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Abstract
In this paper, we study the persistence, boundedness, convergence,

invariance and global asymptotic behavior of the positive solutions of
the second order difference system

xn+1 = α1 + ae−xn−1 + byne
−yn−1 ,

yn+1 = α2 + ce−yn−1 + dzne
−zn−1 ,(0.1)

zn+1 = α3 + he−zn−1 + jxne
−xn−1 , n = 0, 1, 2, . . . .

Here xn, yn, zn can be considered as population densities of three
species such that the population density of xn, yn, zn depends on the
growth of yn, zn, xn respectively with growth rate b, d, j respectively.
The positive real numbers α1, α2, α3 are immigration rate of xn, yn, zn
respectively, while a, c, h denotes the growth rate of xn, yn, zn respec-
tively, and the initial values x−1, y−1, z−1, x0, y0, z0 are nonnegative
numbers.
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1. Introduction

The theory of discrete dynamical systems has many applications in applied
sciences. Mathematical modeling of a physical, biological, or ecological
problem mostly leads to a nonlinear difference system (See [4],[8],[17]-[19]).
The biological models like prey-predator competition, SIR, SIRS, SEIR,
SEIRS, SI, SIS, etc are mostly of the first order. Two species models are
analyzed in [28] and [29]. Two species second order competition models
with exponents can be found in [7]-[12].
Many authors worked on three species competition models. Dynamics of a
food chain model ⎡⎢⎣ n+1

yn+1
zn+1

⎤⎥⎦ =
⎡⎢⎣ xn(1− xn − yn − zn)

βyn(xn − zn)
γznyn

⎤⎥⎦(1.1)

where α, β and γ are positive constants, with strong pressure on preys was
discussed in [21].

Stability analysis of discrete version of the three species May-Leonard
model

xn+1 = xne
r(1−xn−ayn−bzn),

yn+1 = yne
r(1−yn−azn−bxn),(1.2)

zn+1 = zne
r(1−zn−axn−byn),

where r > 0 is the growth rate and the constants 0 < a < 1 < b was studied
in [24].

Complex discrete-time varying dynamical character of a two-prey one-
predator system

xn+1 = xne
r1(1−α1xn)−β1xnpn

1+x2n
−γ1yn

yn+1 = yne
r2(1−α2yn)−β2ynpn

1+y2n
−γ2xn

(1.3)

pn+1 = pne
c1x

2
n

1+x2n
+

c2y
2
n

1+y2n
−δpn−δ1

with coupled with inter-specific competition among the prey due to overlap
of diet, Holling Type-III functional response and intra-specific competition
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among the predators was discussed in [20].
Persistence and global behavior of the three species model

Jn+1 = bBn + (1− γ1)s1JnJn

Nn+1 = γ1s1JnJn + (1− γ2)s2Nn+BnNn(1.4)

Bn+1 = γ2s2Nn+BnNn + S2Nn+BnBn

was studied in [23]. Here Jn, Nn and Bn are the juveniles, non-breeders and
breeders respectively. The variable b > 0 is the birth rate, 0 < γ1, γ2 < 1
are the fractions of juveniles that become non-breeders and non-breeders
that become breeders respectively, while the sequences s1, s2 are the sur-
vivor sequences of juveniles and non-breeders respectively.

Non-permanence for three-species Lotka-Volterra cooperative difference
systems

xn+1 = xne
r1−a1xn+a2yn+a3zn ,

yn+1 = yne
r2+b1xn−b2yn+b3zn ,(1.5)

zn+1 = zne
r3+c1xn+c2yn−c3zn ,

was discussed in [25].

In [22], authors considered the discrete system

xn+1 = a1zn,

yn+1 = s1xn + a2zn,(1.6)

zn+1 = s2(yn + zn)yn + s3(yn + zn)zn,

as a three stage model. Here xn, yn, zn are the number of seeds, juveniles,
adults respectively, s1, s2, s3 are the survival rate of the above said, and
a1,a2 are rate of seeds produced by adults, rate of juveniles produced re-
spectively.

As seen in (1.1), (1.2), (1.3), (1.4), (1.5) and (1.6) much work has hap-
pened related to three species first order systems. In [26] and [27] we have
analyzed a two species second order system wherein we assume interaction
between species of exponential form, a choice which has prominent impor-
tance in population biology. Not much work has happened related to the
three species second order systems.
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In this paper, we propose a second order three species competitive model
(0.1) which is an extension of [26]. Here xn, yn, zn can be considered as pop-
ulation densities of three species such that population density of xn, yn, zn
depends on the growth of yn, zn, xn respectively with growth rate b, d, j
respectively. The positive real numbers α1, α2, α3 are immigration rate
of xn, yn, zn respectively, a, c, h denotes the growth rate of xn, yn, zn re-
spectively, while the initial conditions x−1, y−1, z−1, x0, y0, z0 are arbitrary
nonnegative numbers. We investigate the persistence, boundedness, conver-
gence, invariance, and global asymptotic character of the positive solutions
of (0.1).

2. Main Results

The following theorem proposes a condition for the persistence and bound-
edness of the positive solution (xn, yn, zn) of (0.1).

Theorem 2.1. Every positive solution (xn, yn, zn) of (0.1) is bounded and
persists whenever

B = bdje−α1−α2−α3 < 1.(2.1)

Proof. xn ≥ α1, yn ≥ α2, zn ≥ α3, n = 1, 2, . . . .

Hence (xn, yn, zn) of system (0.1) persists.
For n = 4, 5, . . ., (0.1) becomes

xn+1 ≤ α1 + ae−α1 + be−α2 [α2 + dzn−1e
−zn−2 + ce−yn−2 ]

≤ A+Bxn−2,(2.2)

where A = α1+ae
−α1+bα2e−α2+bce−α2−α2+bdα3e−α2−α3+bdhe−α2−α3−α3

and B = bdje−α1−α2−α3 .

Similarly,

yn+1 ≤ C +Byn−2,(2.3)

where C = α2+ce
−α2+dα3e−α3+dhe−α3−α3+djα1e−α1−α3+djae−α1−α1−α3 .

Also,
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zn+1 ≤ H +Bzn−2,(2.4)

whereH = α3+he
−α3+jα1e−α1+aje−α1−α1+jbα2e−α1−α2+bjce−α1−α2−α2 .

Now, consider the difference equations

un+1 = A+Bun−2,

vn+1 = C +Bvn−2,

wn+1 = H +Bwn−2, n = 4, 5, . . .(2.5)

Therefore an arbitrary solution (un, vn, wn) of (2.5) can be written as

un = r1B
n/3+ r2B

n/3 cos
³nπ
2

´
+r3B

n/3 sin
³nπ
2

´
+

A

1−B
, n = 5, 6, . . . ,

(2.6)

vn = s1B
n/3 + s2B

n/3 cos
³nπ
2

´
+ s3B

n/3 sin
³nπ
2

´
+

C

1−B
, n = 5, 6 . . . ,(2.7)

wn = p1B
n/3+p2B

n/3 cos
³nπ
2

´
+p3B

n/3 sin
³nπ
2

´
+

H

1−B
, n = 5, 6 . . . ,

(2.8)
where r1, r2, r3, s1, s2, s3, p1, p2, p3 rely on u4, v4, w4 respectively.

Hence, (un, vn, wn) is bounded.
Let us examine the solution (un, vn, wn) such that u−1 = x−1, v−1 =
y−1, w−1 = z−1, u0 = x0, v0 = y0, w0 = z0.
Hence by induction, xn ≤ un, yn ≤ vn and zn ≤ wn, n = 5, 6, . . ..
Therefore, we get (xn, yn, zn) is bounded. 2

We give an example to verify Theorem 2.1.

Example 2.2. Let a = 0.5, b = 0.5, c = 0.25, d = 0.005, h = 0.01, j =
0.03, α1 = 0.08, α2 = 0.09, α3 = 0.04, x−1 = 3.0, x0 = 1.0, y−1 = 9.0, y0 =
2.0, z−1 = 1.0, and z0 = 2.0.
Here B = 6.079381844776403×10−5 < 1, i.e., (2.1) is satisfied. In this case
after 63 iterations xn stabilizes to 0.4914889223167139.
Similarly yn converges to 0.2793453372189754 and zn converges to
0.058451770505985656.
Hence we can see that the solution is bounded and persists.

The following theorems confirm the existence of invariant boxes of (0.1).
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Theorem 2.3. Let (2.1) hold. Let (xn, yn, zn) denote a positive solution

of (0.1). Then [α1,
A

1−B
] ×[α2,

C

1−B
]× [α3,

H

1−B
] is an invariant set for

(0.1) where A,C,H are defined as in the proof of Theorem 2.1.

Proof. Let I1 = [α1,
A

1−B
], I2 = [α2,

C

1−B
], and I3 = [α3,

H

1−B
].

Let x−1, x0 ∈ I1, y−1, y0 ∈ I2 and z−1, z0 ∈ I3.
Then x1 ≤ α1 + ae−α1 + be−α2y0

≤ α1 + ae−α1+

be−α2 [
α2 + ce−α2 + dα3e

−α3 + dhe−α3−α3 + djα1e
−α1−α3 + djae−α1−α1−α3

1− bdje−α1−α2−α3
].

Hence we get

x1 ≤
α1 + ae−α1 + bα2e

−α2 + bce−α2−α2 + bdα3e
−α2−α3 + bdhe−α2−α3−α3

1− bdje−α1−α2−α3
].

i.e., x1 ∈ I1. Similarly we get y1 ∈ I2 and z1 ∈ I3.
Therefore the proof follows by applying the method of induction. 2

Theorem 2.4. Let (2.1) hold. Let A,C,H are defined as in the proof of

Theorem 2.1. Consider the intervals I4 = [α1,
A+ �

1−B
], I5 = [α2,

C + �

1−B
] and

I6 = [α3,
H + �

1−B
] where � is an arbitrary positive number. If (xn, yn, zn)

is any arbitrary solution of (0.1), then there exists an N ∈ N such that
xn ∈ I4, yn ∈ I5 and zn ∈ I6, n ≥ N .

Proof. Let (xn, yn, zn) denote an arbitrary solution of (0.1).
Then by Theorem 2.1, lim sup

n→∞
xn = M < ∞, lim sup

n→∞
yn = L < ∞ and

lim sup
n→∞

zn = T <∞.
Hence, from Theorem 2.1, we get xn+1 ≤ A+ bdjxn−2e

−α1−α2−α3 , yn+1 ≤
C + bdjyn−2e−α1−α2−α3 and zn+1 ≤ H + bdjzn−2e

−α1−α2−α3 .

Hence, M ≤ A

1− bdje−α1−α2−α3
, L ≤ C

1− bdje−α1−α2−α3
and

T ≤ H

1− bdje−α1−α2−α3
.
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Hence, there exists an N ∈ N such that the theorem is satisfied. 2

Now we state a lemma which is an alteration of Theorem 1.16 in [16]
and an extension of Lemma 5 in [26]. The proof is similar to the proof in
[26] and hence omitted.

Lemma 2.5. Let [a, b], [c, d] and [p, q] denote intervals of real numbers.
Let f : [a, b] × [c, d] × [c, d] → [a, b], g : [c, d] × [p, q] × [p, q] → [c, d] and
l : [a, b] × [a, b] × [p, q] → [p, q] be continuous functions. Consider the
difference system

xn+1 = f(xn−1, yn, yn−1),

yn+1 = g(yn−1, zn, zn−1),(2.9)

zn+1 = l(xn, xn−1, zn−1), n = 0, 1, 2, . . .

such that the initial values x−1, x0 ∈ [a, b], y−1, y0 ∈ [c, d] and z−1, z0 ∈
[p, q]. (or xn0 , xn0+1 ∈ [a, b], yn0 , yn0+1 ∈ [c, d], zn0 , zn0+1 ∈ [p, q], n0 ∈ N).
Suppose the following are true.

(i) If f(x, y, z) is nonincreasing in x, f(x, y, z) is nondecreasing in y and
f(x, y, z) is nonincreasing in z.

(ii) If g(x, y, z) is nonincreasing in x, g(x, y, z) is nondecreasing in y and
g(x, y, z) is nonincreasing in z.

(iii) If l(x, y, z) is nondecreasing in x, l(x, y, z) is nonincreasing in y and
l(x, y, z) is nonincreasing in z.

(iv) If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2× [c, d]2× [p, q]2 satisfies the sys-
temsm1 = f(M1,m2,M2),M1 = f(m1,M2,m2);m2 = g(M2,m3,M3),
M2 = g(m2,M3,m3) and m3 = l(m1,M1,M3),M3 = l(M1,m1,m3)
then m1 =M1,m2 =M2 and m3 =M3,

then there exists a unique equilibrium solution (x̄, ȳ, z̄) of (2.9) with x̄ ∈
[a, b],ȳ ∈ [c, d]and z̄ ∈ [p, q]. Also every solution of (2.9) converges to
(x̄, ȳ, z̄).

The following theorem proposes conditions for the convergence of the
equilibrium solution of (0.1).



990 Smitha Mary Mathew and D. S. Dilip

Theorem 2.6. Let (2.1) hold. Suppose

ce−α2 < 1, ae−α1 < 1, he−α3 < 1(2.10)

and
B[1 + A

1−B ][1 +
C
1−B ][1 +

H
1−B ]

[1− ae−α1 ][1− ce−α2 ][1− he−α3 ]
< 1,(2.11)

where A,C,H are defined as in the proof of Theorem 2.1. Then (0.1)
has a unique positive equilibrium E(x̄, ȳ, z̄). Also every solution of (0.1)
converges to E(x̄, ȳ, z̄).

Proof. Let f : R+ ×R+ ×R+ → R+, g : R+ ×R+ ×R+ → R+, l :
R+×R+×R+ → R+ be continuous functions such that f(x, y, z) = α1+
ae−x+ bye−z, g(x, y, z) = α2+ ce−x+dye−z,l(x, y, z) = α3+he−z+ jxe−y.
LetM1,m1,M2,m2,M3,m3 be positive real numbers such thatmi ≤Mi, i =
1, 2, 3 satisfying

m1 = α1 + ae−M1 + bm2e
−M2 ,M1 = α1 + ae−m1 + bM2e

−m2 ,

m2 = α2 + ce−M2 + dm3e
−M3 ,M2 = α2 + ce−m2 + dM3e

−m3

and

m3 = α3 + he−M3 + jm1e
−M3 ,M3 = α3 + he−m3 + jM1e

−m1 .(2.12)

Therefore, M1 −m1 = a[e−m1 − e−M1 ] + b[M2e
−m2 −m2e

−M2 ].

M1 −m1 = a[e−m1 − e−M1 ] + be−m2−M2 [M2e
M2 −m2e

m2 ].(2.13)

Also, there exists a ζ, m2 ≤ ζ ≤M2 satisfying

M2e
M2 −m2e

m2 = (1 + ζ)eζ(M2 −m2).(2.14)

From (2.13) and (2.14) we get,

M1 −m1 = a[e−m1 − e−M1 ] + be−m2−M2+ζ(1 + ζ)[M2 −m2].(2.15)

Now, a[e−m1 − e−M1 ] = ae−m1−M1 [eM1 − em1 ].
Also, there exists a λ, m1 ≤ λ ≤M1 satisfying

a[e−m1 − e−M1 ] = ae−m1−M1+λ[M1 −m1].(2.16)
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Since M1,m1 ≥ α1,

a[e−m1 − e−M1 ] ≤ ae−α1 [M1 −m1].(2.17)

Thus from (2.15) and (2.17) we get,

M1 −m1 ≤ ae−α1 [M1 −m1] + be−m2−M2+ζ(1 + ζ)[M2 −m2].(2.18)

Since M2,m2 ≥ α2, (2.18) becomes

M1 −m1 ≤ ae−α1 [M1 −m1] + be−α2(1 + ζ)[M2 −m2].(2.19)

i.e.,

[1− ae−α1 ][M1 −m1] ≤ be−α2(1 + ζ)[M2 −m2].(2.20)

Also, (2.12) can be written as

M2 = α2 + ce−m2 + d[α3 + he−m3 + jM1e
−m1 ]e−m3 .(2.21)

i.e.,

M2 ≤
C

1− bdje−α1−α2−α3
.(2.22)

Since ζ ≤M2 we get,

ζ ≤ C

1− bdje−α1−α2−α3
.(2.23)

Therefore, (2.20) becomes

[1− ae−α1 ][M1 −m1] ≤ be−α2 [1 +
C

1− bdje−α1−α2−α3
][M2 −m2].(2.24)

Similarly we get,

[1− ce−α2 ][M2 −m2] ≤ de−α3 [1 +
H

1− bdje−α1−α2−α3
][M3 −m3](2.25)

and

[1− he−α3 ][M3 −m3] ≤ je−α1 [1 +
A

1− bdje−α1−α2−α3
][M1 −m1].(2.26)

From (2.24), (2.25) and (2.26) we get,

[M1 −m1] ≤
bdje−α1−α2−α3

[1− ae−α1 ][1− ce−α2 ][1− he−α3 ]
× [1 + A

1− bdje−α1−α2−α3
]
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× [1 + C

1− bdje−α1−α2−α3
]× [1 + H

1− bdje−α1−α2−α3
][M1 −m1].(2.27)

Therefore from (2.11) and (2.27), we get M1 = m1.
Similarly we get M2 = m2 and M3 = m3.
Therefore by applying Lemma 2.5, the result is obtained. 2

Example 2.7. Let a, b, c, d, h, j and α1, α2, α3 are as in Example 2.2.
Then (2.10) implies ce−α2 = 0.22848279631780705 < 1,
ae−α1 = 0.4615581731933179 < 1, he−α3 = 0.009607894391523233 < 1.
Also (2.11) implies 0.0003513665471576195 < 1. Therefore (2.10) and (2.11)
hold.

For the initial conditions x−1 = 11.0, x0 = 5.0, y−1 = 12.0, y0 = 0.2,
z−1 = 15.0 and z0 = 3.8, we can see that after few iterations xn, yn and zn
stabilizes to 0.4914889223167139, 0.2793453372189754 and
(0.058451770505985656) respectively. Here E(x̄, ȳ, z̄)
= (0.4914889223167139, 0.2793453372189754, 0.058451770505985656). Also
we can see that the solution of (0.1) converges to E(x̄, ȳ, z̄).

In the next theorem, we derive conditions for the global asymptotic
stability of the equilibrium solution of (0.1).

Theorem 2.8. Assume (2.1), (2.10) and (2.11) hold. If
ae−α1 [1+ ce−α2 ] + ce−α2 [1+he−α3 ] +he−α3 [1+ ae−α1 ] + ache−α1e−α2e−α3

+ B
(1−B)3 [(1−B)3 +A(1−B)2 + C(1−B)2 +H(1−B)2

+AC(1−B) + CH(1−B) +AH(1−B) +ACH] < 1,(2.28)

where A,C,H are defined as in the proof of Theorem 2.1, then the unique
equilibrium E(x̄, ȳ) is globally asymptotically stable.

Proof. We have to only show that E(x̄, ȳ) is locally asymptotically
stable. The characteristic equation of the Jacobian JF (x̄, ȳ) about the
equilibrium point E(x̄, ȳ) is given by

λ6 + λ4(ae−x̄ + ce−ȳ + he−x̄) + λ3(bdje−x̄−ȳ−z̄) + λ2(bdjx̄e−x̄−ȳ−z̄

+bdjȳe−x̄−ȳ−z̄+bdjz̄e−x̄−ȳ−z̄+ace−x̄e−ȳ+ahe−x̄e−z̄+che−ȳe−z̄)+λe−x̄−ȳ−z̄

(−bdjx̄ȳ − bdjȳz̄ − bdjx̄z̄) + e−x̄−ȳ−z̄(ach+ bdjx̄ȳz̄) = 0.
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By Remark 1.3.1 of [15], we write
|ae−x̄|+ |ce−ȳ| + |he−x̄| + |bdje−x̄−ȳ−z̄| + |bdjx̄e−x̄−ȳ−z̄|+ |bdjȳe−x̄−ȳ−z̄| +
|bdjz̄e−x̄−ȳ−z̄| + |ace−x̄e−ȳ| + |ahe−x̄e−z̄| + |che−ȳe−z̄| + |bdjx̄ȳe−x̄−ȳ−z̄| +
|bdjȳz̄e−x̄−ȳ−z̄|+ |bdjx̄z̄e−x̄−ȳ−z̄|+ |ache−x̄−ȳ−z̄|+ |bdjx̄ȳz̄e−x̄−ȳ−z̄| < 1
is satisfied whenever

ae−α1 [1 + ce−α2 ] + ce−α2 [1 + he−α3 ] + he−α3 [1 + ae−α1 ]+

ache−α1e−α2e−α3 +B[1 + x̄+ ȳ + z̄ + x̄ȳ + ȳz̄ + x̄z̄ + x̄ȳz̄] < 1.(2.29)

Since E(x̄, ȳ) is the equilibrium point of (0.1), by Theorem 2.1, we get

x̄ ≤ A

1−B
.(2.30)

Similarly

ȳ ≤ C

1−B
(2.31)

and

z̄ ≤ H

1−B
.(2.32)

Substituting (2.30), (2.31) (2.32) in (2.29) and by Remark 1.3.1 of [15]
we get the result. Therefore by using Theorem 2.6 we obtain the conditions
for global asymptotic stability. 2

Example 2.9. Let a, b, c, d, h, j and α1, α2, α3 are as in Example 2.2. Now
(2.28) implies 0.8128945983253889 < 1. From Example 2.2 and Example
2.7 we can see that all the conditions of Theorem 2.8 are satisfied. Also we
can see that E(x̄, ȳ, z̄)
= (0.4914889223167139, 0.2793453372189754, 0.058451770505985656) is a
global attractor.
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