0, and 0 has multiplicity

m− 1. So spectrum of B is

Spec(B) =

Ã
0

√
m+ 1 −m√

m+1

m− 1 1 1

!
.

Thus the Randić spectrum of the m-splitting graph is,

RS(Splm(G)) =

Ã
0 ρ1 ρ2 . . . ρp

−m
m+1ρ1

−m
m+1ρ2 . . . −m

m+1ρp
p(m− 1) 1 1 . . . 1 1 1 . . . 1

!
.

Hence the Randić energy of them-splitting graph ofG is εR(Splm(G)) =
2m+1
m+1 εR(G). 2

If m = 1 in Theorem 3.1, we get the Randić energy of splitting graph
of G is εR(Spl(G)) =

3
2εR(G)[7].
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Corollary 3.2. Let G1 and G2 be Randić equienergetic graphs. Then
Splm(G1) and Splm(G2) are Randić equienergetic.

In [19], Rojo et al. have obtained the construction of bipartite graphs
having the same Randić energy. We indicate how to obtain infinitely many
pairs of graphs (other than bipartite graphs) having the same Randić en-
ergy. The following theorem gives some information how to construct a
new family of graphs having the same Randić energy as that of G.

Theorem 3.3. Let G be a simple (p, q) graph without isolated vertices.
Then Randić energy of the m-shadow graph of G, m > 1 is εR(Dm(G)) =
εR(G).

Proof. The Randić matrix of the m-shadow graph of G is

=

⎡⎢⎢⎢⎢⎢⎣
(mD)−

1
2 O O · · · O

O (mD)−
1
2 O · · · O

...
...

...
. . .

...

O O O · · · (mD)−
1
2

⎤⎥⎥⎥⎥⎥⎦
pm⎡⎢⎢⎢⎢⎣

A (G) A (G) A (G) · · · A (G)
A (G) A (G) A (G) · · · A (G)
...

...
...

. . .
...

A (G) A (G) A (G) · · · A (G)

⎤⎥⎥⎥⎥⎦
pm⎡⎢⎢⎢⎢⎢⎣

(mD)−
1
2 O O · · · O

O (mD)−
1
2 O · · · O

...
...

...
. . .

...

O O O · · · (mD)−
1
2

⎤⎥⎥⎥⎥⎥⎦
pm

=

⎡⎢⎢⎣
(mD)

− 12 A (G) (mD)
− 12 (mD)

− 12 A (G) (mD)
− 12 · · · · (mD)

− 12 A (G) (mD)
− 12

(mD)
− 12 A (G) (mD)

− 12 (mD)
− 12 A (G) (mD)

− 12 · · · · (mD)
− 12 A (G) (mD)

− 12
.
.
.

.

.

.

.

.

.
. . .

.

.

.

(mD)
− 12 A (G) (mD)

− 12 (mD)
− 12 A (G) (mD)

− 12 · · · · (mD)
− 12 A (G) (mD)

− 12

⎤⎥⎥⎦
pm

=

⎡⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 1 1 · · · 1
...
...
...
. . .

...
1 1 1 · · · 1

⎤⎥⎥⎥⎥⎦
m

⊗ 1
mD

−1
2 A (G)D

−1
2

The eigenvalues of Jm are m and 0, and 0 has multiplicity m − 1.
Therefore, the Randić spectrum of the m-shadow graph is
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RS(Dm(G)) =

Ã
0 ρ1 ρ2 . . . ρp

p(m− 1) 1 1 . . . 1

!
.

Hence εR(Dm(G)) = εR(G). 2

The following Proposition helps us to construct infinite sequence of
Randić integral graphs.

Proposition 3.1. Let G be a simple (p, q) graph and m ≥ 2 an integer.
Then G is Randić integral if and only if the m-shadow graph of G is Randić
integral.

For example, Dm(C4) and Dm(K1,4) are Randić integral for every m.

The following theorem gives a relation between the Randić energy of the
m-duplicate graph of the graph and Randić energy of the original graph.

Theorem 3.4. Let G be a simple (p, q) graph and Dm(G) be the m-
duplicate of graph G. Then εR(D

m(G)) = 2mεR(G).

Proof. The Randić matrix of Dm(G) is

R(Dm(G)) =

⎡⎢⎢⎢⎢⎣
O O O . . . O R(G)
O O O . . . R(G) O
...

...
... . . .

...
...

R(G) O O . . . O O

⎤⎥⎥⎥⎥⎦
2mp

=

⎡⎢⎢⎢⎢⎣
0 0 0 . . . 0 1
0 0 0 . . . 1 0
...
...
...
. . .

...
...

1 0 0 . . . 0 0

⎤⎥⎥⎥⎥⎦
2m

⊗R(G).

Then the Randić spectrum of Dm(G) is

RS(Dm(G)) =

Ã
−ρ1 −ρ2 . . . −ρp ρ1 ρ2 . . . ρp
2m−1 2m−1 . . . 2m−1 2m−1 2m−1 . . . 2m−1

!
.

Hence Randić energy of Dm(G) is εR(D
m(G)) = 2mεR(G). 2

Remark 3.1. The graphsDm(G) andD2m(G) are non-cospectral equiener-
getic but not Randić equienergetic.

Proposition 3.2. Let G be a simple (p, q) graph and m ≥ 1. Then G is
Randić integral if and only if the m-duplicate graph of G is Randić integral.
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4. Energy and Randić energy of some non-regular graphs

In this section, we define some new operations on a graph G and calcu-
late the energy and Randić energy of the resultant graphs. Moreover, our
results allow the construction of new pairs of equienergetic and Randić
equienergetic graphs.

Operation 4.1. Let G be a simple (p, q) graph and Dm(G),m > 3 be
the m-shadow graph of G and G1, G2, ..., Gm are the m copies of G in
Dm(G). The graph Hm

1 (G) is defined by Hm
1 (G) = Dm(G) − E(Gi) −

E(Gj), for a pair i 6= j, 1 ≤ i, j ≤ m.

The number of vertices and the number of edges in Hm
1 (G) are pm and

(m2 − 2)q respectively.
We can easily compute the energy of Hm

1 (G) in terms of energy of G.

Theorem 4.1. The energy of the graph Hm
1 (G) is

ε(Hm
1 (G)) =

"
1 +

p
m2 + 2m− 7

#
ε(G).

Proof. With the suitable labeling of the vertices, the adjacency matrix
of Hm

1 (G) is

A(Hm
1 (G)) =

⎡⎢⎢⎢⎢⎢⎢⎣
O A(G) A(G) . . . A(G) A(G)
A(G) A(G) A(G) . . . A(G) A(G)
...

...
... . . .

...
...

A(G) A(G) A(G) . . . A(G) A(G)
A(G) A(G) A(G) . . . A(G) O

⎤⎥⎥⎥⎥⎥⎥⎦
pm

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 . . . 1 1
1 1 1 . . . 1 1
...
...
... . . .

...
...

1 1 1 . . . 1 1
1 1 1 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
m

⊗A(G) = V1 ⊗A(G),

where V1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 . . . 1 1
1 1 1 . . . 1 1
...
...
... . . .

...
...

1 1 1 . . . 1 1
1 1 1 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
m

.
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The simple eigenvalues of V1 are
m−1+

√
m2+2m−7
2 , m−1−

√
m2+2m−7
2 ,−1,

and 0 has multiplicity m− 3. Thus spectrum of Hm
1 (G) is

Spec(Hm
1 (G)) =

Ã
(m−1+

√
m2+2m−7
2 )λi (m−1−

√
m2+2m−7
2 )λi −λi 0

1 1 1 m− 3

!
,

1 ≤ i ≤ p.

Hence ε(Hm
1 (G)) =

"
1 +
√
m2 + 2m− 7

#
ε(G). 2

Corollary 4.2. Let G1 and G2 be equienergetic graphs. Then Hm
1 (G1)

and Hm
1 (G2) are equienergetic for all m > 3.

Theorem 4.3. The Randić energy of the graphHm
1 (G),m > 3 is εR(H

m
1 (G)) =

εR(G) +
2εR(G)

m .

Proof. The Randić matrix of Hm
1 (G) is R(H

m
1 (G))

=

⎡⎢⎢⎣
((m− 1)D)

− 12 O . . . O

O (mD)
− 12 . . . O

.

.

.

.

.

.
. . .

.

.

.

O O . . . ((m− 1)D)
− 12

⎤⎥⎥⎦
pm

⎡⎣ O A(G) . . . A(G)
A(G) A(G) . . . A(G)

.

.

.

.

.

.
. . .

.

.

.
A(G) A(G) . . . O

⎤⎦
pm

⎡⎢⎢⎢⎢⎢⎣
((m− 1)D)− 1

2 O . . . O

O (mD)−
1
2 . . . O

...
...

. . .
...

O O . . . ((m− 1)D)−1
2

⎤⎥⎥⎥⎥⎥⎦
pm

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1√

m(m−1)
1√

m(m−1)
. . . 1

m−1
1√

m(m−1)
1
m

1
m . . . 1√

m(m−1)
...

...
...

. . .
...

1
m−1

1√
m(m−1)

1√
m(m−1)

. . . 0

⎤⎥⎥⎥⎥⎥⎥⎦
m

⊗D−
1
2A(G)D−

1
2

= V2 ⊗D−
1
2A(G)D−

1
2 , where
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V2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1√

m(m−1)
1√

m(m−1)
. . . 1

m−1
1√

m(m−1)
1
m

1
m . . . 1√

m(m−1)
...

...
...

. . .
...

1
m−1

1√
m(m−1)

1√
m(m−1)

. . . 0

⎤⎥⎥⎥⎥⎥⎥⎦
m

.

The simple eigenvalues of V2 are 1,
−1
m−1 ,

−(m−2)
m(m−1) , and 0 has multiplicity

m− 3. Thus Randić spectrum of Hm
1 (G) is

RS(Hm
1 (G)) =

Ã
ρi

−1
m−1ρi

−(m−2)
m(m−1)ρi 0

1 1 1 m− 3

!
, 1 ≤ i ≤ p.

Thus εR(H
m
1 (G)) = εR(G) +

2εR(G)
m . 2

Corollary 4.4. Let G1 and G2 be Randić equienergetic graphs. Then
Hm
1 (G1) and Hm

1 (G2) are Randić equienergetic for all m > 3.

Operation 4.2. Let G be a simple (p, q) graph with vertex set V (G) =
{v1, v2, ..., vp} and G1, G2, ..., Gm−1 are them−1 copies of G,m ≥ 2. Define
a graph Hm

2 (G) with vertex set V (H
m
2 (G)) = V (G) ∪ {∪m−1j=1 V (Gj)} and

edge set E(Hm
2 (G)) consisting edges of G and Gj , 1 ≤ j ≤ m− 1 together

with those edges joining ith vertex of Gj ’s, 1 ≤ j ≤ m− 1, to the neighbors
of vi in G, 1 ≤ i ≤ p.

The number of vertices and the number of edges in Hm
2 (G) are pm and

(3m− 2)q respectively.
The following theorem gives a relation between the energy of Hm

2 (G) and
energy of the original graph.

Theorem 4.5. The energy of the graph Hm
2 (G) is ε(H

m
2 (G)) =

"
m− 2 +

2
√
m− 1

#
ε(G), m ≥ 2.
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Proof. With the suitable labeling of the vertices, the adjacency matrix
of Hm

2 (G) is

A(Hm
2 (G)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(G) A(G) A(G) . . . A(G) A(G)
A(G) A(G) O . . . O O
A(G) O A(G) . . . O O
...

...
... . . .

...
...

A(G) O O . . . A(G) O
A(G) O O . . . O A(G)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
pm

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1 1
1 1 0 . . . 0 0
1 0 1 . . . 0 0
...
...
... . . .

...
...

1 0 0 . . . 1 0
1 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
m

⊗A(G) =W1 ⊗A(G),

where W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1 1
1 1 0 . . . 0 0
1 0 1 . . . 0 0
...
...
... . . .

...
...

1 0 0 . . . 1 0
1 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
m

.

Let X =

⎡⎢⎢⎢⎢⎢⎢⎣

√
m− 1
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎦
m×1

, then W1X = (1 +
√
m− 1)X and let Y =

⎡⎢⎢⎢⎢⎢⎢⎣
−
√
m− 1
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎦
m×1

, then W1Y = (1−
√
m− 1)Y . Let Ej =

⎡⎢⎣ 0
−1
fj

⎤⎥⎦
m×1

,

1 ≤ j ≤ m−2, where fj is the column vector having jth entry one, all other
entries zeros. Then W1Ej = Ej .
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So the simple eigenvalues of W1 are 1+
√
m− 1, 1−

√
m− 1, and 1 has

multiplicity m− 2. Thus spectrum of Hm
2 (G) is

Spec(Hm
2 (G)) =

Ã
(1 +

√
m− 1)λi (1−

√
m− 1)λi λi

1 1 m− 2

!
, 1 ≤ i ≤ p.

Hence we get, ε(Hm
2 (G)) =

"
m− 2 + 2

√
m− 1

#
ε(G). 2

Corollary 4.6. Let G be an integral graph and m − 1 a perfect square.
Then Hm

2 (G) is integral.

Corollary 4.7. Let G1 and G2 be equienergetic graphs. Then Hm
2 (G1)

and Hm
2 (G2) are equienergetic for all m > 1.

Remark 4.1. If m = 2, the graph Hm
2 (G) coincide with the shadow graph

D2(G).

Theorem 4.8. The Randić energy of the graphHm
2 (G),m > 3 is εR(H

m
2 (G)) =

εR(G) +
(m+1)(m−2)εR(G)

2m .

Proof. The Randić matrix of Hm
2 (G) is R(H

m
2 (G))

=

⎡⎢⎢⎣
(mD)

− 12 O O . . . O

O (2D)
− 12 O . . . O

.

.

.

.

.

.

.

.

.
. . .

.

.

.

O O O . . . (2D)
− 12

⎤⎥⎥⎦
pm

⎡⎣ A(G) A(G) A(G) . . . A(G)
A(G) A(G) O . . . O

.

.

.

.

.

.

.

.

.
. . .

.

.

.
A(G) O O . . . A(G)

⎤⎦
pm

⎡⎢⎢⎢⎢⎢⎣
(mD)−

1
2 O O . . . O

O (2D)−
1
2 O . . . O

...
...

...
. . .

...

O O O . . . (2D)−
1
2

⎤⎥⎥⎥⎥⎥⎦
pm

=

⎡⎢⎢⎢⎢⎢⎣
1
m

1√
2m

1√
2m

. . . 1√
2m

1√
2m

1
2 0 . . . 0

...
...

...
. . .

...
1√
2m

0 0 . . . 1
2

⎤⎥⎥⎥⎥⎥⎦
m

⊗D−
1
2A(G)D−

1
2
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=W2⊗D−
1
2A(G)D−

1
2 , where W2 =

⎡⎢⎢⎢⎢⎢⎣
1
m

1√
2m

1√
2m

. . . 1√
2m

1√
2m

1
2 0 . . . 0

...
...

...
. . .

...
1√
2m

0 0 . . . 1
2

⎤⎥⎥⎥⎥⎥⎦
m

.

LetX∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q
m
2

1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
m×1

, thenW2X
∗ = 1.X∗ and let Y ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(m− 1)
q

2
m

1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
m×1

,

then W2Y
∗ = −(m−2)

2m Y ∗. Let Ej be as in Theorem 4.5, then W2Ej =
1
2Ej .

So the simple eigenvalues ofW2 are 1,
−(m−2)
2m , and 1

2 has multiplicitym−2.
Thus Randić spectrum of Hm

2 (G) is

RS(Hm
2 (G)) =

Ã
ρi

−(m−2)
2m ρi

1
2ρi

1 1 m− 2

!
, 1 ≤ i ≤ p.

Hence εR(H
m
2 (G)) = εR(G) +

(m+1)(m−2)εR(G)
2m . 2

Corollary 4.9. Let G1 and G2 be Randić equienergetic graphs. Then
Hm
2 (G1) and Hm

2 (G2) are Randić equienergetic for all m > 3.

Operation 4.3. Let G be a simple (p, q) graph with vertex set V (G) =
{v1, v2, ..., vp} and G1, G2, ..., Gm−1 are the m − 1 copies of G. Define a
graph Hm

3 (G),m > 1 with vertex set V (Hm
3 (G)) = V (G) ∪ {∪m−1i=1 V (Gi)}

and edge set E(Hm
3 (G)) consisting only of those edges joining i

th vertex of
Gj 1 ≤ j ≤ m−1, to the neighbors of vi in G, 1 ≤ i ≤ p and then removing
edges of G. G1, G2, ..., Gm−1 are the m− 1 copies of G. Let Hm

3 (G) be the
graph obtained by making ith vertex of Gi, 1 ≤ i ≤ m− 1 adjacent to the
vertices in N(vi), where N(vi) is the neighborhood of vertex vi for every i
and remove edges of G.

The number of vertices and the number of edges in Hm
3 (G) are pm and

3(m− 1)q respectively.

Theorem 4.10. The energy of the graph Hm
3 (G) is

ε(Hm
3 (G)) =

"
m− 2 +

√
4m− 3

#
ε(G).
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Proof. The adjacency matrix of Hm
3 (G) is

A(Hm
3 (G)) =

⎡⎢⎢⎢⎢⎣
O A(G) A(G) . . . A(G) A(G)
A(G) A(G) O . . . O O
...

...
... . . .

...
...

A(G) O O . . . O A(G)

⎤⎥⎥⎥⎥⎦
pm

=

⎡⎢⎢⎢⎢⎣
0 1 1 . . . 1 1
1 1 0 . . . 0 0
...
...
... . . .

...
...

1 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎦
m

⊗A(G)

= Z1 ⊗A(G), where Z1 =

⎡⎢⎢⎢⎢⎣
0 1 1 . . . 1 1
1 1 0 . . . 0 0
...
...
... . . .

...
...

1 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎦ .

Let P =

⎡⎢⎢⎢⎢⎢⎢⎣

−1+
√
4m−3
2
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎦
m×1

, then Z1P =
³
1+
√
4m−3
2

´
P and let Q =

⎡⎢⎢⎢⎢⎢⎢⎣

−1−
√
4m−3
2
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎦
m×1

, then Z1Q =
³
1−
√
4m−3
2

´
Q. Let Ej be as in Theorem

4.5, then Z1Ej = Ej . So the simple eigenvalues of Z1 are
1+
√
4m−3
2 , 1−

√
4m−3
2 ,

and 1 has multiplicity m− 2. Thus spectrum of Hm
3 (G) is

Spec(Hm
3 (G)) =

Ã
(1+

√
4m−3
2 )λi (1−

√
4m−3
2 )λi λi

1 1 m− 2

!
, 1 ≤ i ≤ p.

Hence we have
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ε(Hm
3 (G)) =

"
m− 2 +

√
4m− 3

#
ε(G).

2

Corollary 4.11. Let G be an integral graph. Then Hm
3 (G) is an integral

graph if 4m− 3 is a perfect square.
For example, H3

3 (K2), H
7
3 (K2), H

13
3 (K2), H

21
3 (K2) etc.

Corollary 4.12. Let G1 and G2 be equienergetic graphs. Then Hm
3 (G1)

and Hm
3 (G2) are equienergetic for all m > 1.

Theorem 4.13. The Randić energy of graphHm
3 (G),m > 2 is εR(H

m
3 (G)) =

εR(G) +
(m−1)εR(G)

2 .

Proof. The Randić matrix of Hm
3 (G) is R(H

m
3 (G))

=

⎡⎢⎢⎣
((m− 1)D)

− 12 O O . . . O

O (2D)
− 12 O . . . O

.

.

.

.

.

.

.

.

.
. . .

.

.

.

O O O . . . (2D)
− 12

⎤⎥⎥⎦
pm

⎡⎣ O A(G) A(G) . . . A(G)
A(G) A(G) O . . . O

.

.

.

.

.

.

.

.

.
. . .

.

.

.
A(G) O O . . . A(G)

⎤⎦
pm⎡⎢⎢⎢⎢⎢⎣

((m− 1)D)− 1
2 O O . . . O

O (2D)−
1
2 O . . . O

...
...

...
. . .

...

O O O . . . (2D)−
1
2

⎤⎥⎥⎥⎥⎥⎦
pm

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1√

2(m−1)
1√

2(m−1)
. . . 1√

2(m−1)
1√

2(m−1)
1
2 0 . . . 0

...
...

...
. . .

...
1√

2(m−1)
0 0 . . . 1

2

⎤⎥⎥⎥⎥⎥⎥⎦
m

⊗D−1
2 A(G)D

−1
2 = Z2 ⊗D

−1
2 A(G)D

−1
2 ,

where Z2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1√

2(m−1)
1√

2(m−1)
. . . 1√

2(m−1)
1√

2(m−1)
1
2 0 . . . 0

...
...

...
. . .

...
1√

2(m−1)
0 0 . . . 1

2

⎤⎥⎥⎥⎥⎥⎥⎦
m

.
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Let P ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q
m−1
2

1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
m×1

then Z2P
∗ = 1.P ∗ and let Q∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(m− 1)
q

2
m−1

1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
m×1

then Z2Q
∗ = −12Q∗. Let Ej be as in Theorem 4.5, then Z2Ej =

1
2Ej . So

the simple eigenvalues of Z2 are 1,−12 , and
1
2 has multiplicity m− 2. Thus

Randić spectrum of Hm
3 (G) is

RS(Hm
3 (G)) =

Ã
ρi −12ρi

1
2ρi

1 1 m− 2

!
, 1 ≤ i ≤ p.

Hence εR(H
m
3 (G)) = εR(G) +

(m−1)εR(G)
2 . 2

Corollary 4.14. Let G1 and G2 be Randić equienergetic graphs. Then
Hm
3 (G1) and Hm

3 (G2) are Randić equienergetic for all m > 1.

5. Applications

In this section, we compute the degree Kirchhoff index, the Kemeny’s con-
stant and the number of spanning trees of Splm(G) in terms of original
graph. Analogous to this, results for Dm(G), D

m(G),Hm
1 (G), H

m
2 (G) and

Hm
3 (G) are included in Appendix.

Theorem 5.1. Let G be a simple connected (p, q) graph with Randić spec-
trum {ρ1, ρ2, ..., ρp}. Then

K(Splm(G)) = p(m− 1) +K(G) +
pX

i=2

m+ 1

1 +m(1 + ρi(G))
.
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Theorem 5.2. Let G be a simple connected (p, q) graph with Randić spec-
trum {ρ1, ρ2, ..., ρp}. Then

f∗(Splm(G)) = 2(m+ 1)q

"
p(m− 1) +Pp

i=2
m+1

1+m(1+ρi(G))

#
+ (m+ 1)Kf∗(G).

From the following theorem, we obtain the number of spanning trees of
graphs in terms of Randić eigenvalues.

Theorem 5.3. Let G be a connected simple (p, q) graph with Randić spec-
trum {ρ1, ρ2, ..., ρp}. Then

t(Splm(G)) =
(m+ 1)p(

Qp
i=1 di)

mt(G)
Qp

i=1

³
1 + mρi(G)

m+1

´
2m+ 1

.

6. Conclusion

In this paper, we compute the energy and Randić energy of some specific
graphs which are obtained by some graph operations on G. Also, our
results show how to construct some new class of graphs having the same
Randić energy as that of G. In addition, some new family of equienergetic,
Randić equienergetic, integral and Randić integral graphs are obtained.
Moreover, we discuss some graph invariants like the degree Kirchhoff index,
the Kemeny’s constant and the number of spanning trees of graph Splm(G).

7. Appendix

Let G be a connected graph, then Dm(G), H
m
1 (G), H

m
2 (G) and H

m
3 (G) are

connected. Here we discuss the degree Kirchhoff index, the Kemeny’s con-
stant and the number of spanning trees of graphs Dm(G), H

m
1 (G), H

m
2 (G)

and Hm
3 (G).

Theorem 7.1. Let G be a simple connected (p, q) graph with Randić spec-
trum {ρ1, ρ2, ..., ρp}. Then

1. K(Dm(G)) = p(m− 1) +K(G).

2. K(Hm
1 (G)) = m−3+K(G)+Pp

i=2
m−1

m−1+ρi(G)+
Pp

i=2
m(m−1)

m2−m+(m−2)ρi(G) .
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3. K(Hm
2 (G)) = m− 3 +K(G) +

Pp
i=2

2m
2m+(m−2)ρi(G) +

Pp
i=2

2
2−ρi(G) .

4. K(Hm
3 (G)) = 6(m− 1)q

h
K(G) +

Pp
i=2

2
2+ρi(G)

+
Pp

i=2
2

2−ρi(G)

i
.

Theorem 7.2. Let G be a simple connected (p, q) graph with Randić spec-
trum {ρ1, ρ2, ..., ρp}. Then

1. Kf∗(Dm(G)) = 2m
2q (p(m− 1)) +m2Kf∗(G).

2. Kf∗(Hm
1 (G)) = 2(m

2−2)q
"
m−3+Pp

i=2
m−1

m−1+ρi(G)+
Pp

i=2
m(m−1)

m2−m+(m−2)ρi(G)

#
+

(m2 − 2)Kf∗(G).

3. Kf∗(Hm
2 (G)) = 2(3m−2)q

h
m− 3 +Pp

i=2
2m

2m+(m−2)ρi(G) +
Pp

i=2
2

2−ρi(G)

i
+

(3m− 2)Kf∗(G).

4. Kf∗(Hm
3 (G)) = 6(m − 1)q

hPp
i=2

2
2+ρi(G)

+
Pp

i=2
2

2−ρi(G)

i
+ 3(m −

1)Kf∗(G).

From the following theorem, we obtain the number of spanning trees of
graphs in terms of Randić eigenvalues.

Theorem 7.3. Let G be a connected simple (p, q) graph with Randić spec-
trum {ρ1, ρ2, ..., ρp}. Then

1. t(Dm(G)) =
mmp(

Qp

i=1
di)

m−1t(G)

m2 .

2. t(Hm
1 (G)) =

m(m−2)p(m−1)2(
Qp

i=1
di)m−1t(G)

Qp

i=1

³
1+

ρi(G)

m−1

´Qp

i=1

³
1+

(m−2)ρi(G)
m(m−1)

´
m2−2 .

3. t(Hm
2 (G)) =

2(m−1)pmp(
Qp

i=1
di)m−1t(G)

Qp

i=1

³
1+

(m−2)ρi(G)
2m

´Qp

i=1

³
1+

ρi(G)

2

´
3m−2 .

4. t(Hm
3 (G)) =

2(m−1)p(m−1)p(
Qp

i=1
di)

m−1t(G)
Qp

i=1

³
1− ρi(G)

2

´Qp

i=1

³
1+

ρi(G)

2

´
3m−3 .
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