
On the cohomological equation of a linear
contraction ∗

Régis Leclercq
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Abstract

In this paper, we study the discrete cohomological equation of a
contracting linear automorphism A of the Euclidean space Rd. More
precisely, if δ is the cobord operator defined on the Fréchet space E =
Cl(Rd) (0 ≤ l ≤ ∞) by: δ(h) = h− h ◦A, we show that:
• If E = C0(Rd), the range δ (E) of δ has infinite codimension and its
closure is the hyperplane E0 consisting of the elements of E vanishing
at 0. Consequently, H1 (A,E) is infinite dimensional non Hausdorff
topological vector space and then the automorphism A is not cohomo-
logically C0-stable.
• If E = Cl(Rd), with 1 ≤ l ≤ ∞, the space δ (E) coincides with the
closed hyperplane E0. Consequently, the cohomology space H

1 (A,E)
is of dimension 1 and the automorphism A is cohomologically Cl-
stable.
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1. Introduction

Let M be a connected differentiable manifold. The space E = Cl(M) of
Cl functions on M (0 ≤ l ≤ ∞) is a Fréchet space for the Cl topology (the
topology of the uniform convergence of all the derivatives up to the order l,
on compact subsets). A Cl action of a discrete group Γ (supposed of finite
presentation) on M induces a natural action on E given by:

∀γ ∈ Γ, ∀f ∈ E, γ.f = f ◦ γ−1.

This makes E a Γ-module. Then one can consider the cohomolgy H∗(Γ, E)
of the discrete group Γ with values in E.

One can show that H∗(Γ, E) = 0 for ∗ ≥ 1 in the case Γ is finite [6]
or Γ acting freely and properly on M [5]. In the case Γ is generated by a
single element γ we can easily show that the space H1(Γ, E) that we will
denote H1(γ,E) is the Cokernel of the cobord operator:

δ : E → E, f 7→ δ(f) = f − f ◦ γ

The calculation of the Cokernel E/δ(E) of δ amounts to solving the
following equation:

f − f ◦ γ = g where

⎧⎪⎨⎪⎩
f ∈ E is unknown
and
g ∈ E is given

called the cohomological equation associated to the discrete dynamical sys-
tem (M,γ). We say that the automorphism γ :M →M is cohomologically
Cl-stable when δ(E) is a closed subspace of E, that is when the topological
vector space H1(γ,E) = E/δ(E) is Hausdorff [2].

Different works give an idea of what may represent this cohomological
equation in some areas of mathematics. For instance that of D. V. Anosov
[1], A. Avila and A. Kocsard [2], A. Dehghan-Nezhad and A. El Kacimi [3],
Katok [7] and S. Marmi, P. Moussa, J.-C. Yoccoz [8].

In what follows, we study this cohomological equation in the case of a
linear automorphism:

γ : Rd → Rd, x 7→ γ(x) = Ax

which satisfies the following contraction property:

kAk := sup
kxk=1

kAxk < 1.
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(Of course, the vector space Rd (d ∈ N∗) being provided by its canonical
Euclidean structure and its associated norm || · ||.)

We consider the Fréchet space E = Cl(Rd) (0 ≤ l ≤ ∞) and its sub-
space:

E0 = {h ∈ E, | h(0) = 0}
We are interested in the image δ(E) of the cobord operator:

δ : E → E, h 7→ δ(h) = h− h ◦A

and the discrete cohomological equation associated to the dynamical system
(Rd, γ):

(e) f − f ◦ γ = g where

⎧⎪⎨⎪⎩
f ∈ E := Cl(Rd) is unknown
and
g ∈ E is given

The purpose of this work is to establish the following results:

1.1. Theorem

Let E be the Fréchet space E = C0(Rd). Then:

(i) The cohomological equation (e) admits a solution for the data g if and
only if the series

X
k≥0

g ◦Ak converges in E.

In addition, the linear operator S : δ(E)→ E, g 7→ S(g) =
X
k≥0

g ◦Ak

satisfies δ [S(g)] = g for all g ∈ δ(E).

(ii) The range δ (E) of δ has infinite codimension and its closure is the
hyperplane E0 consisting of the elements of E vanishing at 0. Conse-
quently, H1 (A,E) is infinite dimensional non Hausdorff topological
vector space and then the automorphism A is not cohomologically C0-
stable.

1.2. Theorem

Let E be the Fréchet space E = Cl(Rd) where 1 ≤ l ≤ ∞. Then:

(i) The cohomological equation (e) admits a solution for the data g if and
only if g(0) = 0. In other words, the range of the cobord operator
δ : E → E, h 7→ δ(h) = h− h ◦ γ is exactly the subspace E0.
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(ii) The operator δ induces, by restriction, an automorphism of the Fréchet
space E0 having for inverse the operator S : E0 → E0, g 7→ S(g) =X
k≥0

g ◦Ak.

(iii) The cohomology space H1(A,E) = E/δ(E) is of dimension 1. As a
consequence, the automorphism A is cohomologically Cl-stable.

Before starting the proofs of the two theorems above, we recall some
notions - specially in functional analysis - that we will use. Most of them
can be found in Walter Rudin’s book [9].

2. Preliminary notions

2.1. Fréchet spaces in terms of semi-norms

A semi-norm on a K-vector space E (K = R or C) is a function p : E → R
satisfying the two properties: p(x + y) ≤ p(x) + p(y) and p(λx) = |λ|p(x)
for all (x, y) ∈ E ×E and λ ∈ K.
We have, in particular, p(0) = 0 and p(x) ≥ 0 for all x ∈ E but the
separation property ”p(x) = 0⇒ x = 0” is missing for p to be a norm.

It often happens that one has a separating family (pi)i∈I of semi-norms
on E that is to say such as:

∀x ∈ E \ {0}, ∃i ∈ I, pi(x) 6= 0

Such a family of semi-norms provides E with a Hausdorff topological vector
space structure for which the functions pi : E → R are continuous. It
suffices to define a neighborhood of a point u ∈ E as a part of E containing
a subset of the form:

BJ(u) := {x ∈ E | ∀j ∈ J, pj(x− u) < εj} =
\
j∈J

{x ∈ E | pj(x− u) < εj}| {z }
Bj(u,εj)

where J is a finite part of I and εj ∈]0,+∞[ for j ∈ J . We say that E is a
locally convex topological vector space.

In the case of a countable and separating family (pn)n∈N of semi-norms,
we can show that the induced topology by the semi-norms coincides with
that induced by the metric:
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d(x, y) =
+∞X
n=0

1

2n
min (1, pn(x− y)) for (x, y) ∈ E ×E

This metric d is clearly invariant by the translations Tu : E → E, x 7→
x+ u (u ∈ E).

A Fréchet space is a topological vector space E whose topology can be
defined by a countable and separating family of semi-norms (pn)n∈N such
that the metric space (E, d) is complete.

Let’s give examples of Fréchet spaces that we will use in this article:

2.2. Examples

Let Ω be a nonempty open of a space Rd (d ∈ N∗). A sequence (Kn)
of compact subsets of Ω is called exhaustive, if for all n, Kn ⊂ ◦Kn+1

and
[
n∈N

Kn = Ω. One can obtain such a sequence by taking Kn = {x ∈

Rd | kxk ≤ n et d(x,Rd \ Ω) ≥ 1

n
} for n ∈ N∗.

(i) Let E be the vector space Cl(Ω) of real Cl-functions on Ω (l ∈ N).
We can provide this space with a countable and separating fam-
ily (pn)n∈N∗ of semi-norms by considering an exhaustive sequence
(Kn)n∈N∗ of compact subsets of Ω and taking :

pn(f) = max
|α|≤l

µ
max
x∈Kn

|Dαf(x)|
¶

where α = (α1, ..., αd) ∈ Nd, |α| = α1+ ...+αd and D
α = ∂|α|

∂x
α1
1 ···∂xαd

d

.

Moreover, E is a Fréchet space for the topology induced by these
semi-norms.

(ii) Similarly, the vector space E = C∞(Ω) of real C∞-functions on Ω is
a Fréchet space for the topology induced by the family (pn)n∈N∗ of
semi-norms:

pn(f) = max
|α|≤n

µ
max
x∈Kn

|Dαf(x)|
¶

forf ∈ E

These Fréchet structures are independent of the choice of exhaustive se-
quence (Kn).
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2.3. Basic properties

In a Fréchet space E, where the topology is defined by a countable and
separating family (pn)n∈N of semi-norms, we have the following basic as-
sertions:

1. A sequence (uk)k converges to a limit u in E if and only if for any
semi-norm pn, the sequence of real numbers (pn(uk − u))k converges
to zero.

2. A sequence (uk)k is Cauchy sequence in E if and only if, it is for any
semi-norm pn.

3. The absolute convergence of a series
P

k uk (i.e. the convergence of
the series of real numbers

P
k pn(uk) for each semi-norm pn), implies

the convergence of this series in E.

4. If V is a vector subspace of E, with topological vector space structure
induced by that of E, a linear map T : V → E is continuous if and
only if for any semi-norm pn, there exists an integer N ∈ N and a
real constant C > 0 such that

∀u ∈ V, pn (T (u)) ≤ C max
0≤k≤N

(pk(u))

3. proofs of the two main theorems

Let E be the Fréchet space E = Cl(Rd), with 0 ≤ l ≤ ∞. We consider the
discrete cohomological equation in E:

(e) : f − f ◦A = g

and the two linear operators: ∆ : u ∈ E 7−→ u(0) ∈ R and δ : u ∈ E 7−→
u− u ◦A ∈ E.
The closed balls Kn = Bn(0, n) (n ∈ N∗) in Rd form an exhaustive se-
quence of compact subsets of Rd and we can therefore provide, as in Ex-
amples 2.1, the vector space E of its Fréchet structure where the topology
is defined by the separating family of semi-norms (pn)n≥1 such that:

∀n ∈ N∗, ∀u ∈ E, pn(u) = max
|α|≤l

µ
max
x∈Kn

|Dαu(x)|
¶
if E = Cl(Rd)

with 0 ≤ l <∞∀n ∈N∗, ∀u ∈ E, pn(u) = max|α|≤n (maxx∈Kn |Dαu(x)|) if E =
C∞(Rd)
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3.1. Remarks

1. ∀n ∈ N∗, A(Kn) ⊂ Kn. Indeed, ∀x ∈ Kn, kA(x)k ≤ kAk.kxk ≤ kxk
because kAk < 1.

2. The equation (e) admits a solution for the data g, if and only if
g ∈ δ(E).

3. If the equation (e) admits a solution f for the data g, then g(0) =
f(0)− f(0) = 0.

4. If f is a solution of the equation (e), then for all c ∈ R, f + c is also
a solution of (e).

3.2. Lemma

1. Let B = (bij) be a real square matrix of order d. For all l ∈ N, u ∈
Cl(Rd), α ∈ Nd, such as |α| ≤ l, and x ∈ Rd ; We have :

|Dα (u ◦B) (x)| ≤ dlkBk|α|max
|β|≤l

|Dβu(Bx)|

2. For any function g ∈ C0(Rd) which is differentiable at point 0 and
such that g(0) = 0, the function series

X
k

g ◦Ak converge in C0(Rd).

3. The operators ∆ : E → R, u 7→ ∆(u) = u(0) and δ : E → E, u 7→
δ(u) = u− u ◦A are continuous.

Proof of the lemma:

1. Let’s proceed by recurrence on the integer l. The property being true
for l = 0, let’s say it’s true for l then show that it is still true for
l + 1. For that consider an element u ∈ Cl+1(Rd) and a multi-index
α = (α1, ..., αd) ∈ Nd such that |α| = α1 + ...+ αd ≤ l + 1. Since the
property is checked for α = 0, we can assume that 1 ≤ |α| ≤ l + 1.
Moreover, even to swap two components of α, we can assume that
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αd ≥ 1. We then have for all x ∈ Rd,

Dα(u ◦B)(x) =
³

∂
∂x1

´α1
...
³

∂
∂xd

´αd
(u ◦B) (x)

= Dα0

h
∂
∂xd
(u ◦B)

i
(x) with α0 = (α1, α2, ..., αd − 1)

and |α0| = |α|− 1 = l

= Dα0

hPd
i=1 bid

∂u
∂xi
◦B

i
(x)

=
Pd

i=1 bidDα0

h
∂u
∂xi
◦B

i
(x)

So, we have:

|Dα(u ◦B)(x)| =
¯̄̄Pd

i=1 bidDα0

³
∂u
∂xi
◦B

´
(x)
¯̄̄

≤ Pd
i=1 |bid|

¯̄̄
Dα0

³
∂u
∂xi
◦B

´
(x)
¯̄̄

≤ Pd
i=1 |bid|dlkBk|α|−1max|β|≤l

¯̄̄
Dβ

³
∂u
∂xi

´
(Bx)

¯̄̄
(recurrence hypothesis for the ∂u

∂xi
)

≤ Pd
i=1 |bid|dlkBk|α|−1max|β|≤l+1 |Dβu(Bx)|

with |bid| ≤ kBk

≤ dl+1kBk|α|max|β|≤l+1 |Dβu(Bx)|

Which proves that the property is still true to the rank l+ 1. So it’s
true for all l.

2. Let g ∈ C0(Rd) such that g is differentiable in 0 and g(0) = 0. We

consider the sequence (Sn) of partial sums Sn =
nX

k=0

g ◦Ak.

We have lim
x→0

g(x)− dg(0).x

kxk| {z }
ϕ(x)

= 0 where the function ϕ : x 7→ ϕ(x) =

g(x)− dg(0).x

kxk , with ϕ(0) = 0, is continuous on Rd.
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∀x ∈ Rd, g(x) = dg(0).x + kxkϕ(x). So, for all strictly positive
integers n and j and for any compact Kr, we have:

∀x ∈ Kr, |Sn+j(x)− Sn(x)| =
¯̄̄Pn+j

k=n+1 g(A
kx)

¯̄̄
=

¯̄̄Pn+j
k=n+1

h
dg(0).(Akx) + kAkxkϕ(Akx)

i¯̄̄
≤ Pn+j

k=n+1

h
kdg(0)krkAkk + rkAkkpr(ϕ)

i
≤ r (kdg(0)k+ pr(ϕ))

Pn+j
k=n+1 kAkk

≤ r (kdg(0)k+ pr(ϕ))
kAk
1−kAk .kAkn

Since we have kAk < 1, then for all r ∈ N∗, the sequence (Sn) is
Cauchy sequence for the semi-norm pr of C

0(Rd). The series
X
k

g◦Ak

is therefore convergent in C0(Rd).

3. Continuity of ∆ : ∀u ∈ E, |∆(u)| = |u(0)| ≤ max
x∈K1

|u(x)| ≤ p1(u),

which proves that the linear form ∆ is continuous on E = C0(Rd)
(resp. E = Cl(Rd), with 1 ≤ l ≤ ∞).
Continuity of δ :

For n ∈ N∗ and u ∈ E, we have :

A(Kn) ⊂ Kn and pn (δ(u)) = pn(u− u ◦A) ≤ pn(u) + pn(u ◦A)

• In the case E = C0(Rd), we have :

pn (δ(u)) ≤ max
x∈Kn

|u(x)|+ max
x∈Kn

|u (A(x)) | ≤ 2pn(u)

• In the case E = Cl(Rd), with 1 ≤ l < ∞, we have for all x ∈ Kn

and for all multi-index α, such as |α| ≤ l,

|Dα(u ◦A)(x)| ≤ dlkAk|α|max|β|≤l |Dβu(Ax)|
according to point (i) above

≤ dlmax|β|≤l (maxt∈Kn |Dβu(t)|)

≤ dlpn(u)
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which proves that pn(u◦A) ≤ dlpn(u) and that pn (δ(u)) | ≤
³
1 + dl

´
pn(u).

• In the case E = C∞(Rd), we have for all x ∈ Kn and for all multi-
index α, such as |α| ≤ n,

|Dα(u ◦A)(x)| ≤ dnkAk|α|max|β|≤n |Dβu(Ax)|
according to point (i) above

≤ dnmax|β|≤n (maxt∈Kn |Dβu(t)|)

≤ dnpn(u)

which proves that pn(u◦A) ≤ dnpn(u) and that pn (δ(u)) | ≤ (1 + dn) pn(u).

In any case, we have proved that for all n ∈ N∗, there is a constant
Cn such as

∀u ∈ E, pn (δ(u)) ≤ Cnpn(u)

The linear operator δ is therefore continuous in all cases.

3.3. Proof of Theorem 1 (the case E = C0(Rd))

1. Suppose that the equation (e) admits a solution f for the data g.
Then f − f ◦A = g, g(0) = 0 and ∀k ∈ Z, f ◦Ak− f ◦Ak+1 = g ◦Ak.

In particular, by adding member to member these equalities from
rank k = 0 up to rank k = n, for each n ∈ N∗, we get:

∀n ∈ N∗,
nX

k=0

g ◦Ak = f − f ◦An+1

or:

∀n ∈N∗, ∀x ∈ Rd,
nX

k=0

g(Akx) = f(x)− f(An+1x).

Since kAk < 1 and f is a continuous function, we have:

∀x ∈ Rd, lim
n→+∞

An+1x = 0 and so lim
n→+∞

f(An+1x) = f(0)

from where :

lim
n→+∞

nX
k=0

g(Akx) = f(x)− f(0).
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This implies that the series
X
k≥0

g◦Ak converges simply to the solution

f −f(0) of (e) taking the value 0 in 0. Since the space E is complete,

it suffices to prove that the sequence of partial sums Sn =
nX

k=0

g ◦Ak

is Cauchy sequence in E for all semi-norm pr (r ∈ N∗).

Let r be a fixed positive integer and ε > 0 a real number. Since the
function f is uniformly continuous on the compact ball Kr = B(0, r),
there exists a real number α > 0 such that:

∀(x, y) ∈ K2
r , kx− yk < α⇒ |f(x)− f(y)| < ε

On the other hand, there is a rank N ∈ N such that kAknr < α
2 as

soon as n ≥ N . So for two integers n and j, with n ≥ N , we have:

∀x ∈ Kr, |Sn+j(x)− Sn(x)| = |f(An+1x)− f(An+j+1x)|

with:
|An+1x−An+j+1x| ≤ 2kAknr < α.

This implies pr (Sn+j − Sn) < ε.

We deduce that: for all r ∈N∗ and for all real number ε > 0, there is
a rank N ∈ N such as pr (Sn+j − Sn) < ε for n ≥ N and j arbitrary.
This shows that the sequence (Sn) is a Cauchy sequence in E and
therefore convergent in E, from which we deduce the convergence of
the series

X
k

g ◦Ak.

Conversely, if the series
X
k

g ◦ Ak converges in E, the sequence (Sn)

converges in E to a limit f and then lim
n→+∞

g◦An(0) = 0 which implies

g(0) = 0.

On the other hand, the linear operator δ : E → E, h 7→ δ(h) =
h− h ◦A being continuous, we have:

lim
n→+∞

δ (Sn) = δ(f) or else lim
n→+∞

³
g − g ◦An+1

´
= f − f ◦A

Now for a fixed integer r ∈ N∗, we have :

pr(g ◦An+1) = sup
x∈Kr

|g ◦An+1(x)| = |g ◦An+1(xn)| = |g(An+1xn)|
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for a certain point xn ∈ Kr with kAn+1xnk ≤ kAkn+1r. Then:

lim
n→+∞

pr(g ◦An+1) = lim
n→+∞

|g(An+1xn)| = |g(0)| = 0.

We deduce that lim
n→+∞

g ◦An+1 = 0 in E and the function f satisfies

the relation g = f−f◦A, that is the equation (e) admits f as solution.
We have proved above that for g ∈ δ(E), the series

X
k

g◦Ak converges

in E and its sum f = S(g) is a solution of (e).

Let’s now show the density of δ(E) in E0. We have just seen that the
space δ(E) is exactly the subspace of E0 consisting of the functions h
such that the series

P
k h ◦Ak converges in E. Consider the subspace

G of E0 consisting of functions which are differentiable at point 0.

According to Lemma 3.2-(ii), we have the inclusion G ⊂ δ(E) and
according to Lemma 3.2-(iii), E0 = Ker(∆) is closed in E. So, we
have the following inclusions:

G ⊂ δ(E) ⊂ E0 et G ⊂ δ(E) ⊂ E0

To show that δ(E) is dense in E0, we just have to prove that G is
dense in E0.

Let g ∈ E0, r ∈ N∗ and ε > 0. The function g being continuous
and checking g(0) = 0, there is a real number β > 0 such as: ∀x ∈
Rd, kxk < β ⇒ |g(x)| ≤ ε

2
.

Consider a real number α such that 0 < α < β and the function gε
defined by:

gε : R
d → R, x 7→ gε(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε
2α2 kxk

2 if kxk < α

ε(β−kxk)
2α2(β−α)kxk

2 + kxk−α
β−α g(x) if α ≤ kxk ≤ β

g(x) if kxk > β

Here is the graphic representation of the function gε for d = 1.
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gε is clearly continuous on R
d and C1 on the ball B(0, α). Moreover,

we can easily check that we have: ∀x ∈ Rd, |gε(x)− g(x)| ≤ ε.

In particular, pr (gε − g) ≤ ε. This proves that any neighborhood of
g in E0 contains at least one element gε of G. Hence the space G is
dense in E0 and then so is δ(E) in E0. The point (i) of Theorem 1 is
thus proved.

2. The reduced cohomology space H
1
(A,E) = E/δ(E) = E/E0 is of di-

mension 1. The cohomology space H1(A,E) = E/δ(E) is not Haus-
dorff (because δ(E) is not closed in E) and this space is infinite di-
mensional since the infinite family (hp)p≥1 of continuous functions
defined by:

hp : R
d → R, x 7→ hp(x) =

⎧⎪⎪⎨⎪⎪⎩
h
cn
³
1+kxk
kxk

´i− 1
p if x 6= 0

0 if x = 0

forms a system of linearly independent vectors in the quotient vector
space E/δ(E). Let us prove this fact.

• There is a unit vector ξ such as for all p ≥ 1, the series Pk≥0 hp ◦
Ak(ξ) diverges. Indeed, if z ∈ Cd is an eigenvector of A associated to

pc
fo-1
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an eigenvalue λ ∈ C, then the two vectors x = z+z
2 and y = z−z

2i of
Rd are not all zero and are such that kAkxk = |λ|kkxk and kAkyk =
|λ|kkyk. Assuming, for example, that x 6= 0 and setting ξ = x

kxk , we
will have, for all n ∈ N∗ and k ∈ N,

hp(A
kξ) =

"
cn

Ã
1 + |λ|k
|λ|k

!#− 1
p

=
³
−cn|λ|k

´− 1
p

"
cn(1 + |λ|k)
−cn|λ|k

+ 1

#− 1
p

∼
µ
cn
1

|λ|

¶− 1
p 1

k
1
p

where the Riemann series
X
k

1

k
1
p

diverges. Hence the series
X
k

hp(A
kξ)

diverges also.

• If α and β are real numbers such as h = αhp + βhq ∈ δ(E), with
p < q, then for the vector ξ above,

lim
k→+∞

h ◦Ak(ξ)

hq ◦Ak(ξ)
= lim

k→+∞

Ã
α
hp ◦Ak(ξ)

hq ◦Ak(ξ)
+ β

!

= lim
k→+∞

⎡⎣α cn
Ã
1 + |λ|k
|λ|k

!− q−p
pq

+ β

⎤⎦ = β

If β 6= 0, the sequences
³
hq ◦Ak(ξ)

´
k
and

³
1
βh ◦Ak(ξ)

´
k
would be

equivalent and the associated series would therefore be of the same
nature, which is absurd. We deduce that β = 0 and then α = 0.

It can thus be shown by induction that a finite linear combinationP
p αphp is a cobord if and only if all the scalars αp are zero.

3.4. Proof of Theorem 2 (the case E = Cl(Rd), with 1 ≤ l ≤∞)

1. If the equation (e) admits a solution f for the data g,

g(0) = f(0)− f ◦A(0) = f(0)− f(0) = 0 and so g ∈ E0

Conversely for g ∈ E0, we show that the series
X
k

g ◦Ak converges in

E and its sum f is a solution of equation (e).
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Let (Sn) be the sequence of partial sums of the series
X
k

g ◦Ak. Let’s

show that (Sn) is cauchy sequence in E.

Let r be a positive integer and α = (α1, · · · , αd) ∈ Nd a multi-index
such that 1 ≤ |α| ≤ l.

For any (n, j) where n and j are positive integers and any x ∈ Kr,
we have:

|Dα(Sn+j − Sn)(x)| =
¯̄̄
Dα

³Pn+j
k=n+1 g ◦Ak)

´
(x)
¯̄̄

=
¯̄̄Pn+j

k=n+1Dα(g ◦Ak)(x)
¯̄̄

≤ Pn+j
k=n+1

¯̄̄
Dα(g ◦Ak)(x)

¯̄̄
≤ Pn+j

k=n+1 d
lkAkk|α|

¯̄̄
(Dαg)(A

kx)
¯̄̄

(according to Lemma 3.2-(i))

≤ Pn+j
k=n+1 d

lkAkkmax|α|≤l (maxt∈Kr |(Dαg)(t)|)

≤ dlmax|α|≤l (maxt∈Kr |(Dαg)(t)|)
Pn+j

k=n+1 kAkk

≤ dlmax|α|≤l (maxt∈Kr |(Dαg)(t)|) kAkn+1 1−kAk
j

1−kAk

≤ dlmax|α|≤l (maxt∈Kr |(Dαg)(t)|) kAkn+1 1
1−kAk

Similarly, since g(0) = 0 and g is differentiable at point 0, then (as in
the proof of Lemma 3.2-(ii)) we have:

max
x∈Kr

|Sn+j(x)− Sn(x)| ≤
∙
kdg(0)k+ max

x∈Kr

(ϕ(x))

¸
r

1− kAk| {z }
ηr

kAkn+1

where ϕ is the continuous function: ϕ(x) =
g(x)− dg(0).x

kxk for x 6=
0 and ϕ(0) = 0.

It follows that:

• if 1 ≤ l <∞, pr(Sn+j − Sn) ≤
"
ηr +

dlpr(g)

1− kAk

#
kAkn+1
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• if l =∞, pr(Sn+j − Sn) ≤
∙
ηr +

drpr(g)

1− kAk

¸
kAkn+1

In both cases, there is a constant Cr such that

∀r ∈N∗, ∀(n, j) ∈ N∗ ×N∗, pr(Sn+j − Sn) ≤ CrkAkn+1

This proves that (Sn) is Cauchy sequence for any semi-norm pr and
so converges in E to a limit f . As in the case of the space C0(Rd),
the function f is a solution of (e).

2. We have δ(E) = E0 and E0 = Ker(∆) is a Fréchet space, as a closed
subspace of the Fréchet space E. On the other hand, we have both
endomorphisms:

δ : E0 → E0, h 7→ δ(h) = h− h ◦A and S : E0 → E0, h 7→ S(h)

=
X
k≥0

h ◦Ak

such as δ−1 = S, δ is continuous (according to Lemma 3.2-(iii)) and
S is continuous as the simple limit of continuous operators Sn : E0 →

E0, h 7→ Sn(h) =
nX

k=0

h ◦Ak on E0 [9].

3. δ(E) = E0 being a closed hyperplan of E, the cohomology space
H1(A,E) = E/E0 has dimension 1 and the automorphism A is coho-
mologically Cl-stable.
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