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Abstract

In this study, the notion of isotopy of generalized Bol loop is char-
acterized. A loop isotope of a σ-generalized Bol loop is shown to be a
σ0-generalized Bol loop if σ0 fixes its (isotope) identity element where
σ0 is some conjugate of σ. A loop isotope of a σ-generalized Bol loop
is shown to be a σ0-generalized Bol loop if and only if the image of the
isotope’s identity element under σ0 is right nuclear (where σ0 is some
conjugate of σ). It is shown that a generalized Bol loop can be con-
structed using a group and a subgroup of it. A right conjugacy closed
σ-generalized Bol loop is shown to be a σ-generalized right central loop.
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1. Introduction

Let L be a non-empty set. Define a binary operation (·) on L : If x · y ∈ L
for all x, y ∈ L, (L, ·) is called a groupoid. Let (L, ·) be a groupoid and let
a be a fixed element in L, then the left and right translations La and Ra of
a are respectively defined by xLa = a · x and xRa = x · a for all x ∈ L. If
the equations:

a · x = b and y · a = b

have unique solutions for x and y respectively, then (L, ·) is called a quasi-
group. It can now be seen that a groupoid (L, ·) is a quasigroup if its left
and right translation mappings are permutations. In a quasigroup (L, ·),
the self maps Jρ : x 7→ xρ and Jλ : x 7→ xλ are called the right and left
inverse maps respectively such that x · xρ = eρ and xλ · x = eλ where xρ

and xλ are called the right and left inverse elements of x ∈ L respectively.
Here, eρ ∈ L and eλ ∈ L satisfy the relations x · eρ = x and eλ · x = x for
all x ∈ L and are respectively called the right and left identity elements.
Now, if eλ = eρ = e, then e ∈ L is called the identity element and (L, ·) is
called a loop. In case xλ = xρ, then, we simply write xλ = xρ = x−1 and
refer to x−1 as the inverse of x. In what follows, we shall write xy instead
of x · y and stipulate that · has lower priority than juxtaposition among
factors to be multiplied. For example, x · yz = xy · z or x(yz) = (xy)z
means x · (y · z) = (x · y) · z for all x, y, z ∈ L.

A loop (L, ·) is called a (right) Bol loop if it satisfies the identity

(xy · z)y = x(yz · y).(1.1)

A loop (L, ·) is called a left Bol loop if it satisfies the identity

y(z · yx) = (y · zy)x.(1.2)

A loop (L, ·) is called a Moufang loop if it satisfies the identity

(xy) · (zx) = (x · yz)x.(1.3)

A loop (L, ·) is called a right inverse property loop (RIPL) if it satisfies
right inverse property (RIP)

(yx)xρ = y(1.4)

A loop (L, ·) is called a left inverse property loop (LIPL) if it satisfies left
inverse property (LIP)

xλ(xy) = y(1.5)
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A loop (L, ·) is called an automorphic inverse property loop (AIPL) if
it satisfies automorphic inverse property (AIP)

(xy)−1 = x−1y−1.(1.6)

A loop (L, ·) is called a right conjugacy closed loop (RCCL) if it satisfies
the identity

yx · (x\z)x = (yz)x.(1.7)

A loop (L, ·) is called a (left or right) Bruck loop or a K-loop if it is
both a Bol loop and either a AIPL or obeys the identity xy2 · x = (yx)2.

Let (L, ·) be a loop with a single valued self-map σ : x −→ σ(x):

The triple (L, ·, σ) is called a σ-generalized (right) Bol loop or simply
a generalized (right) Bol loop or right B-loop (L, ·) (where there is no
confusion on the self map σ because we are just being silent on the self
map σ) if it satisfies the identity

(xy · z)σ(y) = x(yz · σ(y))(1.8)

(L, ·, σ) is called a σ-generalized left Bol loop or simply a generalized left
Bol loop or left B-loop (L, ·) (where there is no confusion on the self map σ
because we are just being silent on the self map σ) if it satisfies the identity

σ(y)(z · yx) = (σ(y) · zy)x(1.9)

(L, ·, σ) is called a σ-generalized right central loop or simply a generalized
right central loop or generalized RC-loop (L, ·) (where there is no confusion
on the self map σ because we are just being silent on the self map σ) if it
satisfies the identity

(yx · σ(x))z = y(xσ(x) · z)(1.10)

(L, ·, σ) = (L, ·) is called an M-loop if it satisfies the identity

(xy) · (zσ(x)) = (x · yz)σ(x)(1.11)

The right nucleus of (L, ·) is defined by Nρ(L, ·) = {x ∈ L | zy · x =
z · yx ∀ y, z ∈ L}.

Consider (G, ·) and (H, ◦) being two distinct groupoids(quasigroups,
loops). Let A,B and C be three bijective mappings that map G onto H.
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The triple α = (A,B,C) is called an isotopism of (G, ·) onto (H, ◦) if and
only if

xA ◦ yB = (x · y)C ∀ x, y ∈ G.

If (G, ·) = (H, ◦), then the triple α = (A,B,C) of bijections on (G, ·) is
called an autotopism of the groupoid(quasigroup, loop) (G, ·). Such triples
form a group AUT (G, ·) called the autotopism group of (G, ·). Furthermore,
ifA = B = C, thenA is called an automorphism of the groupoid(quasigroup,
loop) (G, ·). Such bijections form a group AUM(G, ·) called the automor-
phism group of (G, ·).

For an overview of the theory of loops, readers may check [18, 36].

The birth of Bol loops can be traced back to Gerrit Bol [8] in 1937 when
he established the relationship between Bol loops and Moufang loops, the
latter which was discovered by Moufang Ruth [26]. Thereafter, a theory of
Bol loops was evolved through the Ph.D. thesis of Robinson [31] in 1964
where he studied the algebraic properties of Bol loops, Moufang loops and
Bruck loops, isotopy of Bol loop and some other notions on Bol loops.
Some later results on Bol loops and Bruck loops can be found in Bruck [9],
Solarin [41], Adéńiran and Akinleye [2], Bruck [10], Burn [11], Gerrit Bol
[8], Blaschke and Bol [7], Sharma [32, 33], Adéńiran and Solarin [4]. In the
1980s, the study and construction of finite Bol loops caught the attention
of many researchers among which are Burn [11, 12, 13], Solarin and Sharma
[34, 37, 38, 39] and others like Chein and Goodaire [14, 15, 16], Foguel at.
al. [17], Kinyon and Phillips [24, 25] in the present millennium. One of
the most important results in the theory of Bol loops is the solution of the
open problem on the existence of a simple Bol loop which was finally laid
to rest by Nagy [27, 28, 29]. To any right Bol loop or left Bol loop, there
corresponds a middle Bol loop and vice versa. Jaiyéo. lá and David [20],
Jaiyéo. lá et al. [21, 22], Syrbu and Drapal [42], Syrbu and Grecu [43] and
Syrbu [44] have studied the algebraic properties and structure of middle
Bol loop.

In 1978, Sharma [34], Sharma and Sabinin [35] introduced and studied
the algebraic properties of the notion of half-Bol loops(left B-lops). There-
after, Adéńiran [1], Adéńiran and Akinleye [2], Adéńiran and Solarin [5]
studied the algebraic properties of generalized Bol loops. Also, Ajmal [6]
introduced and studied the algebraic properties of generalized Bol loops
and their relationship with M-loops. The latest study on the holomorph of
generalized Bol loops can be found in Adéńiran et. al. [3] and Jaiyéo. lá and
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Popoola [19]. Osoba and Jaiyéo. lá [30] recently announced some algebraic
connections between right and middle Bol loops and their cores.

Some of their results are highlighted below.

Theorem 1.1. (Adéníran and Akinleye [2])

If (L, ·, σ) is a generalized Bol loop, then:

1. (L, ·) is a RIPL.

2. xλ = xρ for all x ∈ L.

3. Ry·σ(y) = RyRσ(y) for all y ∈ L.

4. [xy · σ(x)]−1 = (σ(x))−1y−1 · x−1 for all x, y ∈ L.

5. (Ry−1 , LyRσ(y), Rσ(y)) ∈ AUT (L, ·) for all y ∈ L.

Theorem 1.2. (Sharma [34])
If (L, ·, σ) is a half Bol loop, then:

1. (L, ·) is a LIPL.

2. xλ = xρ for all x ∈ L.

3. L(x)L(σ(x)) = L(σ(x)x) for all x ∈ L.

4. (σ(x) · yx)−1 = x−1 · y−1(σ(x))−1 for all x, y ∈ L.

5. (R(x)L(σ(x)), L(x)−1 , L(σ(x))), (R(σ(x))L(x)−1 , Lσ(x), L(x)−1) ∈ AUT (L, ·)
for all x ∈ L.

Theorem 1.3. (Ajmal [6])

Let (L, ·) be a loop. The following statements are equivalent:

1. (L, ·, σ) is an M-loop;

2. (L, ·, σ) is both a left B-loop and a right B-loop;

3. (L, ·, σ) is a right B-loop and satisfies the LIP;

4. (L, ·, σ) is a left B-loop and satisfies the RIP;

Theorem 1.4. (Ajmal [6])

Every isotope of a right B-loop with the LIP is a right B-loop.
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Example 1.1. (Sharma [34])
Let R be a ring of characteristic 3 which possesses at least one set of

elements a, b, c so that ca2b+caba+cba2 6= cb2a+cbab+cab2. Let Q = R×R
and define

(u, f) · (v, g) = (u+ v, f + g + vu3)

for all (u, f), (v, g) ∈ Q. (Q, ◦) is an half-Bol loop with σ(x) = x ◦ x for all
x ∈ Q which is not a left Bol loop.

For instance, if R is the ring of all 2× 2 matrices taken over the field of
three elements. Then (Q, ·) is a loop which is not a left Bol loop but which
is a half-Bol loop with σ : x 7→ x2.

Bruck loops have applications in special relativity (see Ungar [6], 2002).
Left Bruck loops are equivalent to Ungar’s 2002 gyrocommutative gyrogroups,
even though the two structures are defined differently. K-loops are non-
associative generalizations of abelian groups. Over the years, a few papers
have been written on K-loops, but Bol loops have tremendous attention.
There was a twist after Ungar showed that the set of admissible velocities
with the addition of velocities in special relativity forms a K-loop. Ungars
discovery sparked a rapid development of the theory of K-loops (Kiechle
[6]).

Besides the application to special relativity, another important source of
motivation for the study of K-loops is the problem of existence of a proper
neardomain. This question is closely related with the structure of sharply
2-transitive groups. Frobenius groups with many involutions seem to be a
reasonable generalization of sharply 2-transitive groups. Hence, since Bol
loops have been generalized and the study of generalized Bol loops has
already began, then it is important to continue the study of generalized
Bol loops and initiate the study of generalized Bruck loops by first of all
characterizing them with the possibility of finding a relationship between
the self mapping σ; the generalizing factor in a σ-generalized Bol loop
and the gyration (gyrator) in a gyrogroup. It would be recalled that in
gyrogroup, the gyrators are actually left inner automorphisms. In fact, one
of our results here show that the loop isotope H of a given generalized Bol
loop G is a σ-generalized Bol loop if σ fixes the identity element in H;
hence a σ ∈ AUM(H) is a pleasant choice.

In this study, the notion of isotopy of generalized Bol loop is charac-
terized. A loop isotope of a σ-generalized Bol loop is shown to be a σ0-
generalized Bol loop if σ0 fixes its (isotope) identity element where σ0 is
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some conjugate of σ. A loop isotope of a σ-generalized Bol loop is shown
to be a σ0-generalized Bol loop if and only if the image of the isotope’s iden-
tity element under σ0 is right nuclear (where σ0 is some conjugate of σ). It
is shown that a generalized Bol loop can be constructed using a group and
a subgroup of it. A right conjugacy closed σ-generalized Bol loop is shown
to be a σ-generalized right central loop.

2. Main Results

Theorem 2.1. Let (G, ·, 1, σ) be a σ-generalized Bol loop. Then

1. σ(1) ∈ Nρ(G, ·).

2. If (G, ·, 1, σ) is isomorphic to a loop (H, ∗) under θ, then
³
H, ∗, θσθ−1

´
is a θσθ−1-generalized Bol loop.

3. If (G, ·, σ)
(α, β, I)
−−−−−→
Isotopism

(G, ◦, 1◦), then
³
G, ◦, βσβ−1

´
is a σ0 = βσβ−1-

generalized Bol loop whenever σ0(1◦) = 1◦.

Proof.

1. Substitute y = 1 into (1.8) to get (x · z)σ(1) = x(z · σ(1)), which
implies σ(1) ∈ Nρ(G, ·).

2. If (G, ·, σ)
θ∼= (H, ∗), then (G, ·, σ) is a σ-generalized Bol loop implies

that

[(x · y) · z] · σ(y) = x · [(y · z) · σ(y)]
⇒ θ{[(x · y) · z] · σ(y)} = θ{x · [(y · z) · σ(y)]}

⇒ [(θ(x) ∗ θ(y)) ∗ θ(z)] ∗ θσ(y) = θ(x) ∗ [(θ(y) ∗ θ(z)) ∗ θσ(y)](2.1)

Let θ(x) = x̄, θ(y) = ȳ, then y = θ−1(ȳ), θ(z) = z̄ and substitute into
equation (2.1). So, (G, ·, σ) is a σ-generalized Bol loop implies that

[(x̄ ∗ ȳ) ∗ z̄] ∗ θσθ−1(ȳ) = x̄ ∗ [(ȳ ∗ z̄) ∗ θσθ−1(ȳ)](2.2)

which implies that (H, ∗) is a θσθ−1-generalized Bol loop.
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3. Since x ·y = α(x)◦β(y) and (G, ·, σ) is a σ-generalized Bol loop, then

(xy · z)σ(y) = x(yz · σ(y))

⇐⇒ [(α(x) ◦ β(y)) · z]σ(y) = x · [(α(y) ◦ β(z)) ◦ σ(y)](2.3)

⇐⇒ α[α{(α(x))◦β(y)}◦β(z)]◦βσ(y) = α(x)◦β[α{(α(y))◦β(z)}◦βσ(y)]
(2.4)

Let α(x) = x̄, β(y) = ȳ then y = β−1(ȳ), β(z) = z̄ and use these in
equation (2.1) to get

α[α(x̄ ◦ ȳ) ◦ z̄] ◦ βσβ−1(ȳ) = x̄ ◦ β[α{αβ−1(ȳ) ◦ z̄} ◦ βσβ−1(ȳ)](2.5)

Put x̄ = 1◦ in equation (2.5), to get

α[(α(ȳ) ◦ z̄)] ◦ βσβ−1(ȳ) = β[α{αβ−1(ȳ) ◦ z̄} ◦ βσβ−1(ȳ)](2.6)

By substituting (2.6) into the right side of equation (2.5), we have

α[α(x̄ ◦ ȳ) ◦ z̄] ◦ βσβ−1(ȳ) = x̄ ◦ [α(α(ȳ) ◦ z̄) ◦ βσβ−1(ȳ)](2.7)

Putting ȳ = 1◦ and σ1 = βσβ−1 in equation (2.7), we have

α(α(x̄) ◦ z̄) ◦ σ1(1◦) = x̄ ◦ [α(α(1◦) ◦ z̄) ◦ σ1(1◦)](2.8)

which gives

α(α(x̄) ◦ z̄) = x̄ ◦ [α(α(1◦) ◦ z̄)](2.9)

Let

α(α(1◦) ◦ z̄) = δ(z̄)(2.10)

where δ is some bijections on G. By substituting equation (2.10) in
equation (2.9), we get

α[α(x̄) ◦ z̄] = x̄ ◦ δ(z̄)(2.11)
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By substituting equation (2.11) in (2.7), we get

[(x̄ ◦ ȳ) ◦ δ(z̄)] ◦ σ1(ȳ) = x̄ ◦ [(ȳ ◦ δ(z̄)) ◦ σ1(ȳ)](2.12)

Replacing x̄ by x,ȳ by y,δ(z̄) by z in equation (2.12), we have

[(x ◦ y) ◦ z] ◦ σ1(y) = x ◦ [(y ◦ z) ◦ σ1(y)(2.13)

which means that (G, ◦, σ1) is a σ1-generalized Bol loop.

2

Corollary 2.1. Let (G, ·, σ) be a σ-generalized Bol loop. A loop isotope
(H, ∗, σ2) of (G, ·, σ) is a σ2-generalized Bol loop if σ2(eH) = eH where σ2
is some conjugate of σ.

Proof. Let (H, ∗, σ2) be a loop isotope of a σ-generalized Bol loop
(G, ·, σ) and let the triple (A,B,C) be an isotopism from (G, ·, σ) to (H, ∗, σ2).
There exists a principal isotope (G, ◦) of (G, ·) under the isotopism (α, β, I)
such that (G, ◦)

γ∼= (H, ∗). By 2. of Theorem 2.1, (G, ◦, σ1) is a σ1-
generalized Bol loop if and only if

[(x̄ ∗ ȳ) ∗ z̄] ∗ γσ1γ−1(ȳ) = x̄ ∗ [(ȳ ∗ z̄) ∗ γσ1γ−1(ȳ)](2.14)

if and only if (H, ∗, σ2) is a σ2-generalized Bol loop with a single valued self
map σ2 = γσ1γ

−1 on H.

Let 1◦ and 1∗ be the identity elements of (G, ◦) and (H, ∗) respec-
tively. Then, given that σ2(1∗) = 1∗, we argue that σ1(1◦) = γ−1σ2γ(1◦) =
γ−1σ2(1∗) = γ−1(1∗) = 1◦. By 3. of Theorem 2.1, (G, ◦, σ1) is a σ1-
generalized Bol loop. Therefore (H, ∗, σ2) is a σ2-generalized Bol loop.
2

Corollary 2.2. Let (G, ·, σ) be a σ-generalized Bol loop such that σ ∈

AUM(G, ·). If (G, ·, 1)
(α, β, I)
−−−−−→
Isotopism

(G, ◦, 1◦) such that β(1) = 1◦, then³
G, ◦, βσβ−1

´
is a βσβ−1-generalized Bol loop.
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Proof. This follows from 3. of Theorem 2.1. 2

Corollary 2.3. Let (G, ·, σ) be a σ-generalized Bol loop such that σ ∈

Inn(G, ·). If (G, ·, 1)
(α, β, I)
−−−−−→
Isotopism

(G, ◦, 1◦) such that β(1) = 1◦, then
³
G, ◦, βσβ−1

´
is a βσβ−1-generalized Bol loop.

Proof. Inn(H) is the inner mapping group of H. The rest follows from
3. of Theorem 2.1. 2

Corollary 2.4. Let (G, ·, σ) be a σ-generalized Bol loop such that
σ = R(x,y) or σ = L(x,y) or σ = T(x) for any fixed x, y ∈ H. If

(G, ·, 1)
(α, β, I)
−−−−−→
Isotopism

(G, ◦, 1◦) such that β(1) = 1◦, then
³
G, ◦, βσβ−1

´
is a

βσβ−1-generalized Bol loop.

Proof. R(x,y), L(x,y), T(x) are the right, left and middle inner mappings
of (G, ·). The rest follows from 3. Theorem 2.1. 2

Theorem 2.2. Let G be a σ-generalized Bol loop. Any loop isotope H
of G with identity element e is a ω-generalized Bol loop if and only if
ω(e) ∈ Nρ(H) where ω is some conjugate of σ.

Proof. Let (H, ∗) be an arbitrary loop isotope of a generalized Bol loop
(G, ·, σ) and let the triple (A,B,C) be an isotopism from (G, ·) to (H, ∗).
There exists a principal isotope (G, ◦) of (G, ·) under the isotopism (α, β, I)
such that (G, ◦)

γ∼= (H, ∗). Let 1◦ and 1∗ be the identity elements of (G, ◦)
and (H, ∗) respectively.

Since x · y = α(x) ◦ β(y) and (G, ·, σ) is a σ-generalized Bol loop, then
we shall now follow the procedure of the proof of Theorem (2.1) from (2.7)
to (2.13). At (2.8), we assume that σ1(1◦) ∈ Nρ(G, ◦) which gives (2.13)
where σ1 = βσβ−1. Thus, (G, ◦, σ1) is a σ1-generalized Bol loop. Also
note that σ2 = γσ1γ

−1 and so σ2 = γβσ(γβ)−1. Therefore (H, ∗, σ2) is a
σ2-generalized Bol loop. In fact, (G, ◦, σ1) is a σ1-generalized Bol loop if
and only if (H, ∗, σ2) is a σ2-generalized Bol loop.

Now, assuming that (G, ◦, σ1) is a σ1-generalized Bol loop, then

[(x ◦ y) ◦ z] ◦ σ1(y) = x ◦ [(y ◦ z) ◦ σ1(y)](2.15)
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Substitute y = 1◦ in (2.15) to get (x◦z)◦σ1(1◦) = x◦ (z ◦σ1(1◦)) which
implies that σ1(1◦) ∈ Nρ(G, ◦).

Thus, we have shown that (G, ◦, σ1) is a σ1-generalized Bol loop if and
only if (H, ∗, σ2) is a σ2-generalized Bol loop if and only if σ1(1◦) ∈ Nρ(G, ◦).

Recall that (G, ◦)
γ∼= (H, ∗). So, σ1(1◦) ∈ Nρ(G, ◦) ⇔ γσ1(1◦) ∈

Nρ(H, ∗)
⇔ σ2γ(1◦) ∈ Nρ(H, ∗)⇔ σ2(1∗) ∈ Nρ(H, ∗).

Therefore, (H, ∗, σ2) is a σ2-generalized Bol loop if and only if σ2(1∗) ∈
Nρ(H, ∗). 2

Corollary 2.5. Let G be a σ-generalized Bol loop. Any loop isotope H
of G is a σ0-generalized Bol loop if and only if g\σ(g) ∈ Nρ(G) for some
g ∈ G where σ0 is some conjugate of σ.

Proof. From Theorem 2.2, (G, ◦, σ1) is a σ1-generalized Bol loop if
and only if (H, ∗, σ2) is a σ2-generalized Bol loop if and only if σ1(1◦) ∈
Nρ(G, ◦). It is known that (α, β, I) = (Rg, Lf , I) for some f, g ∈ G. Thus,

σ1 = βσβ−1 = LfσL
−1
f . It is also known that Nρ(G, ·)

(LgLf)∼= Nρ(G, ◦),

which implies that Nρ(G, ◦)
(LgLf)

−1

∼= Nρ(G, ·).
So, σ1(1◦) ∈ Nρ(G, ◦) ⇔ LfσL

−1
f (1◦) = LfσL

−1
f (fg) ∈ Nρ(G, ◦) ⇔

fσ(g) ∈ Nρ(G, ◦)⇔ [fσ(g)]L−1f L−1g ∈ Nρ(G, ·)⇔ g\σ(g) ∈ Nρ(G). 2

Theorem 2.3. Let H be a subgroup of a group G and let < g1, g2 >=
g1g2g

−1
1 g−12 , [g1, g2] = g−11 g−12 g1g2 and gg12 = g−11 g2g1 denote the left com-

mutator, right commutator of g1, g2 ∈ G and conjugate of g2 by g1 respec-
tively. Define 0◦0 on H × G such that for all x, y ∈ A, x = (h1, g1) and
y = (h2, g2),

x ◦ y = (h1, g1) ◦ (h2, g2) = (h1h2, h2g1h−12 g2)(2.16)

Let σ : A → A ↑ σ(h, g) = (δ1h, δ2g) where δ1, δ2 : G −→ G are
single valued mappings. The following are true.

1. (A, ◦) is a group if and only if < h, h0 > h0hg = h0hg
D
h−1, h0−1

E
for

all h, h0 ∈ H and g ∈ G.

2. If H is an abelian subgroup of G, then (A, ◦) is a group.
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3. (A, ◦, σ) is a σ-generalized Bol loop if and only if
∙
g,
³
δ1(h

0)h0h
´−1¸

=∙
g,
³
hh0δ1(h0)

´−1¸
for all h, h0 ∈ H and g ∈ G.

4. If for all h1, h2 ∈ H,

< h1, h2 >=
D
(δ1h2)

−1, h2h1
E

(2.17)

then, (A, ◦, σ) is a σ-generalized Bol loop.

Proof.

1. It is easy to check that (A, ◦) is a loop with identity (e, e), where
e is the identity element of G. Let x = (h1, g1), y = (h2, g2) and
z = (h3, g3) be elements of A. Then,

x ◦ (y ◦ z) = (h1, g1) ◦ [(h2, g2) ◦ (h3, g3)]
= (h1, g1) ◦ [h2g3, h3g2h−13 g3]

= (h1h2h3, h2h3g1(h2h3)
−1h3g2h

−1
3 g3)

= (h1h2h3, h2h3g1h
−1
3 h−12 h3g2h

−1
3 g3)(2.18)

Also,

(x ◦ y) ◦ z = [(h1, g1) ◦ (h2, g2)] ◦ (h3, g3)
= (h1h2, h2g1h

−1
2 g2) ◦ (h3, g3)

= (h1h2h3, h3h2g1h
−1
2 g2h

−1
3 g3).(2.19)

For all h, h0 ∈ H, note that [h0, h] =
D
h0−1, h−1

E
. So by (2.18) and

(2.19), (A, ◦) is a group if and only if
x ◦ (y ◦ z) = (x ◦ y) ◦ z ⇔ h2h3g1h

−1
3 h−12 h3 = h3h2g1h

−1
2 ⇔ h3h2

= h2h3g1h
−1
3 h−12 h3h2g

−1
1 ⇔< h3, h2 > h2h3

= h2h3g1[h3, h2]g
−1
1 ⇔< h3, h2 > h2h3g1 = h2h3g1

D
h−13 , h−12

E
2. This follows from 1.

3. Given that σ(h, g) = (δ1h, δ2g) where δ1, δ2 : G −→ G are single
valued mappings:
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x ◦ y = (h1 ◦ g1) ◦ (h2, g2) = (h1h2, h2g1h−12 g2),

[(x ◦ y) ◦ z] = (h1h2, h2g1h−12 g2) ◦ (h3, g3)
= (h1h2h3, h3h2g1h

−1
2 g2h

−1
3 g3)[(x ◦ y) ◦ z] ◦ σ(y)

= [(x ◦ y) ◦ z] ◦ σ(h2, g2)
= [(x ◦ y) ◦ z] ◦ (δ1h2, δ2g2)
= [h1h2h3, h3h2g1h

−1
2 g2h

−1
3 g3] ◦ (δ1h2, δ2g2)

= [h1h2h3(δ1h2), (δ1h2)h3h2g1h
−1
2 g2h

−1
3 g3(δ1h2)

−1(δ2g2)](2.20)

Similarly,

y ◦ z = (h2, g2) ◦ (h3, g3) = (h2h3, h3g2h−13 g3).
(y ◦ z) ◦ σ(y) = (y ◦ z) ◦ σ(h2, y2) = (y ◦ z) ◦ (δh2, δg2)
= (h2h3, h3g2h

−1
3 g3 ◦ (δ1h2, δ2g2)

=

µ
h2h3(δ1h2), (δh2)h3g2h

−1
3 g3(δ1h2)

−1(δ2g2)
¶
.

x ◦ [(y ◦ z) ◦ σ(y)] = (h1, g1) ◦ [(y ◦ z) ◦ σ(y)]
= (h1, g1) ◦

µ
h2h3(δ1h2), (δ1h2)h3g2h

−1
3 g3(δ1h2)

−1(δ2g2)
¶

=

µ
h1h2h3(δ1h2), h2h3(δ1h2)g1(h2h3(δ1h2))

−1(δ1h2)h3g2h
−1
3

g3(δ1h2)
−1(δ2g2)

¶

=

µ
h1h2h3(δ1h2), h2h3(δ1h2)g1(δ1h2)

−1h−13 h−12 (δ1h2)h3g2h
−1
3

g3(δ1h2)
−1(δ2g2)

¶
(2.21)

(A, ◦, σ) is a σ-generalized Bol loop if and only if (2.20) and (2.21)
are equal. This is true if and only if

(δ1h2)h3h2g1h
−1
2 g2h

−1
3 g3(δ1h2)

−1(δ2g2) =
h2h3(δ1h2)g1(δ1h2)

−1h−13 h−12 (δ1h2)h3g2h
−1
3 g3(δ1h2)

−1(δ2g2)⇔
(δ1h2)h3h2g1h

−1
2 = h2h3(δ1h2)g1(δ1h2)

−1h−13 h−12 (δ1h2)h3 =
h2h3(δ1h2)g1[h2h3(δ1h2)]

−1(δ1h2)h3 ⇔
(δ1h2)h3h2g1h

−1
2 h−13 (δ1h2)

−1 = h2h3(δ1h2)g1[h2h3(δ1h2)]
−1 ⇔

(δ1h2)h3h2g1[(δ1h2)h3h2]
−1 = h2h3(δ1h2)g1[h2h3(δ1h2)]

−1(2.22)

g
((δ1h2)h3h2)−1

1 = g
(h2h3(δ1h2))−1

1 ⇔ g1
h
g1, ((δ1h2)h3h2)

−1
i

= g1
h
g1, (h2h3(δ1h2))

−1
i
⇔
h
g1, ((δ1h2)h3h2)

−1
i
=
h
g1, (h2h3(δ1h2))

−1
i
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4. Equation (2.22) is true if

(δ1h2)h3h2 = h2h3(δ1h2)⇔ h3h2 = (δ1h2)
−1(h2h3)(δ1h2)⇔

h3h2h
−1
3 h−12 = (δ1h2)

−1(h2h3)(δ1h2)h
−1
3 h−12

= (δ1h2)
−1(h2h3)(δ1h2)(h2h3)−1 ⇔

< h3, h2 >=
D
(δ1h2)

−1, h2h3
E

(2.23)

Therefore, (A, ◦, σ) is a σ-generalized Bol loop.

2

Theorem 2.4. Let H be a subgroup of a group G and A = H×G. Define
0◦0 on H ×G such that for all x, y ∈ A, x = (h1, g1) and y = (h2, g2),

x ◦ y = (h1, g1) ◦ (h2, g2) = (h1h2, h2g1h−12 g2)(2.24)

Let σ : A→ A ↑ σ(h, g) = (δ1h, δ2g) where δ1, δ2 : G −→ G are single
valued mappings. Then, (A, ◦, σ) is a σ-generalized Bol loop if δ1 fixes the
elements of H pointwisely.

Proof. The proof is similar to the proof of Theorem 2.3 up till equation
(2.22). 2

Theorem 2.5. Let H be a subgroup of a group G,
AUMH(G) = {α ∈ AUM(G)|xα = x ∀ x ∈ H}, GH = {x ∈ G|xα =

x ∀ α ∈ AUMH(G)},
A = GH × G and B = H × G. Define 0◦0 on A such that for all

x, y ∈ A, x = (h1, g1) and y = (h2, g2),

x ◦ y = (h1, g1) ◦ (h2, g2) = (h1h2, h2g1h−12 g2)(2.25)

Let σ : A → A ↑ σ(h, g) = (δ1h, δ2g) where δ1, δ2 : G −→ G are
single valued mappings and δ1 ∈ AUMH(G). Then,

1. AUMH(G) ≤ AUM(G) and AUMH(G) is a H-automorphism group
of G.

2. H ≤ GH ≤ G and GH is a fixed subgroup of AUMH(G).

3. (A, ◦, σ) and (B, ◦, σ) are σ-generalized Bol loops.

4. (B, ◦, σ) is a σ-generalized Bol subloop of (A, ◦, σ).
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Proof.

1. and 2. are easy. The proof of 3. follows from Theorem 2.4. 2

Theorem 2.6. An RCC σ-generalized Bol loop is a σ-generalized RC-loop.

Proof. Let (Q, ·, σ) be an RCC σ-generalized Bol loop, then A =
(Rx, L

−1
x Rx, Rx), B = (Rx−1 , LxRσ(x), Rσ(x)) ∈ AUT (Q, ·) for all x ∈ Q.

Thus, we have

C = AB = (Rx, L
−1
x Rx, Rx)(R

−1
x LxRσ(x), Rσ(x))

= (RxRx−1 , L
−1
x RxLxRσ(x), RxRσ(x))

= (I, L−1x RxLxRσ(x), RxRσ(x)) ∈ AUT (Q, ·) forall x ∈ Q.

Since Q is a RIPL, then

Cµ = (RxRσ(x), JρL
−1
x RxLxRσ(x)Jρ, I) ∈ AUT (Q, ·).(2.26)

which implies that for all y, z ∈ Q,

yRxRσ(x) · zJρL−1x RxLxRσ(x)Jρ = yz(2.27)

Put y = e in (2.27),
eRxRσ(x) · zJρL−1x RxLxRσ(x)Jρ = z =⇒ x · σ(x) · zJρL−1x RxLxRρ(x)Jρ
= z =⇒ zJρL

−1
x RxLxRσ(x)JρL(x·σ(x))

= z =⇒ zJρL
−1
x RxLxRσ(x)Jρ = zL−1(x·σ(x)) =⇒

JρL
−1
x RxLxRσ(x)Jρ = L−1(x·σ(x))(2.28)

By putting (2.28) into (2.26), we have Cµ = (RxRσ(x), L
−1
x·σ(x), I) ∈

AUT (Q, ·) for all x ∈ Q. Thus, yRxRσ(x) · zL−1(x·σ(x)) = yz for all y, z ∈ Q.

Let z = zL−1x·σ(x) then z = zL(x·σ(x)). Then

yRxRσ(x) · z = y · zL(x·σ(x)) =⇒ (yx · σ(x)) · z = y((x · σ(x))z)
which is equation (1.10). Therefore, (Q, ·, σ) is a generalized σ-RC-loop.
2
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