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Abstract

Ahmad, Bhat and Sheikh characterized composite wavelets based
on results of affine and quasi affine frames. We continued their study
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1. Introduction

Wavelets are defined extensively and studied vigorously on the Euclidean
spaces R. Their characterization on the Hilbert space L2(R) was studied
independently by Wang [17] and Gripenberg [10] in the shape of two basic
equationsusing the techniques of Fourier transform of the wavelet (see also
[7] and [14]). The obtained result was then generalized by Frazier, Garrigos,
Wang, and Weiss [16] for dilation by 2 and by Calogero [5] for wavelets
associated with a general dilation matrix. Bownik [3] used a new approach
to characterize multiwavelets in L2(R). This characterization was attained
with the help shift invariant systems and quasi-affine systems.

The concept of multiresolution analysis (MRA) is heart value of wavelets.
It is a fact that wavelets are generated from MRA. But this not the case
with all recipes. It were Gripenberg [10] and Wang [17] who proved that
a wavelet arises from an MRA if and only if its dimension function is 1
a.e. Calogero and Garrigos [6] gave a characterization of wavelet families
arising from biorthogonal MRAs of multiplicity d. This result was later on
modified by Bownik and Garrigos in [4], where they provided this charac-
terization in terms of the dimension function. More results in this direction
are obtained in [2, 15] and the references therein. But in all these cases,
the translation set is always a group. Recently, Gabardo and Nashed in
[8, 9] defined a multiresolution analysis associated with a translation set
{0, r/N} + 2Z, where N ≥ 1 is an integer, 1 ≤ r ≤ 2N − 1, r is an odd
integer and r,N are relatively prime, a discrete set which is not necessarily
a group. They call this an NUMRA. As, the case N = 1 reduces to the
standard definition of MRA with dyadic dilation.

Guo, Labate, Lim, Weiss, and Wilson [11, 12, 13] introduced the theory
of composite dilation wavelets and detailed the extension of a multiresolu-
tion analysis (MRA) to this setting. Let f ∈ L2(Λ). Then the nonuniform
affine systems with composite dilations are defined by

FAB = {DaDbTλf : λ ∈ Λ, b ∈ B, a ∈ A, = 1, 2, . . . , 2N − 1} ,

where the Translation operator Tλ is defined by Tλf(x) = f(x − λ), Di-
lation operator by Daf(x) = |det a|−1/2f(a−1x). A ⊂ GLn(R) consist
of elements having some expanding properties and B ⊂ GLn(R) consist
elements having determinant of absolute value one. By choosing f ,A,B,
appropriately, FAB can be made orthonormal basis or more generally a Par-
seval frame for L2(Λ). Here we call F = {f1, f2, . . . , f2N−1} an orthonormal
AB-multiwavelet or a Parseval Frame AB-multiwavelet. For L = 1, i.e.,
when we have single generator, we have wavelet instead of multiwavelet.
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Recently Ahmad et.al obtained the characterization of wavelets associ-
ated with the composite dialtion MRA on L2(R). We used their technique
to obtain the characterization of nonuniform wavelets associated with AB-
MRA on L2(Λ). This paper is organised in the following manner. In Sec-
tion 2, we recall some basic results and use them to characterize composite
wavelets. Here we also give another characterization of these wavelets. In
Section 3, we characterize the wavelets associated with the AB-MRA on
L2(Λ).

2. Characterization of Nonuniform Composite Wavelets

For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ 2N − 1 such that
r and N are relatively prime, we define

Λ =

½
0,

r

N

¾
+ 2Z =

½
rk

N
+ 2n : n ∈ Z, k = 0, 1

¾
.

It is easy to verify that Λ is not necessarily a group nor a uniform
discrete set, but is the union of Z and a translate of Z. Moreover, the set

Λ is the spectrum for the spectral set Γ =
h
0, 12

´
∪
h
N
2 ,

N+1
2

´
and the pair

(Λ,Γ) is called a spectral pair [8,9].

Definition 2.1. Let F =
n
f1, f2, . . . , f2N−1

o
be a finite family of func-

tions in L2(Λ). The affine system generated by F is the collection

X(F ) =
n
fm,j,λ(x) = qj/2f

³
AjBmx− λ

´
, j ∈ Z, λ ∈ Λ, 1 ≤ ≤ 2N − 1, 1 ≤ m ≤M,

o
where M = min{r : r ≥ 1, r ∈ Z}, with the assumption Br = I, A is
an n × n expansive real matrix with eigenvalues λ satisfying |λ| > 1, B
is a rotation matrix, ABmλ ∈ Λ(∀λ ∈ Λ, 1 ≤ m ≤ M). It is clear that
X(F ) = DjTλf (x). The quasi-affine system generated by F is

X̃(F ) =
n
f̃m,j,λ : j ∈ Z, λ ∈ Λ, 1 ≤ ≤ 2N − 1, 1 ≤ m ≤M

o
,

where

f̃j,λ(x) =

⎧⎪⎪⎨⎪⎪⎩
DjDmTλf (x) = qj/2f

³
AjBmx− λ

´
, j ≥ 0,

qj/2TλDjDmf (x) = qj/2f
³
AjBm(x− λ)

´
, j < 0.

(2.1)
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We say that F is a set of basic wavelets of L2(Λ) if the affine system
X(F ) forms an orthonormal basis for L2(Λ).

Definition 2.2. A subset X of L2(Λ) is called a Bessel family if there
exists a constant b > 0 such thatX

η∈X
|hf, ηi|2 ≤ b

°°°f°°°2 for all f ∈ L2(Λ).(2.2)

If, in addition, there exists a constant a > 0, a ≤ b such that

a
°°°f°°°2 ≤ X

η∈X
|hf, ηi|2 ≤ b

°°°f°°°2 for all f ∈ L2(Λ),(2.3)

then X is called a frame. The frame is tight if we can choose a and b such
that a = b. The affine system X(F ) is an affine frame if (2.3) holds for
X = X(F ). Similarly, the quasi-affine system X̃(F ) is a quasi-affine frame
if (2.3) holds for X = X̃(F ).

Theorem 2.3 [16]. Let F =
n
f1, f2, . . . , f2N−1

o
be a finite subset of

L2(Λ). Then
(a) X(F ) is a Bessel family if and only if X̃(F ) is a Bessel family.

Furthermore, their exact upper bounds are equal. (b) X(F ) is an affine
frame if and only if X̃(F ) is a quasi-affine frame. Furthermore, their lower
and upper exact bounds are equal.

Definition 2.4. Given {ti : i ∈ N} ⊂ l2(Λ), where ti are orthogonal,
define the operator H : l2(Λ)→ l2(N) by

H(v) = (hv, tii)i∈N for v =
³
v(λ)

´
λ∈Λ
∈ l2(Λ).

If H is bounded then G̃ = H H : l2(Λ) → l2(Λ) is called the dual
Gramian of {ti : i ∈ N}. Observe that G̃ is a non negative definite operator
on l2(Λ). Also, note that for λ, ν ∈ Λ, we haveD

G̃eλ, eν
E
= hHeλ,Heνi =

X
i∈N

ti(λ)ti(p),

where {ei : i ∈ N} is the standard basis of l2(Λ).

Theorem 2.5 [16] Let {gi : i ∈ N} ⊂ l2(Λ) and for a.e. ζ ∈ Tn, let G̃(ζ)
denote the dual Gramian of {ti : i ∈N} ⊂ l2(Λ). The system of translates
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{Tλgi : λ ∈ Λ, i ∈ N} is a frame for L2(Λ) with constants a and b if and
only if G̃(ζ) is bounded for a.e. ζ ∈ Tn and

a
°°°v°°°2 ≤ DG̃(ζ)v, vE ≤ b

°°°v°°°2 for v ∈ l2(Λ), a.e., ζ ∈ Tn

that is, the spectrum of G̃(ζ) is contained in [a, b] for a.e. ζ ∈ Tn.

Lemma 2.6. Suppose that F =
n
f1, f2, . . . , f2N−1

o
⊂ L2(Λ). The affine

system X(F ) is orthonormal in L2(Λ) if and only if for j ≥ 0 and 1 ≤
, 0 ≤ 2N − 1,

MX
m=1

X
λ∈Λ

f̂ (ζ + λ)f̂ 0
³
A∗jB∗m(ζ + λ)

´
= δ , 0δj,0δm,0, for a.e. ζ ∈ Λ.(2.4)

Proof. By a simple change of variables, one can observe that for j, j0 ∈
Z, λ, λ0 ∈ Λ, 1 ≤ , 0 ≤ 2N − 1 and 1 ≤ m,m0 ≤M ,D

fm,j,λ, f
0
m0,j0,λ0

E
= δ , 0δj,j0δλ,λ0δm,m0

is equivalent to D
fm,j,λ, f

0
0,0,0

E
= δ , 0δj,0δλ,0δm,0.

Taking any j ≥ 0, λ ∈ Λ, 1 ≤ , 0 ≤ 2N − 1 and 1 ≤ m ≤ M , we have
by Plancherel’s formula

D
fm,j,λ, f

0
0,0,0

E
=

D
f̂m,j,λ, f̂

0
0,0,0

E
=

Z
Λ
q−j/2f̂

³
A∗−jB∗−mζ

´
e−2πiA

∗−jB∗−mkζ f̂ 0(ζ)dζ

= qj/2
Z
Λ
f̂ (ζ)e−2πiλζ f̂ 0

³
B∗mA∗jζ

´
dζ

= qj/2
X
σ∈Λ

Z
Tn

f̂ (ζ)f̂ 0
³
B∗mA∗jζ

´
e−2πiλζdζ

= qj/2
Z
Tn

(X
σ∈Λ

f̂ (ζ + σ)f̂ 0
³
B∗mA∗j(ζ + σ)

´)
e−2πiλζdζ.
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If
D
fm,j,λ, f

0
0,0,0

E
= δ , 0δj,0δλ,0δm,0 for all j ≥ 0, λ ∈ Λ, 1 ≤ , 0 ≤

2N − 1, 1 ≤ m ≤M, then the L1(Tn) functions

K(ζ) =
X
σ∈Λ

f̂ (ζ + σ)f̂ 0
³
B∗mA∗j(ζ + σ)

´
has the property that its Fourier coefficients are all zero except for the
coefficient corresponding to λ = 0, which is 1 if j = 0 and = 0. Hence,
K(ζ) = δ , 0δj,0 for a.e. ζ ∈ Tn. Conversely, if K(ζ) = δ , 0δj,0, then

the same calculation shows that
D
fm,j,λ, f

0
0,0,0

E
= δ , 0δj,0δλ,0δm,0. This

completes the proof of Lemma.

Suppose F =
n
f1, f2, . . . , f2N−1

o
be a finite family of functions in

L2(Λ). For j ≥ 0 and 1 ≤ m ≤ M , let Dj be a set of representatives of
distinct cosets of Λ \ AjBmΛ. For j < 0, we define Dj = {0}. Since the
quasi affine system X̃(F ) is invariant under integer, we have

X̃(F ) = {
½
Tλg : λ ∈ Λ, g ∈ A

¾
,

A :=
n
f̃m,j,d : j ∈ Z, d ∈ Dj , 1 ≤ ≤ 2N − 1, 1 ≤ m ≤M

o
.(2.5)

The dual Gramian G̃(ζ) of the quasi affine system X̃(F ) at ζ ∈ Tn is
defined as the dual Gramian of

n³
ĝ(ζ + λ)

´
λ∈Λ

: g ∈ A
o
⊂ l2(Λ), where A

is defined by (2.5). We now compute G̃(ζ) in terms of Fourier transforms
of functions in F and show that it does not depend upon the choice of
representatives Dj .

For σ ∈ Λ \ABΛ, define the function

tσ(ζ) =
2N−1X
=1

MX
m=1

∞X
j=0

f̂
³
A∗jB∗mζ

´
f̂
³
A∗jB∗m(ζ + σ)

´
, ζ ∈ Λ.(2.6)

Lemma 2.7. Let F =
n
f1, f2, . . . , f2N−1

o
⊂ L2(Λ) and G̃(ζ) be the dual

Gramian of X̃(F ) at ζ ∈ Tn . Then

D
G̃(ζ)eλ, eλ

E
=
2N−1X
=1

MX
m=1

X
j∈Z

¯̄̄
f̂
³
A∗jB∗m(ζ + λ)

´¯̄̄2
, for ζ ∈ Λ,(2.7)
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D
G̃(ζ)eλ, eν

E
= tB∗−mA∗−m(ν−λ)

³
B∗−mA∗−mζ+B∗−mA∗−mλ

´
, for λ 6= ν ∈ Λ,

(2.8)

where m = max
n
j ∈ Z : B∗−mA∗−j(ν − λ) ∈ Λ

o
and the functions tσ, σ ∈

Λ \ABΛ, are given by (2.6).

Proof. For λ, ν ∈ Λ, we have

D
G̃(ζ)eλ, eν

E
=

X
g∈A

ĝ(ζ + λ)ĝ(ζ + ν)

=
2N−1X
=1

MX
m=1

X
j<0

f̂
³
A∗−jB∗−m(ζ + λ)

´
f̂
³
A∗−jB∗−m(ζ + ν)

´

+
2N−1X
=1

MX
m=1

X
j≥0

f̂
³
A∗−jB∗−m(ζ + λ)

´
f̂
³
A∗−jB∗−m(ζ + ν)

´

×
X
d∈Dj

q−je−2πidB
∗−mA∗−j(ν−λ)

=
2N−1X
=1

MX
m=1

rX
j=−∞

f̂
³
A∗−jB∗−m(ζ + λ)

´
f̂
³
A∗−jB∗−m(ζ + ν)

´
,

where r = max
n
j ∈ Z : B∗−mA∗−j(ν − λ) ∈ Λ

o
and r = ∞ when λ = ν.

The sum over Dj is equal to 1 if (λ − ν) ∈ A∗jB∗mΛ and 0 otherwise.
Therefore, if λ = ν, then (2.7) holds. If λ 6= ν, then



616 M. Y. Bhat, S. Rafiq, M. A. Lone and A. A. Bhat

D
G̃(ζ)eλ, eν

E

=
2N−1X
=1

MX
m=1

X
j≥0

f̂
³
A∗−j−rB∗−m(ζ + λ)

´
f̂
³
A∗−j−rB∗−m(ζ + ν)

´

=
2N−1X
=1

MX
m=1

X
j≥0

f̂
³
A∗−jB∗−m(A∗−rζ +A∗−rλ)

´

×f̂
³
A∗−jB∗−m

³
A∗−rζ +A∗−mλ+A∗−r(ν − λ)

´´
which proves (2.8) and hence completes the proof.

Theorem 2.8. Suppose that F =
n
f1, f2, . . . , f2N−1

o
⊂ L2(Λ). The affine

system X(F ) is tight frame with constant 1 for L2(Λ) i.e.,

2N−1X
=1

MX
m=1

X
j∈Z

X
λ∈Λ

¯̄̄
hf, fm,j,λi

¯̄̄2
=
°°°f°°°2

2
for all f ∈ L2(Λ)

if and only if the functions f1, f2, . . . , f2N−1 satisfy the following two con-
ditions:

2N−1X
=1

MX
m=1

X
j∈Z

¯̄̄
f̂
³
A∗jB∗mζ

´¯̄̄2
= 1, for a.e. ζ ∈ Λ,(2.9)

and

tm(ζ) = 0, for a.e. ζ ∈ Λ,m ∈ Λ \ABΛ.(2.10)

In particular, F is a set of basic wavelets of L2(Λ) if and only if
°°°f °°°

2
= 1

for = 1, 2, · · · , 2N − 1 and (2.9) and (2.10) hold.

Proof. It follows from Theorem 2.3 that X(F ) is a tight frame with con-
stant 1 if and only if X̃(F ) is a tight frame with constant 1. By Theorem
2.5, this is equivalent to the spectrum of G̃(ζ) consisting of a single point
1, i.e., G̃(ζ) is identity on l2(Λ) for a.e. ζ ∈ Tn. By Lemma 2.7, this is
equivalent to the fact that Eqs. (2.9) and (2.10) hold. The second assertion
follows since a tight frame X(F ) with constant 1 is an orthonormal basis
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if and only if
°°°f °°°

2
= 1 for = 1, 2, · · · , 2N − 1 (see Theorem 1.8, section

7.1 in [12]). This completes the proof.

Theorem 2.9. Suppose that F =
n
f1, f2, . . . , f2N−1

o
⊂ L2(Λ). Assume

that X(F ) is a Bessel family with constant 1. Then the following are equiv-
alent: (a) X(F ) is a tight frame with constant 1. (b) F satisfies equality
(2.9). (c) F satisfies

2N−1X
=1

Z
Λ

¯̄̄
f̂ (ζ)

¯̄̄2 dζ

ρ(ζ)
= 1,(2.11)

for some quasi-norm ρ associated with B∗A∗.

Proof. It is obvious from Theorem 2.8 that (a)⇒ (b). To show (b) implies

(c), assume that (2.10) holds. Then, since
n
A∗jB∗mS : 1 ≤ m ≤M, j ∈ Z}

is a partition of Λ (modulo sets of measure zero), for any S ⊂ Λ, we have

2N−1X
=1

Z
Λ

¯̄̄
f̂ (ζ)

¯̄̄2 dζ

ρ(ζ)
=

2N−1X
=1

MX
m=1

X
j∈Z

Z
A∗jB∗mS

¯̄̄
f̂ (ζ)

¯̄̄2 dζ

ρ(ζ)

=
2N−1X
=1

Z
S

MX
m=1

X
j∈Z

¯̄̄
f̂
³
A∗jB∗mζ

´¯̄̄2 dζ

ρ(ζ)

= 1.

To prove (c)⇒ (a), we assume that (2.11) holds. Since X(F ) is a Bessel
family with constant 1, so is X̃(F ), by condition (a) of Theorem 2.3. Let
G̃(ζ) be the dual Gramian of X̃(F ) at ζ ∈ Tn. By Theorem 2.5, we have
kG̃(ζ)k ≤ 1 for a.e. ζ ∈ Tn. In particular, kG̃(ζ)eλk ≤ 1. Hence,

1 ≥
°°°G̃(ζ)°°°2 =X

ν∈Λ

¯̄̄D
G̃(ζ)eλ, eν

E¯̄̄2
=
¯̄̄D
G̃(ζ)eλ, eν

E¯̄̄2
+

X
ν∈Λ,ν 6=λ

¯̄̄D
G̃(ζ)eλ, eν

E¯̄̄2
.

(2.12)
By Lemma 2.7, we have

2N−1X
=1

MX
m=1

X
j∈Z

¯̄̄
f̂
³
A∗jB∗m(ζ + λ)

´¯̄̄2
≤ 1, for λ ∈ Λ, ζ ∈ Tn.
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Hence,

1 =

Z
S

2N−1X
=1

MX
m=1

X
j∈Z

¯̄̄
f̂
³
A∗jB∗m(ζ)

´¯̄̄2 dζ

ρ(ζ)
≤
Z
D

dζ

ρ(ζ)
= 1,

From this it follows that
P2N−1

=1

PM
m=1

P
j∈Z

¯̄̄
f̂
³
A∗jB∗mζ

´¯̄̄2
= 1 for

a.e. ζ ∈ D and hence for a.e. ζ ∈ Λ. This means that equation (2.9) holds.
By Lemma 2.7 and equality (2.9),

¯̄̄D
G̃(ζ)eλ, eν

E¯̄̄2
= 1 for all λ ∈ Λ. Thus,

by (2.12), it follows that
D
G̃(ζ)eλ, eν

E
= 0 for λ 6= ν so that G̃(ζ) is the

identity operator on l2(Λ). Hence, by Theorem 2.5, X̃(F ) is a tight frame
with constant 1. Therefore, X(F ) is also a tight frame with constant 1, by
Theorem 2.3. This completes the proof.

In the consequence of above theorem, we provide a new characterization
of wavelets.

Theorem 2.9. Suppose F =
n
f1, f2, . . . , f2N−1

o
⊂ L2(Λ). Then the

following are equivalent:
(a) F is a set of basic wavelets of L2(Λ).
(b) satisfies (2.4) and (2.9).
(c) satisfies (2.4) and (2.11).

Proof. It follows from Theorem 2.8 and Lemma 2.7 that (a)⇒(b)⇒(c).We
now prove that (c) implies (a). Assume that F satisfies (2.4) and (2.11).
The equation (2.4) implies that X(F ) is an orthonormal system, hence it
is a Bessel family with constant 1. By Theorem 2.8 and (2.11), X(F ) is
a tight frame with constant 1. Since each f has L2 norm 1, it follows
that X(F ) is an orthonormal basis for L2(Λ). That is, F is a set of basic
wavelets of L2(Λ).

3. Characterization of Composite MRA Wavelets

As usual, we construct wavelets from multiresolution analysis(MRA).
Definition 3.1. A closed subspaces sequence {Vj}j∈Z of L2(Λ) is called
a nonuniform AB-multiresolution analysis or nonuniform composite mul-
tiresolution analysis with A and B same as in Section 2, if the following
conditions are satisfied:
(1) Vj ⊂ Vj+1, ∀j ∈ Z;
(2)

S
j∈Z Vj = L2(Λ);
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(3)
T
j∈Z Vj = {0};

(4) f(x) ∈ Vj if and only if f(2NAx) ∈ Vj+1;
(5) there exists a function g(x) ∈ V0, such that {g0, ,λ}λ∈Λ is an orthonor-
mal basis of V0, , in addition, V0 = ⊕2N−1=1 V0, , where {V0, }1≤ ≤2N−1 are
mutually orthogonal. Here function g(x) is called the scaling function (or
generator).

Let F =
n
f1, f2, . . . , f2N−1

o
be a set of basic wavelets of L2(Λ). We

define the spaces Wj , j ∈ Z, by Wj = span{fm,j,λ : 1 ≤ ≤ 2N − 1, 1 ≤
m ≤ M,λ ∈ Λ}. We also define Vj = ⊕m<jWm, j ∈ Z. Then it follows
that {Vj : j ∈ Z} satisfies the properties (a)-(d) in the definition of a MRA.
Hence, {Vj : j ∈ Z} will form a MRA of L2(Λ) if we can find a function
g ∈ L2(Λ) such that the system {g(x− λ) : λ ∈ Λ} is an orthonormal basis
for V0. In this case, we say that F is associated with a MRA, or simply
that F is a MRA-wavelet.

Now suppose that
n
f1, f2, . . . , f2N−1

o
is a set of basic wavelets for

L2(Λ) associated with a MRA {Vj : j ∈ Z}. Let g ∈ L2(Λ) be the corre-
sponding scaling function. Then in view of [1], we have

g(A−1x) =
MX

m=1

X
λ∈Λ

d1,m,λg
³
Bmx− λ

´
,(3.1)

for any {d1,m,λ}1≤m≤M,λ∈Λ ∈ l2(N0). Taking Fourier transform of equation
(3.1), we get

ĝ
³
A∗ζ

´
=

MX
m=1

h
(m)
0 (ζ)ĝ

³
B∗−mζ

´
,(3.2)

where

h
(m)
0 (ζ) =

X
λ∈Λ

d1,m,λe
−2πiλζ

is an integral periodic function in L∞(Tn). Also, since {f1, f2, . . . , f2N−1}
are the wavelets associated with a MRA corresponding to the scaling func-

tion g, there exist integral-periodic functions h
(m)
1, , 1 ≤ m ≤ M, 1 ≤ ≤

2N − 1, such that the matrix

M(m)(ζ) =
h
h
(m)
1, 1

³
ζ + 2

´i2N−1
1, 2=0
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is unitary for a.e. ζ ∈ [0, 2π] and

f̂
³
A∗ζ

´
=

MX
m=1

h
(m)
1, (ζ)ĝ

³
B∗−mζ

´
,(3.3)

where

h
(m)
1, (ζ) =

X
λ∈Λ

c ,m,λe
−2πiλζ .

Hence, by (3.2), we have

¯̄̄
ĝ
³
A∗ζ

´¯̄̄2
+
2N−1X
=1

¯̄̄
f̂
³
A∗ζ

´¯̄̄2
=

¯̄̄̄
¯
MX

m=1

h
(m)
0 (ζ)ĝ

³
B∗−mζ

´¯̄̄̄¯
2

+
P2N−1

=1

¯̄̄PM
m=1 h

(m)
1, (ζ)ĝ

³
B∗−mζ

´¯̄̄2

=
MX
m=1

¯̄̄
g
³
B∗−mζ

´¯̄̄2Ã2N−1X
=0

¯̄̄
h
(m)
1, (ζ)

¯̄̄2!
.

SinceM(m)(ζ) is unitary for each m, 1 ≤ m ≤M , we have

¯̄̄
ĝ
³
A∗ζ

´¯̄̄2
+
2N−1X
=1

¯̄̄
f̂
³
A∗ζ

´¯̄̄2
=

MX
m=1

¯̄̄
g
³
B∗−mζ

´¯̄̄2
.

Thus equality holds for for a.e, ζ ∈ Λ. Hence, we have

|ĝ(ζ)|2 =
MX

m=1

Ã¯̄̄
ĝ
³
A∗B∗mζ

´¯̄̄2
+
2N−1X
=1

¯̄̄
f
³
A∗B∗mζ

´¯̄̄2!

Iterating for any integer N ≥ 1, we get,

|ĝ(ζ)|2 =
MX

m=1

⎛⎝¯̄̄ĝ³A∗NB∗mζ´¯̄̄2 + 2N−1X
=1

NX
j=1

f
³
A∗jB∗mζ

´⎞⎠ .

Since |ĝ(ζ)|2 ≤ 1, the sequence {P2N−1
=1

PM
m=1

PN
j=1 f

³
A∗jB∗mζ

´
:

N ≥ 1} of real numbers is increasing and is bounded by 1, hence it con-
verges. Therefore limN→∞

PM
m=1

¯̄̄
ĝ
³
A∗NB∗mζ

´¯̄̄2
also exists. Now

Z
Λ

MX
m=1

¯̄̄
ĝ
³
A∗NB∗mζ

´¯̄̄2
ζ = q−N

Z
Λ
|ĝ(ζ)|2 dζ → 0 as N →∞.
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Hence, by Fatou’s Lemma, we have

Z
Λ
lim

N→∞

MX
m=1

¯̄̄
ĝ
³
A∗NB∗mζ

´¯̄̄2
dζ ≤ lim

N→∞

Z
Λ

MX
m=1

¯̄̄
ĝ
³
A∗NB∗mζ

´¯̄̄2
dζ = 0.

This shows that limN→∞
PM

m=1

¯̄̄
ĝ
³
A∗NB∗mζ

´¯̄̄2
= 0. Hence, we get

|ĝ(ζ)|2 =
2N−1X
=1

MX
m=1

∞X
j=1

¯̄̄
f̂
³
A∗jB∗mζ

´¯̄̄2
Since {g(x−λ) : λ ∈ Λ} is an orthonormal system, we get for a.e. ζ ∈ Λ,

1 =
X
λ∈Λ

|ĝ(ζ + λ)|2 =
2N−1X
=1

MX
m=1

∞X
j=1

X
λ∈Λ

¯̄̄
f̂
³
A∗jB∗m(ζ + λ)

´¯̄̄2

Definition 3.2. Suppose F = {f1, f2, . . . , f2N−1} is a set of basic wavelets
for L2(Λ). The dimension function of F is defined as

DF (ζ) =
2N−1X
=1

MX
m=1

∞X
j=1

X
λ∈Λ

¯̄̄
f̂
³
A∗jB∗m(ζ + λ)

´¯̄̄2
.(3.4)

Note that if f1, f2, . . . , f2N−1 ∈ L2(Λ), then

Z
[0,2π]

MX
m=1

∞X
j=1

X
λ∈Λ

¯̄̄
f̂
³
A∗jB∗m(ζ + λ)

´¯̄̄2
dζ =

∞X
j=1

Z
R

¯̄̄
f̂ (ζ)

¯̄̄2
dζ <∞.(3.5)

Then DF is well defined for a.e. ζ ∈ Λ. In particular,P
λ∈Λ

¯̄̄
f̂
³
A∗jB∗m(ζ + λ)

´¯̄̄2
< ∞ for a.e. ζ ∈ Λ. Thus for all j ≥ 1, 1 ≤

≤ L, 1 ≤ m ≤M , and a.e. ζ ∈ Λ, we can define the vector ζj,m(ζ) ∈ l2(Λ),
where

ζj,m(ζ) =
n
f̂
³
A∗jB∗m(ζ + λ)

´
: λ ∈ Λ

o
.

Hence, DF can also be written as

DF (ζ) =
2N−1X
=1

MX
m=1

∞X
j=1

°°°ζj,m(ζ)°°°2l2(Λ).(3.6)
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We have thus proved that if F = {f1, f2, . . . , f2N−1} is a set of basic
wavelets associated with a MRA of L2(Λ), then it is necessary thatDF (ζ) =
1 a.e. Our aim is to show that this condition is also sufficient. We will
show that if F = {f1, f2, . . . , f2N−1} is a set of basic wavelets of L2(Λ) and
DF (ζ) = 1 a.e., then F is an AB-MRA wavelet. To prove this we need the
following lemma.

Lemma 3.3 For all j ≥ 1, 1 ≤ ≤ L, and a.e. ζ ∈ Λ, we have

ζj,m(ζ) =
2N−1X
h=1

MX
m=1

∞X
i=1

D
ζj,m(ζ), ζ

h
i,m(ζ)

E
ζhi,m(ζ).(3.7)

Proof. The series appearing in the lemma converges absolutely by (3.5)
for a.e. ζ ∈ Λ. We first show that

f̂
³
A∗jB∗mζ

´
=
2N−1X
h=1

MX
m=1

∞X
j=1

X
λ∈Λ

f̂
³
A∗jB∗m(ζ+λ)

´
f̂h(A∗iB∗m(ζ + λ))f̂h

(3.8) ³
A∗jB∗mζ

´
.

Let us denote the series on the right of (3.8) by Gj,m(ζ). Then by using
Lemma 2.6 and equation (2.6), we have
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Gj,m(ζ) =
X
λ∈Λ

MX
m=1

f̂
³
A∗jB∗m(ζ + λ)

´ 2N−1X
h=1

∞X
i=1

f̂h(A∗iB∗m(ζ + λ))f̂h³
A∗jB∗mζ

´

=
X
λ∈Λ

MX
m=1

f̂
³
A∗jB∗m(ζ + λ)

´(
tλ(ζ)−

2N−1X
h=1

∞X
i=1

f̂h((ζ + λ))f̂h(ζ)

)

=
X

λ∈ABΛ

MX
m=1

f̂
³
A∗jB∗m(ζ + λ)

´
tλ(ζ)

=
2N−1X
h=1

X
λ∈Λ

MX
m=1

∞X
i=0

f̂ (A∗jB∗m(ζ +B∗A∗λ))

f̂h(A∗iB∗m(ζ +B∗A∗λ))f̂h
³
A∗jB∗mζ

´

=
2N−1X
h=1

X
λ∈Λ

MX
m=1

∞X
i=1

f̂ (A∗j+1B∗m+1(A∗−1B∗−1ζ + λ))

×f̂h(A∗iB∗m(A∗−1B∗−1(ζ + λ)))f̂h(A∗jB∗mA∗−1B∗−1ζ)

= Gj+1,m+1(A
∗−1B∗−1ζ).

This is equivalent to Gj,m(ζ) = Gj−1,m−1(A
∗B∗ζ). Iterating this equa-

tion, we obtain, Gj,m(ζ) = G1,m(A
∗j−1B∗m−1ζ). We now calculateG1,m(ζ).

We have
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G1,m(ζ) =
X
λ∈Λ

f̂ (A∗B∗(ζ + λ))
2N−1X
h=1

MX
m=1

∞X
i=1

f̂h(A∗iB∗m(ζ + λ))f̂h

(A∗iB∗mζ)

=
X
λ∈Λ

f̂ (A∗B∗ζ +A∗B∗λ))
2N−1X
h=1

MX
m=1

∞X
i=1

f̂h(A∗iB∗m(A∗B∗ζ +A∗B∗λ))× f̂h(A∗iB∗mA∗B∗ζ)

=
X

λ∈ABΛ

f̂ (A∗B∗ζ + λ)
2N−1X
h=1

MX
m=1

∞X
i=1

f̂h(A∗iB∗m(A∗B∗ζ + λ))

×f̂h(A∗iB∗mA∗B∗ζ)

=
2N−1X
h=1

MX
m=1

∞X
i=1

f̂h(A∗iB∗mA∗B∗ζ)δi,0δm,0δ ,h

= f̂ (A∗B∗ζ).

Thus Gj(ζ) = f̂ (A∗−jB∗−mζ) a.e. ζ ∈ Λ. Since
D
ζj (ζ), ζ

h
i (ζ)

E
is

integral periodic, (3.7) follows. This completes the proof.

Lemma 3.4. Let {νj : j ≥ 1} be a family of vectors in a Hilbert space H

such that (i)
∞X
n=1

°°°νn°°°2 = C <∞, (ii) νn =
∞X
n=1

hνn, νmiνm for all n ≥ 1.

Let F = span{νj : j ≥ 1}. Then

dimF =
∞X
j=1

°°°νj°°°2 = C.

Theorem 3.5. A wavelet F =
n
f1, f2, . . . , f2N−1

o
⊂ L2(Λ) is an AB-

MRA wavelet if only if DF (ζ) = 1 for almost every ζ ∈ Λ.

Proof. We have already observed that DF (ζ) = 1 for almost every ζ ∈ Λ
when F is an AB-MRA wavelet. We now prove the converse. Assume that
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DF (ζ) = 1 for almost every ζ ∈ Λ. Let E be the subset of Tn on which
DF (ζ) is finite and (3.7) is satisfied. Then ζj,m are well-defined on E. For
ζ ∈ E, we define the space

F(ζ) = span
n
ζj,m(ζ) : 1 ≤ ≤ 2N − 1, 1 ≤ m ≤M, j ≥ 1

o
.

Then, by Lemmas 3.3 and 3.4, we have

dimF(ζ) =
2N−1X
=1

MX
m=1

∞X
j=1

°°°ζj,m(ζ)°°°22 = DF (ζ) = 1.(3.9)

That is, for each ζ ∈ E,F(ζ) is generated by a single unit vector U(ζ).
We now choose a suitable vector. For j ≥ 1, let us define

Xj =

½
ζ ∈ E : ζj,m(ζ) 6= 0 and ζm,m(ζ) = 0,∀ m < j

and 1 ≤ ≤ 2N − 1, 1 ≤ m ≤M

¾
and

X0 =

½
ζ ∈ Tn : ζj,m(ζ) 6= 0,∀ j ≥ 1, and 1 ≤ ≤ 2N− 1,1 ≤m ≤M

¾
.

Then {Xj : j = 0, 1, 2, . . .} forms a partition of E. Note that X0 =
{ζ ∈ Tn : DF(ζ) = 0}. So for a.e. ζ ∈ E \ X0, there exists j ≥ 1 such
that ζ ∈ Xj . Hence, there exists at least one , 1 ≤ ≤ 2N − 1, and one
m, 1 ≤ m ≤ M such that ζj,m(ζ) 6= 0. Choose the smallest such and m
define

U(ζ) =
ζj,m(ζ)°°°ζj,m(ζ)°°°l2 .

Thus, U(ζ) is well defined and
°°°U(ζ)°°°

l2
= 1 for a.e. ζ ∈ Tn. We write

U(ζ) = {uλ(ζ) : ζ ∈ Λ}. Now, define ĝ(ζ) = uλ(ζ − λ), where k is the
unique integer in Λ such that ζ ∈ Tn + λ. This defines ĝ on Λ.We first
show that g ∈ L2(Λ) and {g(x − λ) : λ ∈ Λ} is an orthonormal system in
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L2(Λ). We have °°°ĝ°°°2
2
=

Z
Λ
|ĝ(ζ)|2 dζ

=

Z
Tn

X
λ∈Λ

|ĝ(ζ + λ)|2 dζ

=
X
λ∈Λ

Z
Tn
|uλ(ζ)|2 dζ

=

Z
Tn

°°°U(ζ)°°°2
l2
dζ

= 1.

Thus g ∈ L2(Λ). Also,

X
λ∈Λ

|ĝ(ζ + λ)|2 =
X
λ∈Λ

|uλ(ζ)|2 =
°°°U(ζ)°°°2

l2
= 1.(3.10)

This is equivalent to the fact that {g(x − λ) : λ ∈ Λ} is an orthonor-
mal system. We now define V #0 = span{g(x − λ) : λ ∈ Λ}. Let Wj =
span{fm,j,λ : 1 ≤ ≤ 2N − 1, 1 ≤ m ≤ M,λ ∈ Λ} and V0 = ⊕j<0Wj .

If we can show that V #0 = V0, then it will follow that {Vj : j ∈ Z} is the
required MRA .

We first show that V #0 ⊂ V0. It is sufficient to verify that fm,j,λ ∈
V #0 , λ ∈ Λ, j < 0, 1 ≤ ≤ 2N − 1, 1 ≤ m ≤M . For each j ≥ 1, there exists
a measurable function νj,m on Tn such that ζj,m(ζ) = νj,m(ζ)U(ζ) for a.e.
ζ ∈ Tn. That is,

f̂
³
A∗jB∗m(ζ + λ)

´
= νj,m(ζ)ĝ(ζ + λ) for all ζ ∈ Tn, λ ∈ Λ.

Therefore, by (3.10), for a.e. ζ ∈ Tn, we have

X
λ∈Λ

¯̄̄
f̂
³
A∗jB∗m(ζ + λ)

´¯̄̄2
=
X
λ∈Λ

¯̄̄
νj,m(ζ)

¯̄̄2
|ĝ(ζ + λ)|2 =

¯̄̄
νj,m(ζ)

¯̄̄2
.(3.11)

This shows that νj,m ∈ L2(Tn) so that we can write its Fourier series

expansion. Thus, for j ≥ 1, there exists {am,j,λ : λ ∈ Λ} ∈ l2(Λ) such that
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νj,m(ζ) =
P

λ∈Λ am,j,λe
−2πiλζ , with convergence in L2(Tn). Extending νj,m

integer periodically, we have

f̂
³
A∗jB∗mζ

´
= νj,m(ζ)ĝ(ζ), for a. e. ζ ∈ Λ, j ≥ 1.(3.12)

Taking inverse Fourier transform, we get

f−j,−m,0(x) = qj/2
X
λ∈Λ

am,j,λg(ζ − λ), j ≥ 1.

Hence, f−j,−m,0 ∈ V #0 for j ≥ 1. Moreover, since V #0 is invariant under

translations by k, λ ∈ Λ, we have fm,j,λ ∈ V #0 , j < 0, λ ∈ Λ, 1 ≤ ≤
2N − 1, 1 ≤ m ≤M .

To show the reverse inclusion, it suffices to show that V #0 ⊥ Wj , for
j ≥ 0. For j ≥ 0, λ ∈ Λ, 1 ≤ ≤ 2N − 1, 1 ≤ m ≤M , we haveD

g, fm,j,λ

E
=

D
ĝ, f̂m,j,λ

E
=

Z
Λ
ĝ(ζ)q−j/2f̂

³
A∗jB∗mζ

´
e−2πiA

∗jB∗mλζdζ

= qj/2
Z
Λ
ĝ(B∗−mA∗−jζ)f̂ (ζ)e−2πiλζdζ

= qj/2
Z
Tn

X
n∈Λ

ĝ(B∗−mA∗−j(ζ + n))f̂ (ζ + n)e−2πiλζdζ.

(3.13)

Using Equation (3.11), we get

2N−1X
=1

MX
m=1

∞X
j=1

¯̄̄
νj,m(ζ)

¯̄̄2
=
2N−1X
=1

MX
m=1

∞X
j=1

X
λ∈Λ

¯̄̄
f̂
³
A∗jB∗m(ζ + λ)

´¯̄̄2
= 1

for a. e. ζ ∈ Λ.

Hence, for such ζ and for all j ≥ 0, there exists j0 ≥ 1 such that

νj,m

³
A∗jB∗mζ

´
6= 0. Thus, (3.12) implies that

f̂
³
A∗j+j0B∗mζ

´
= νj0,m

³
B∗−mA∗−jζ

´
ĝ
³
B∗−mA∗−jζ

´
. Therefore, for λ ∈

Λ, we get

f̂
³
A∗j+j0B∗m(ζ + λ)

´
= νj0,m

³
B∗−mA∗−j(ζ + λ)

´
ĝ
³
B∗−mA∗−j(ζ + λ)

´
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Using integral periodicity of νj0 , we get

ĝ
³
B∗−mA∗−j(ζ + λ)

´
=

1

νj0,m

³
B∗−mA∗−jζ

´ f̂ ³A∗j+j0B∗m(ζ + λ)
´
.

Therefore, using Lemma 2.6, for any h with 1 ≤ h ≤ 2N − 1 and for
1 ≤ m ≤M , we have

X
λ∈Λ

ĝ
³
B∗−mA∗−j(ζ + λ)

´
f̂(ζ + λ) =

1

νj0,m

³
B∗−mA∗−jζ

´
P

λ∈Λ f̂
³
A∗j+j0B∗m(ζ + λ)

´
f̂(ζ + λ)

= 0,

since j + j0 ≥ 1. Substituting this in (3.12), we get
D
g, fm,j,λ

E
= 0 for

j ≥ 0, λ ∈ Λ, 1 ≤ ≤ 2N − 1, 1 ≤ m ≤ M . From this we conclude that
V #0 ⊂ V0. This completes the proof of theorem.
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