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Abstract
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1. Introduction

One of the fundamental concepts in mathematical control theory is the
controllability. It is a qualitative behaviour of dynamical systems and is
of particular importance in control theory. There are various important
relationships between controllability, stability and stabilizability of both
deterministic and stochastic control systems. Any control system is said to
be controllable if it is possible to steer the solution of the system from an
arbitrary initial state to an arbitrary final state using the set of admissible
controls, where the initial and final states may vary over the entire space.
Different types of controllability have been defined, such as approximate,
null, local null and local approximate null controllability. For more details
on this matter, we refer to [3, 4, 10, 11, 12, 13] and references therein.

Many dynamical systems modeling real phenomena in different scien-
tific areas (such as mechanics, control theory, chemistry, biology, medicine,
economic, etc) have the property of after-effect, i.e, the future state depend
not only on the present, but also on the past history. It is well-known that a
lot of dynamical systems are subjective to sudden and abrupt changes such
as shocks, harvesting and natural disasters. These short term perturba-
tions often act instantaneously in the form of impulses. Impulsive neutral
integro-differential equations with infinite delay have been widely devel-
oped in modeling such problems. Besides, practical systems are usually
subjected to random abrupt perturbations, which may result from abrupt
phenomena such as stochastic failures and repairs of the components, sud-
den environment changes, etc. These stochastic effects can lead to various
complex dynamic performance. Therefore, it is interesting to add stochastic
effect to the study of impulsive neutral differential equation. In recent years
the stochastic functional differential equations driven by a fractional Brow-
nian motion (fBm) have attracted the attention of many authors and many
valuable results on existence, uniqueness and the controllability of the solu-
tion have been established. In addition, the study of neutral SFDEs driven
by jumps process also have begun to gain attention and strong growth in
recent years. To be more precise, we refer to [5, 6, 14, 15, 17, 18].

Furthermore, self-similar processes are of interest in physics, in the con-
text of the renormalization group theory, and in hydrology, where they ac-
count for the so-called Hurst effect. The best known and widely used self-
similar process is the fractional Brownian motion because it is gaussian,
with stationary increments and exhibits long/short range dependance. It
has been widely used to model a number of phenomena in diverse fields
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from biology to finance. This huge range of potential applications makes
fBm an interesting object of study. On the other hand, in practice (for in-
stance sudden price variation resulting from market crushes) where the path
continuity supposition does not seem plausible for the model, one should
consider stochastic processes with jumps in modeling such systems. Gen-
erally, these jump models are based on Poisson random measure. Recently,
there has been an increasing interest in the study of stochastic differential
equation with Poisson jumps. A sufficient condition for the existence of
mild solution have been given by Taniguchi et al.[15]. Boufoussi & Hajji
[17] have proved the existence and uniqueness result for a class of neutral
functional stochastic differential equations driven both by the Brownian
motion and by the Poisson point processes by using successive approxi-
mation. Very recently, Lakhel & Hajji [18] have studied the existence,
uniqueness and asymptotic behavior of mild solutions for a class of neutral
functional stochastic differential equations with Poisson jumps. For more
result, we refer to [14, 19, 20].

This article mainly focusing on controllability result for impulsive neu-
tral stochastic integro-differential equations of the form

d[x(t) −p(t, xt,
R t
0 θ1(t, s, xs)ds)] = [Ax(t) + h(t, xt,

R t
0 θ2(t, s, xs)ds) +Bu(t)]dt

+
R
U g(t, xt, η)

eN(dt, dη) + σ(t)dBH(t), t ∈ J = [0, T ], t 6= tk,
∆x|t=ti = x(t+i )− x(t−i ) = Ii(x(t

−
i )), i = 1, 2, ...,m, m ∈

x0 = ϕ ∈ B
(1.1)

Where A is the infinitesimal generator of an analytic semigroup of
bounded linear operators, (S(t))t≥0, in a Hilbert spaceX; BH is a fractional
Brownian motion with Hurst parameter H > 1

2 on a real and separable
Hilbert space Y ; and the control function u(·) takes values in L2([0, T ], U),
the Hilbert space of admissible control functions for a separable Hilbert
space U ; and B is a bounded linear operator from U into X. The history
xt : (−∞, 0] → X, xt(θ) = x(t + θ), belongs to an abstract phase space
B defined axiomatically; p, h : J × B × X → X, θ1, θ2 : D × B → X,
σ : J → L02(Y,X) and g : J × B × U → X are appropriate func-
tions and will be specified later, where L02(Y,X) denotes the space of all
Q-Hilbert-Schmidt operators from Y into X (see section 2 below) and
D = {(t, s) ∈ J × J : s < t}. Moreover, the fixed moments of time tk
satisfy 0 < t1 < t2 < ... < tm < T ; x(t−k ) and x(t+k ) represent the left and
right limits of x(t) at time tk respectively. ∆x(tk) denotes the jump in the
state x at time tk with I(.) : X −→ X determining the size of the jump.
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The outline of this paper is as follows: Section 2 presents notation and
preliminary results. Section 3, shows the controllability of impulsive neu-
tral stochastic integro-differential systems driven by a fractional Brownian
motion with infinit delay and Poisson process. Finally, Section 4, presents
an example that illustrates our result.

2. Preliminaries

For details of the topics addressed in this section, we refer the reader to
[1, 8, 9] and the references therein.

Let (U , B, ν(du)) be a σ-finite measurable space, given a Poisson point
process (q(t))t>0 wich is defined on a complete probabilty space (Ω,F ,P)
with values in U and with characteristic measure ν (see [1]). N(dt, du) de-
note the counting randommeasure associated to q(·),i.eN(t,Λ) := N([0, t),Λ) =P

s∈(0,t] 1Λ(q(s)) such thatE(N(t,Λ)) = tν(Λ) for Λ ∈ B. Define eN(dt, du) :=
N(dt, du)− dtν(du), the Poisson martingale measure generated by q(t).

2.1. Fractional Brownian motion.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space satisfying the usual
conditions, meaning that the filtration is a right-continuous increasing fam-
ily and F0 contains all P-null sets.

Consider a time interval [0, T ] with arbitrary fixed horizon T and let
{βH(t) : t ∈ [0, T ]} be a one-dimensional fractional Brownian motion with
Hurst parameter H ∈ (1/2, 1). By definition, βH is a centered Gaussian
process with covariance function

RH(s, t) =
1

2
(t2H + s2H − |t− s|2H).

Moreover, βH has the following Wiener integral representation:

βH(t) =

Z t

0
KH(t, s)dβ(s),(2.1)

where β = {β(t) : t ∈ [0, T ]} is a Wiener process and kernel KH(t, s) is
the kernel given by

KH(t, s) = cHs
1
2
−H

Z t

s
(u− s)H−

3
2uH−

1
2du,
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for t > s, where cH =
r

H(2H−1)
g(2−2H,H−1

2
)
and g(·, ·) denotes the Beta function.

We take KH(t, s) = 0 if t ≤ s.
We will denote by H the reproducing kernel Hilbert space of the fBm.
Precisely, H is the closure of set of indicator functions {1[0;t] : t ∈ [0, T ]}
with respect to the scalar product

h1[0,t], 1[0,s]iH = RH(t, s).

The mapping 1[0,t] → βH(t) can be extended to an isometry between H
and the first Wiener chaos and we will denote by βH(ϕ) the image of ϕ by
the previous isometry.

Recall that for ψ,ϕ ∈ H, the scalar product in H is given by

hψ,ϕiH = H(2H − 1)
Z T

0

Z T

0
ψ(s)ϕ(t)|t− s|2H−2dsdt.

Consider the operator K∗
H from H to L2([0, T ]) defined by

(K∗
Hϕ)(s) =

Z T

s
ϕ(r)

∂KH

∂r
(r, s)dr.

The proof of the fact that K∗
H is an isometry between H and L2([0, T ]) can

be found in [8]. Moreover, for any ϕ ∈ H, we have

βH(ϕ) =

Z T

0
(K∗

Hϕ)(t)dβ(t).

It follows from [8] that the elements of H may be not functions but
rather distributions of negative order. In order to obtain a space of func-
tions contained in H, we consider the linear space |H| generated by the
measurable functions ψ such that

kψk2|H| := αH

Z T

0

Z T

0
|ψ(s)||ψ(t)||s− t|2H−2dsdt <∞,

where αH = H(2H − 1). We have the following lemma (see [8]).

Lemma 2.1. The space |H| is a Banach space with the norm kψk|H|; the
following inclusions hold

L2([0, T ]) ⊆ L1/H([0, T ]) ⊆ |H| ⊆ H;

and for any ϕ ∈ L2([0, T ]),

kψk2|H| ≤ 2HT 2H−1
Z T

0
|ψ(s)|2ds.
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Let X and Y be two real, separable Hilbert spaces and let L(Y,X)
be the space of bounded linear operator from Y to X. For convenience,
we shall use the same notation to denote the norms in X,Y and L(Y,X).
Let Q ∈ L(Y, Y ) be an operator defined by Qen = λnen with finite trace
trQ =

P∞
n=1 λn < ∞, where λn ≥ 0 (n = 1, 2...) are nonnegative real

numbers and {en : n = 1, 2...} is a complete orthonormal basis in Y . Let
BH = (BH(t)) be a Y− valued fbm on (Ω,F ,P) with covariance Q given
by

BH(t) = BH
Q (t) =

∞X
n=1

p
λnenβ

H
n (t),

where βHn are real, independent fBm’s. This process is Gaussian, it starts
from 0, has zero mean, and covariance:

EhBH(t), xihBH(s), yi = R(s, t)hQ(x), yi for all x, y ∈ Y and t, s ∈ [0, T ].

In order to define Wiener integrals with respect to the Q-fBm, we introduce
the space L02 := L02(Y,X) of all Q-Hilbert-Schmidt operators ψ : Y → X.
Recall that ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator if

kψk2L02 :=
∞X
n=1

k
p
λnψenk2 <∞,

and that the space L02 equipped with the inner product hϕ,ψiL02 =
P∞

n=1hϕen, ψeni
is a separable Hilbert space.

Let φ : [0, T ] → L02(Y,X) be a given function. The Wiener integral of
φ with respect to BH is defined by

Z t

0

φ(s)dBH(s) =

∞X
n=1

Z t

0

p
λnφ(s)endβ

H
n (s) =

∞X
n=1

Z t

0

p
λn(K

∗
H(φen)(s)dβn(s),(2.2)

where βn is the standard Brownian motion used to define β
H
n as in (2.1).

We conclude this subsection by stating the following result which is critical
in the proof of our result. It can be proved using arguments similar to those
used to prove Lemma 2 in [7].

Lemma 2.2. If ψ : [0, T ] → L02(Y,X) satisfies
R T
0 kψ(s)k2L02ds < ∞, then

(2.2) is well-defined as an X-valued random variable and

Ek
Z t

0
ψ(s)dBH(s)k2 ≤ 2Ht2H−1

Z t

0
kψ(s)k2L02ds.
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Proof. For the reader’s convenience, we give here a simple proof. By
Lemma 2.1, we have

Ek
Z t

0
ψ(s)dBH(s)k2 =

∞X
n=1

Ek
Z t

0

p
λn(K

∗
H(ψen)(s)dβn(s)k2

≤
∞X
n=1

2Ht2H−1
Z t

0
λnkψ(s)enk2ds

= 2Ht2H−1
Z t

0
kψ(s)k2L02ds.

2

It is known that the study of theory of differential equation with infinite
delays depends on a choice of the abstract phase space. We will employ an
axiomatic definition of the phase space B introduced by Hale and Kato [21].
To establish the axiom of the phase space B, we follow the terminology used
in Hino et al.[22]. The axioms of the space B are established for functions
mapping (−∞, 0] into X, endowed with a seminorm k · kB, which satisfies
the following axiom.

Axiom 2.3. (A1) If x :]−∞, T ] −→ X, T > 0 is such that x0 ∈ B, then,
for every t ∈ J , the following properties hold

1. xt ∈ B;

2. kx(t)k ≤ HkxtkB;

3. kxtkB ≤ K(t) sup0≤s≤t kx(s)k+N(t)kx0kB,

where L > 0 is a constant; K,N : [0,+∞[−→ [1,+∞[, K is continu-
ous, N is locally bounded, and L,K,N are independent of x(·).

(A2) the space B is complete.

The next result is a consequence of the phase space axiom. see for
example [5].

Lemma 2.4. Let x :] − ∞, T ] → X be a measurable process such that
x0 = ϕ ∈ L2(Ω,B); then

EkxskB ≤ KT sup
0≤s≤T

Ekx(s)k+NTEkϕkB,

where NT = supt∈J N(t) and KT = supt∈J K(t).
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We now consider the space BT given by

BT = {x : (−∞, T ]→ X : x(·) is càdlàg such thatx0 = ϕ ∈ B and
sup0≤t≤T E(kx(t)k2) <∞},

Set k.kBT to be a semi-norm in BT , defined by

kxkBT = Ekx0kB + sup
0≤t≤T

(E(kx(t)k2)) 12 .

Next, we introduce some notations and basic facts about the theory of
semigroups and fractional power operators. Let A : D(A) → X be the in-
finitesimal generator of an analytic semigroup, (S(t))t≥0, of bounded linear
operators on X. The theory of strongly continuous is thoroughly discussed
in [9] and [2]. It is well-known that there exist M ≥ 1 and λ ∈ R such
that kS(t)k ≤ Meλt for every t ≥ 0. If (S(t))t≥0 is a uniformly bounded,
analytic semigroup such that 0 ∈ ρ(A), where ρ(A) is the resolvent set of
A, then it is possible to define the fractional power (−A)α for 0 < α ≤ 1, as
a closed linear operator on its domain D(−A)α. Furthermore, the subspace
D(−A)α is dense in X, and the expression

kzkα = k(−A)αzk

defines a norm in D(−A)α. If Xα represents the space D(−A)α endowed
with the norm k.kα, then the following properties hold (see [9], p. 74).

Lemma 2.5. Suppose that A,Xα, and (−A)α are as described above.

(i) For 0 < α ≤ 1, Xα is a Banach space.

(ii) If 0 < β ≤ α, then the injection Xα /→ Xβ is continuous.

(iii) For every 0 < α ≤ 1, there exists Mα > 0 such that

k(−A)αS(t)k ≤Mαt
−αe−λt, t > 0, λ > 0.

3. Controllability Result

In this section we prove the main result. First we give the definition of mild
solutions for equation (1.1).

Definition 3.1. A stochastic process x(·) : (−∞, T ] −→ X is a mild solu-
tion of (1.1) if
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1. x(·) has càdlàg path on [0, T ]− {t1, t2, ..., tm}, and
R T
0 kx(t)k2dt <∞

almost surely;

2. x(t) = ϕ(t) on (−∞, 0];

3. for every 0 ≤ s < t the function AS(t− s)p(s, xs,
R s
0 θ1(s, τ, xτ )dτ) is

integrable such that the following integral equation is satisfied

x(t) = S(t)(ϕ(0)− g(0, ϕ, 0)) + p(t, xt,
R t
0 θ1(t, s, xs)ds)

+
R t
0 AS(t− s)p(s, xs,

R s
0 θ1(s, τ, xτ )dτ)ds+

R t
0 S(t− s)Bu(s)ds

+
R t
0 S(t− s)h(s, xs,

R s
0 θ2(s, τ, xτ )dτ)ds+

R t
0 S(t− s)σ(s)dBH(s)

+
R t
0

R
U S(t− s)g(s, xs, η) eN(dt, dη)

+
P
0<tk<t

S(t− tk)Ik(x(t
−
k )), P− a.s.

(3.1)

Definition 3.2. The impulsive neutral stochastic functional integro-differential
equation (1.1) is said to be controllable on the interval (−∞, T ] if for every
initial stochastic process ϕ defined on (−∞, 0], there exists a stochastic
control u ∈ L2([0, T ], U) such that the mild solution x(·) of (1.1) satisfies
x(T ) = x1, where x1 and T are the preassigned terminal state and time,
respectively.

In order to establish the controllability of (1.1), we impose the following
assumptions.

(H.1) A is the infinitesimal generator of an analytic semigroup, (S(t))t≥0,
of bounded linear operators on X. Further, 0 ∈ ρ(A), and there exist
constants M, M1−β such that

kS(t)k2 ≤M and k(−A)1−βS(t)k ≤ M1−β
t1−β

, for all t ∈ [0, T ]

(see Lemma 2.5).

(H.2) The mapping p : J × B ×X → X satisfies the following conditions

(i) The function θ1 : D × B → X satisfies the following condition.
There exists a constant k1 > 0, for x1, x2 ∈ B such that

Ek
Z t

0
[θ1(t, s, x1)−θ1(t, s, x2)]dsk2 ≤ k1{Ekx1−x2k2B, (t, s) ∈ D,
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and k1 = sup(t,s)∈D k
R t
0 θ1(t, s, 0)dsk2.

(ii) There exist constants 0 < β < 1, k2 > 0 such that the function
p is Xβ-valued and for x1, x2 ∈ B, y1, y2 ∈ X and satisfies for all
t ∈ J

Ek(−A)βp(t, x1, y1)− (−A)βp(t, x2, y2)k2
≤ k2[Ekx1 − x2k2B +Eky1 − y2k2],

and k2 = supt∈[0,T ] k(−A)−βp(t, 0, 0)k2.
(iii) the function (−A)βp is continuous in the quadratic mean sense,

i.e for x1, x2 ∈ B, y1, y2 ∈ X

lim
t−→s

Ek(−A)βp(t, x1, y1)− (−A)βp(s, x2, y2)k2 = 0,

(H.3) The mapping h : J × B × X → X satisfies the following Lipschitz
conditions

(i) There exist positive constants k3, k3 for t ∈ [0, T ], x1, x2 ∈ B,
y1y2 ∈ X such that

Ekh(t, x1, y1)−h(t, x2, y2)k2 ≤ k3[Ekx1−x2k2B+Eky1−y2k2], and

k3 = sup
t∈[0,T ]

kh(t, 0, 0)k2.

(ii) The function θ2 : D × B → X satisfies the following condition.
There exists a constant k4 > 0, for x1, x2 ∈ B such that

Ek
Z t

0
[θ2(t, s, x1)−θ2(t, s, x2)]dsk2 ≤ k4{Ekx1−x2k2B, (t, s) ∈ D,

and k4 = sup(t,s)∈D k
R t
0 θ2(t, s, 0)dsk2.

(H.4) There exist a positive constant k5 > 0 such that, for all t ∈ J and
x, y ∈ B Z

U
Ekg(t, x, η)− g(t, y, η)k2ν(dη) ≤ k5{Ekx− yk2B

and k5 = supt∈J
R
U kg(t, 0, η)k2ν(dη).

(H.5) The impulses functions Ik for k = 1, 2, ...,m, satisfies the following
condition. There exist positive constants Mk, fMk such that kIk(x)−
Ik(y)k2 ≤Mk{Ekx− yk2B and kIk(x)k2 ≤ fMk for all x, y ∈ B.
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(H.6) The function σ : [0,∞)→ L02(Y,X) satisfiesZ T

0
kσ(s)k2L02ds <∞, ∀T > 0.

(H.7) The linear operator W from U into X defined by

Wu =

Z T

0
S(T − s)Bu(s)ds

has an inverse operatorW−1 that takes values in L2([0, T ], U)\kerW ,
where

kerW = {x ∈ L2([0, T ], U) : Wx = 0}
(see [3]), and there exists finite positive constants Mb, Mw such that
kBk2 ≤Mb and kW−1k2 ≤Mw.

(H.8) There exists a constant ω > 0 such that

ω = 12K2
T (1 + 5MMbMwT

2)[(c21 +
(M1−βTβ)2

2β−1 )k2(1 + 2k1)

+MT 2k3(1 + k4) +MTk5 +mM
Pm

k=1Mk] < 1,

and c1 = k(−A)−βk.

We prove the following theorem by using the Banach fixed point theo-
rem.

Theorem 3.3. Suppose that (H.1) − (H.8) hold. Then, the system (1.1)
is controllable on (−∞, T ] provided that

8K2T(1 + 9MMbMwT
2){8(c21 +

(M1−βTβ)2

2β − 1 )k2(1 + 2k1) + 8MT[k3(1 + 2k4)T + k5]} < 1.
(3.2)

Proof. Using the hypothesis (H.7) for an arbitrary function x(·), Define
the control ux by

ux(t) = W−1{x1 − S(T )(ϕ(0)− p(0, x0, 0))− p(T, xT ,
R T
0 θ1(T, s, xs)ds))

−
R T
0 AS(T − s)p(s, xs,

R s
0 θ1(s, η, xη)dη)ds

−
R T
0 S(T − s)h(s, xs,

R s
0 θ2(s, η, xη)dη)ds−

R T
0 S(T − s)σ(s)dBH(s)

−
R T
0

R
U S(T − s)g(s, xs, η) eN(ds, dη)−P0<tk<T

S(T − tk)Ik(x(t
−
k ))}(t).

(3.3)
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Put the control u(.) into the stochastic control system (3.1) and obtain
a non linear operator Π on BT given by

Π(x)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t), if t ∈ (−∞, 0],

S(t)(ϕ(0)− p(0, ϕ, 0)) + p(t, xt,
R t
0 θ1(t, s, xs)ds)

+
R t
0 AS(t− s)p(s, xs,

R s
0 θ1(s, η, xη)dη)ds

+
R t
0 S(t− s)Bux(s)ds+

R t
0 S(t− s)h(s, xs,

R s
0 θ2(s, η, xη)dη)ds

+
R t
0 S(t− s)σ(s)dBH(s) +

R t
0

R
U S(t− s)g(s, xs, η) eN(ds, dη)

+
P
0<tk<t

S(t− tk)Ik(x(t
−
k )), if t ∈ [0, T ].

Then it is clear that to prove the existence of mild solutions to equation
(1.1) is equivalent to find a fixed point for the operator Π, and that Πx(T ) =
x1, which means that the system is controllable, provided we can obtain a
fixed point of the operator Π.

Let y : (−∞, T ] −→ X be the function defined by

y(t) =

(
ϕ(t), if t ∈ (−∞, 0],
S(t)ϕ(0), if t ∈ [0, T ],

then, y0 = ϕ. For each function z ∈ BT , set

x(t) = z(t) + y(t).

It is obvious that x satisfies the stochastic control system (3.1) if and
only if z satisfies z0 = 0 and

z(t) = p(t, zt + yt,
R t
0 θ1(t, s, zs + ys)ds)− S(t)p(0, ϕ, 0)

+
R t
0 AS(t− s)p(s, zs + ys,

R s
0 θ1(s, η, zη + yη)dη)ds

+
R t
0 S(t− s)Buz+y(s)ds+

R t
0 S(t− s)h(s, zs + ys,

R s
0 θ2(s, η, zη + yη)dη)ds

+
R t
0 S(t− s)σ(s)dBH(s) +

R t
0

R
U S(t− s)g(s, zs + ys, η) eN(ds, dη)

+
P
0<tk<t

S(t− tk)Ik(z(t
−
k ) + y(t−k )), if t ∈ [0, T ],

(3.4)
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where uz+y(t) is obtained from (3.3) by replacing xt = zt + yt. Set

B0T = {z ∈ BT : z0 = 0};

for any z ∈ B0T , we have

kzkB0T = Ekz0kB + sup
t∈[0,T ]

(Ekz(t)k2) 12 = sup
t∈[0,T ]

(Ekz(t)k2) 12 .

Then, (B0T , k.kB0T ) is a Banach space. Define the operator Φ : B
0
T −→ B0T

by

(Φz)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t ∈ (−∞, 0],

p(t, zt + yt,
R t
0 θ1(t, s, zs + ys)ds)− S(t)p(0, ϕ, 0)

+
R t
0 AS(t− s)p(s, zs + ys,

R s
0 θ1(s, η, zη + yη)dη)ds

+
R t
0 S(t− s)h(s, zs + ys,

R s
0 θ2(s, η, zη + yη)dη)ds

+
R t
0 S(t− s)Buz+y(s)ds+

R t
0 S(t− s)σ(s)dBH(s)

+
R t
0

R
U S(t− s)g(s, zs + ys, η) eN(ds, dη)

+
P
0<tk<t

S(t− tk)Ik(z(t
−
k ) + y(t−k )), if t ∈ [0, T ],

(3.5)

Set

Bk = {z ∈ B0T : kzk2B0T ≤ k}, for some k ≥ 0,

then Bk ⊆ B0T is a bounded closed convex set, and for z ∈ Bk, we have
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Ekzt + ytk2B ≤ 2(Ekztk2B +Ekytk2B)

≤ 2
h
2K2

T (sup0≤s≤T Ekz(s)k)2 + 2N2
T (Ekz0kB)2

+2K2
T (sup0≤s≤tEky(s)k)2 + 2N2

T (EkϕkB)2
i

≤ 4K2
T (k +M{Ekϕ(0)k2) + 4N2T{Ekϕk2B

:= r∗.

From the assumptions mentioned above, we have for any z ∈ Bk

Ekuz+yk2 ≤ 9Mw{kx1k2 +M{Ekϕ(0)k2 + 2Mc21[k2kyk2Bζ + k2]

+2(c21 +
(M1−βTβ)2

2β−1 )[k2(1 + 2k1)r
∗ + 2k2k1 + k2]

+2MT 2[k3(1 + 2k4)r
∗ + 2k3k4 + k3] + 2MT 2H−1

R T
0 kσ(s)k2L02ds

+2MT (k5r
∗ + k5) +mM

Pm
k=1

fMk} := G,
(3.6)
and for z, v ∈ Bk

Ekuz+y − uv+yk2 ≤ 5Mw{(c21 +
(M1−βTβ)2

2β−1 )k2(1 + 2k1) +MT 2k3(1 + 2k4)

+MTk5 +mM
Pm

k=1Mk}Ekzt − vtk2B.
(3.7)

It is clear that the operator Π has a fixed point if and only if Φ has one.
The proof will be given in following steps.

Step 1: We verify that Φ(x)(t) is a cadlag process on J. Let t ∈ J and h
be sufficiently small, then for all z ∈ B0T , we have



Controllability of impulsive neutral stochastic integro-differential ...1535

EkΦ(z)(t+ h) −Φ(z)(t)k2 ≤ 8{Ek[S(t+ h)− S(t)]p(0, ϕ,0)k2

+8{Ekp(t+ h, zt+h + yt+h,
R t+h
0 θ1(t+ h, s, zs + ys)ds)

−p(t, zt + yt,
R t
0 θ1(t, s, zs + ys)ds)k2

+8{Ek
R t+h
0 AS(t+ h− s)p(s, zs + ys,

R s
0 θ1(s, η, zη + yη)dη)ds

−
R t
0 AS(t− s)p(s, zs + ys,

R s
0 θ1(s, η, zη + yη)dη)dsk2

+8{Ek
R t+h
0 S(t+ h− s)h(s, zs + ys,

R s
0 θ2(s, η, zη + yη)dη)ds

−
R t
0 S(t− s)h(s, zs + ys,

R s
0 θ2(s, η, zη + yη)dη)dsk2

+8{Ek
R t+h
0 S(t+ h− s)Buz+y(s)ds−

R t
0 S(t− s)Buz+y(s)dsk2

+8{Ek
R t+h
0 S(t+ h− s)σ(s)dBH(s)−

R t
0 S(t− s)σ(s)dBH(s)k2

+8{Ek
R t+h
0

R
U S(t+ h− s)g(s, zs + ys, η) eN(ds,dη)

−
R t
0

R
U S(t− s)g(s, zs + ys, η) eN(ds, dη)k2

+8{EkP0<tk<t+h
S(t+ h− tk)Ik(z(t−k ) + y(t

−
k ))

−P0<tk<t
S(t− tk)Ik(z(t

−
k ) + y(t−k ))k2

= 8
P8

i=1EkNi(h)k2.

By the strong continuity of S(t), we have

lim
h→0

(S(t+ h)− S(t))p(0, φ, 0) = 0.

And from the condition H.1, we get

Ek(S(t+ h)− S(t))p(0, φ, 0)k ≤ 2M{Ekp(0, φ,0)k2.

Then the Lebesgue dominated theorem implies that

lim
h→0

EkN1(h)k2 = 0.
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From condition (iii) in H.2 and since the operator (−A)−β is bounded, we
conclude that

lim
h→0

EkN2(h)k2 = 0.

For the third terme N3(h), we have

kN3(h)k ≤ k
R t
0 A[S(t+ h− s)− S(t− s)]p(s, zs + ys,

R s
0 θ1(s, τ, zτ + yτ )dτ)dsk

+k
R t+h
t AS(t+ h− s)p(s, zs + ys,

R s
0 θ1(s, τ, zτ + yτ )dτ)dsk

= kN31(h)k+ kN32(h)k.

By using Holder’s inequality, we get

EkN31(h)k2 ≤ t

Z t

0
{EkA[S(t+h−s)−S(t−s)]p(s, zs+ys,

Z s
0
θ1(s, τ, zτ+yτ )dτ)k2ds

By using condition H.1, (i) and (ii) in H.2, one has that

EkA[S(t+ h− s)− S(t− s)]p(s, zs + ys,
R s
0 θ1(s, τ, zτ + yτ )dτ)k2

≤ kS(h)− Ik2
M2
1−β

(t− s)2(1−β)

h
k2(1 + 2k1)r

∗ + 2k2k1 + k2
i
.

Then by using the strong continuity of S(t) and by applying the Lebesgue
dominated theorem, we obtain

lim
h→0

EkN31(h)k2 = 0

Through the use of H.1, (i) and (ii) in H.2 along with the Holder’s inequal-
ity, we get

EkN32(h)k2 ≤ hM2
1−β

h
k2(1 + 2k1)r

∗ + 2k2k1 + k2
i R T
0 (t+ h− s)2β−2ds,

therefore

lim
h→0

EkN3(h)k2 = 0.

A similar calculation to the one made previously gives

lim
h→0

EkNi(h)k2 = 0, i = 4, 5.
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Moreover, we have

N6(h) ≤
°°°R t0(S(t+ h− s)− S(t− s))σ(s)dBH(s)

°°°
+
°°°R t+ht S(t+ h− s)σ(s)dBH(s)

°°°
≤ N61(h) +N62(h).

From Lemma 2.2, we get that

E |N61(h)|2 ≤ 2Ht2H−1
Z t

0
k(S(t+ h− s)− S(t− s))σ(s)k2L2ds.

By using condition H.1 and since S(t) is strongly continuous we conclude,
by the dominated convergence theorem that,

lim
h→0

E |N61(h)|2 = 0.

Again by virtue of Lemma 2.2 , we get that

E |N62(h)|2 ≤ 2MHh2H−1
Z t+h

t
kσ(s)k2L2ds→ 0 as h→ 0.

By assumption H.1 and H.4, we get

EkN7(h)k2 ≤ E

°°°°Z t

0

Z
U
[S(t+ h− s)− S(t− s)]g(s, zs + ys, η) eN(ds, dη)°°°°2

+ E

°°°°°
Z t+h

t

Z
U
S(t+ h− s)g(s, zs + ys, η) eN(ds, dη)

°°°°°
2

≤ 4MTkS(h)− Ik2[k5r∗ + k̄5] + 4Mh[k5r
∗ + k̄5].(3.8)

Using the inequality (3.8) together with the strong continuity of S(t), we
obtain that

lim
h→0

EkN7(h)k2 = 0.

Now, for the last term, we have

EkN8(h)k2 ≤ 2E
°°°P0<ti<t(S(h)− I)S(t− ti)Ii(z(t

−
i ) + y(t−i ))

°°°2
+2E

°°°Pt≤ti<t+h S(t+ h− ti)Ii(z(t
−
i ) + y(t−i ))

°°°2 .
From condition H.1 and H.6, we have°°°(S(h)− I)S(t− ti)Ii(z(t

−
i ) + y(t−i ))

°°°2 ≤ k(S(h)− I)k2MfMk,
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and °°°S(t+ h− ti)Ii(z(t
−
i ) + y(t−i ))

°°°2 ≤MfMk.

So, we obtain that

E kN8(h)k2 → 0 as h→ 0

The above arguments show that limh→0EkΦ(x)(t+ h)− Φ(x)(t)k2 = 0.

Step 2: Next, we claim that Φ(Bk) ⊂ Bk. If it is not true, then for each
positive number k, there is a function zk(.) ∈ Bk, such that Φ(zk) /∈ Bk,
that is EkΦ(zk)(t)k2 > k for some t ∈ J. on the other hand, we have

k < EkΦ(zk)(t)k2

≤ 8{2Mc21(k2kϕk2B + k2) + 2(c
2
1 +

(M1−βTβ)2

2β−1 [k2(1 + 2k1)r
∗ + 2k2k1 + k2]

+MMbT
2G + 2MT 2(k3(1 + 2k4)r

∗ + 2k3k4 + k3) + 2MT 2H−1
R T
0 kσ(s)k2L02ds

+2MT (k5r
∗ + k5) +M

Pm
k=1

fMk}

≤ 8(1 + 9MMbMwT
2){2Mc21(k2kϕk2B + k2) + 2(c

2
1 +

(M1−βTβ)2

2β−1 [k2(1 + 2k1)r
∗

+2k2k1 + k2] + 2MT 2[k3(1 + 2k4)r
∗ + 2k3k4 + k3] + 2MT 2H−1

R T
0 kσ(s)k2L02ds

+2MT (k5r
∗ + k5) +M

Pm
k=1

fMk}+ 8× 9MMbMwT
2(kx1k2 +M{Ekϕ(0)k2)

≤ N + 8(1 + 9MMbMwT
2){2(c21 +

(M1−βTβ)2

2β−1 )k2(1 + 2k1)r
∗

+2MT [k3(1 + 2k4)T + k5]r
∗},

where

N = 8(1 + 9MMbMwT
2){2Mc21(k2kϕk2B + k2) + 2(c

2
1 +

(M1−βT
β)2

2β−1 (2k2k1 + k2))

+2MT 2(2k3k4 + k3) + 2MT 2H−1
R T
0
kσ(s)k2L02ds+ 2MTk5 +mM

Pm
k=1

fMk}

+8× 9MMbMwT
2(kx1k2 +M{Ekϕ(0)k2)}
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is independent of k. Dividing both sides by k and taking the limit as
k −→∞, we get

8K2
T (1+9MMbMwT

2){8(c21+
(M1−βT

β)2

2β − 1 )k2(1+2k1)+8MT [k3(1+2k4)T+k5]} ≥ 1.

This contradicts (3.2). Hence for some positive k,

(Φ)(Bk) ⊆ Bk.

Step 3: Φ is a contraction. Let t ∈ J and z1, z2 ∈ B0T , we have

EkΦz1(t)−Φz2(t)k2 ≤ 6{Ekp(t, z1t + yt,
R t
0 θ1(t, s, z

1
s + ys)ds)

−p(t, z2t + yt,
R t
0 θ1(t, s, z

2
s + ys)ds)k2

+6{Ek
R t
0 AS(t− s)[p(s, z1s + ys,

R s
0 θ1(s, η, z

1
η + yη)dη)

−p(s, z2s + ys,
R s
0 θ1(s, η, z

2
η + yη)dη)]dsk2

+6{Ek
R t
0 S(t− s)B[uz1+y(s)− uz2+y(s)]dsk

2

+6{Ek
R t
0 S(t− s)[h(s, z1s + ys,

R s
0 θ2(s, η, z

1
η + yη)dη)

−h(s, z2s + ys,
R s
0 θ2(s, η, z

2
η + yη)dη)]dsk2

+6{Ek
R t
0

R
U S(t− s)[g(s, z1s + ys, η)

−g(s, z2s + ys, η)] eN(ds, dη)k2
+6{EkP0<tk<T

S(T− tk)

[Ik(z
1(t−k ) + y(t−k ))− Ik(z

2(t−k ) + y(t−k ))]k2
(3.9)
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On the other hand from (H.1)− (H.8) combined with (3.7), we obtain

EkΦz1(t) −Φz2(t)k2 ≤ 6(1 + 5MMbMwT
2)[(c21 +

(M1−βTβ)2

2β−1 )k2(1 + 2k1)

+MT 2k3(1 + k4) +MTk5 +mM
Pm

k=1Mk]Ekz1t − z2t k2B

≤ 6(1 + 5MMbMwT
2)[(c21 +

(M1−βTβ)2

2β−1 )k2(1 + 2k1)

+MT 2k3(1 + k4) +MTk5 +mM
Pm

k=1Mk]

×{2K2
T sup0≤s≤T Ekz1(s)− z2(s)k2 + 2N2

T{Ekz10 − z20k2B}

≤ ω sup0≤s≤T Ekz1(s)− z2(s)k2) ( since z10 = z20 = 0)

Taking supremum over t,

kΦz1 − Φz2kB0T ≤ ωkz1 − z2kB0T ,

where

ω = 12K2
T (1 + 5MMbMwT

2)[(c21 +
(M1−βTβ)2

2β−1 )k2(1 + 2k1)

+MT 2k3(1 + k4) +MTk5 +mM
Pm

k=1Mk].

By condition (H.8), we have ω < 1, hence Φ is a contraction mapping
on B0T and therefore has a unique fixed point, which is a mild solution of
equation (1.1) on (−∞, T ]. Clearly, (Φx)(T ) = x1 which implies that the
system (1.1) is controllable on (−∞, T ]. This completes the proof. 2

Remark 3.4. When the impulses disappear, that is Mk = M̃k = 0, k =
1, ...,m then the system (1.1) reduces to the following neutral stochastic
integro-differential equation:

d[x(t) −p(t, xt,
R t
0 θ1(t, s, xs)ds)] = [Ax(t) + h(t, xt,

R t
0 θ2(t, s, xs)ds)

+Bu(t)]dt+ σ(t)dBH(t) +
R
U g(t, xt, η)

eN(dt, dη), t ∈ J,
x0 = ϕ ∈ B

(3.10)

where the operators A, p, h, g, θ1, θ2 and σ are defined as same as before.
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Set

ω̄ = 10K2
T (1 + 4MMbMwT

2)[(c21 +
(M1−βTβ)2

2β−1 )k2(1 + 2k1)

+MT 2k3(1 + k4) +MTk5].

By replacing the constant ω in hypothesis H.8 by ω̄, and using the same
technique in Theorem 3.3, we can easily deduce the following corollary.

Corollary 3.5. Suppose that (H.1)−(H.4) and (H.6)−(H.8) hold. Then,
the system (3.10) is controllable on (−∞, T ] provide that

7K2T (1 + 8MMbMwT
2){8(c21 +

(M1−βT
β)2

2β−1 )k2(1 + 2k1) + 8MT [k3(1 + 2k4)T +

k5]} < 1.

4. Example

In this section, we gives an application for our theoretical result. Let X =
Y = U = L2([0, π]), and define the operator A : D(A) ⊂ X −→ X by

A = ∂2

∂2ξ with

D(A) = {y ∈ X : y0 is absolutely continuous, y00 ∈ X, y(0) = y(π) = 0},

furthermore,

Ay =
∞X
n=1

n2 < y, en >X en, y ∈ D(A),

where en :=
q
2
π sinnx, n = 1, 2, .... is an orthogonal set of eigenvector of

−A. The bounded linear operator (−A) 34 is given by

(−A) 34 y =
∞X
n=1

n
3
2 < y, en >X en,

with domain D((−A) 34 ) = {y ∈ X,
P∞

n=1 n
3
2 < y, en >X en ∈ X}, and

k(−A) 34 k = 1.
Then, A generates an analytic semigroup {S(t)}t≥0 in X given by (see

[9])

S(t)y =
∞X
n=1

e−n
2t < y, en > en,
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for y ∈ X and t ≥ 0. Since the semigroup {S(t)}t≥0 is analytic, there exists
a constant M > 0 such that kS(t)k2 ≤M for every t ≥ 0. In other words,
the condition (H.1) holds.

Consider the stochastic control system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t [y(t, ξ)−R1(t, y(t− b, ξ),

R t
0
r1(t, s, y(s− b, ξ))ds)]

= ∂2

∂2ξy(t, ξ) +R2(t, y(t− b, ξ),
R t
0
r2(t, s, y(s− b, ξ))ds)

+c(ξ)u(t) + σ(t)dB
H(t)
dt +

R
U Γ(t, y(t− b, ξ), η) eN(dt, dη),

0 ≤ t ≤ T, t 6= tj , 0 ≤ ξ ≤ π

∆y(tj , ξ) = y(t+j , ξ)− y(t−j , ξ) = Ij(y(t
−
j )), j = 1, 2, ...,m;

y(t, 0) = y(t, π) = 0, 0 ≤ t ≤ T,

y(s, ξ) = ϕ(s, ξ), −∞ < s ≤ 0, 0 ≤ ξ ≤ π,

(4.1)

where 0 < t1 < t2 < ... < tm < T are prefixed numbers, and ϕ ∈ B. For
(t, φ) ∈ [0, T ] × B, where φ(τ)(ξ) = φ(τ, ξ), (τ, ξ) ∈ (−∞, 0] × [0, π], we put
y(t)(ξ) = y(t, ξ). Let B : U −→ X be a bounded linear operator defined by
Bu(t)(ξ) = c(ξ)u(t), 0 ≤ ξ ≤ π, u ∈ L2([0, T ], U).

Moreover, we assume that The linear operator W : L2([0, T ], U) −→ X given
by

Wu(ξ) =

Z T

0

S(T − s)c(ξ)u(t)ds, 0 ≤ ξ ≤ π,

is a bounded linear operator but not necessarily one-to-one. Let KerW = {x ∈
L2([0, T ], U), Wx = 0} be the null space of W and [KerW ]⊥ be its orthogonal

complement in L2([0, T ], U). Let fW : [KerW ]⊥ −→ Range(W ) be the restriction

of W to [KerW ]⊥, fW is necessarily one-to-one operator. The inverse mapping

theorem says that fW−1 is bounded since [KerW ]⊥ and Range(W ) are Banach
spaces. So that W−1 is bounded and takes values in L2([0, T ], U) \KerW , and
hence hypothesis (H.7) is satisfied.
Let q(t)t>0 be a Poisson point process with a σ-finite measure ν(dη). Let de-
note by N(dt, dη) the Poisson counting measure, wich is induced by q(·), theneN(dt, dη) = N(dt, dη) − dtν(dη) is the compensating martingale measure. Let
Q : Y := L2([0, π], ) −→ Y , we choose a sequence {λn}n∈ ⊂+, set Qen =
λnen, and assume that tr(Q) =

P∞
n=1

√
λn < ∞. Define the fBm in Y by

BH(t) =
P∞

n=1

√
λnb

H
n (t)en, where H ∈ ( 12 , 1) and {bHn }n∈ is a sequence of one-

dimensional fBm mutually independent. Let us assume the function σ : [0,+∞)→
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L02(L2([0, π]), L2([0, π])) satisfies
R T
0
kσ(s)k2L02ds < ∞, ∀T > 0. Then the condi-

tion (H.6) is satisfied.
Define the functions p : [0, T ] × B × X → X, h : [0, T ] × B × X → X and

g : [0, T ]× B × U → X as follow

p(t, φ,
R t
0
θ1(t, s, φ)ds)(ξ) = R1(t, φ(θ, ξ),

R t
0
r1(t, s, φ(τ, ξ))ds),

h(t, φ,
R t
0
θ2(t, s, φ)ds)(ξ) = R2(t, φ(τ, ξ),

R t
0
r2(t, s, φ(τ, ξ))ds),

g(t, φ, η)(ξ) = Γ(t, φ(s, ξ), η),

Thus the above system (4.1) can be written in the abstract form (1.1). Further,

if we assume that there exist positive constants k1, k2, k3, k4, k5,Mk and fMk such
that

Ek
R t
0
[r1(t, s, z1)− r1(t, s, z2)]dsk2 ≤ k1Ekz1 − z2k2B,

Ek(−A)βR1(t, z1, y1)− (−A)βR1(t, z2, y2)k2 ≤ k2[Ekz1 − z2k2B +Eky1 − y2k2],
EkR2(t, z1, y1)−R2(t, z2, y2)k2 ≤ k3[Ekz1 − z2k2B +Eky1 − y2k2]
Ek
R t
0
[r2(t, s, z1)− r2(t, s, z2)]dsk2 ≤ k4Ekz1 − z2k2BR

U EkΓ(t, z1, η)− Γ(t, z2, η)k
2ν(dη) ≤ k5{Ekz1 − z2k2B

kIj(z1)− Ij(z2)k2 ≤Mk{Ekz1 − z2k2B
kIj(z1)k2 ≤ fMk,

for t ∈ [0, T ], z1, z2 ∈ B and y1, y2 ∈ X, then all assumptions on Theorem 3.3 are
satisfied and hence, the system (4.1) is controllable on (−∞, T ].
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