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Abstract

In this paper, we give a new topological invariant and a kind of characterization to home-
omorphisms. We introduce this topological invariant by constructing an algebraic kind of
groupoid structure to each topological space, which is an extension of the concept of funda-
mental groups. This construction we call it “Core fundamental groupoid” and it is different
from the fundamental groupoid as in the book and articles of Ronald Brown [30, 31]. More-
over, both groupoid notions are not equivalent, but, it will be a wide subgroupoid of the
fundamental groupoid in category-theoretic. In the entire paper, we consider groupoid in the
algebraic sense. First, we discuss basic properties of the Core fundamental groupoid and their
significant importance in topological invariants. Further, we separately present the Core fun-
damental groupoid as an algebraic structure and a topo-algebraic structure and investigate
their properties separately. We have an explicit description of both the algebraic structure
of the groupoid and a unique topological structure of Core fundamental groupoid. Besides,
we give a kind of characterization of homeomorphisms in terms of an invariant that we have
obtained, i.e., “f : M → N is a homeomorphism if and only if f# : π̄1M → π̄1N is a topolog-

ical groupoid isomorphism”. This result addresses the open problem stated in [1, 19, 24, 26]
and also gives a kind of characterization for homeomorphic spaces, but, computationally it
seems difficult and it becomes sometimes trivial when intact with topology. Induced groupoid
homomorphism, induced base map, topological and smooth structure on the Core fundamental
groupoid, homotopic properties of induced groupoid homomorphisms of continuous maps and
topological groupoid homomorphism-related properties of induced groupoid homomorphisms
are discussed. We also present the relation of homotopy type on Core fundamental groupoid.

Keywords: Groupoid, Fundamental group, Fundamental groupoid, Topological groupoid,
Induced homomorphism, Bundle.

AMS Classification: 14F35, 18F15, 55Q05.

10.22199/issn.0717-6279-4533

Scielo

Scielo



274 Chidanand Badiger and T. Venkatesh

1. Introduction

Classification plays a significant role in any branch of science. Classifica-
tion of the topological spaces is an active research area and that becomes
a reason for the rigorous advances in various allied branches of Mathemat-
ics and Science. If we consider the entire class of topological spaces, some
mathematicians remarked that it seems impossible to obtain a useful clas-
sifying invariant, but, a considerable member of them are trying a good
one (we are also in the same category of people who are searching for such
invariant). However, finding invariants which classify topological spaces up
to homeomorphism is a basic problem of topology, in fact, still an open
problem in topology [1, 19, 24, 26]. If we see historically, existing topolog-
ical invariants are not sufficient topological invariants in general, but some
are known to be sufficient invariants to classify spaces when we restrict
the family of spaces under study. For instance, the fundamental group is
a sufficient invariant for compact orientable surfaces without boundaries.
Besides, classifying the continuous maps up to homotopy and homotopy
type spaces known as ‘CW’ complexes has been successfully resolved with
the help of homotopy theory. Algebraic topology is a branch of topology
in which we study of problems of topology with the help of algebra. Here,
one can commonly see association of the algebraic structures to topological
spaces. We can find wide applications of algebraic topology in Classifica-
tion theory, Combinatorics, Computer Engineering and theoretical Physics.
The stated open problem was partially solved using certain invariants, such
as homotopy, homology, cohomology, Euler characteristics etc. and indeed,
these invariants witnessed the advances of algebraic topology in the twen-
tieth century [3, 22, 24]. These invariants played a significant role in the
development of allied branches of Mathematics. But, they are not sufficient
topological invariants, for example, homotopy equivalence is weaker than
homeomorphism.

Henri Poincare introduced the term “homeomorphism” in 1895. Also,
he invented homotopy, fundamental group and homology group around
1895 (Analysis Situs, 1895) [24]. The fundamental group is a heavily used
invariant by many algebraic topologists and geometers and its explicit ex-
planation of such usage with applications be found also in an article [17]
of Heinrich Tietze’s. Further, many studies have concentrated on interact-
ing possible topologies on the topological invariants(on algebraic structured
sets) which come from the theory of homotopy, one such development has
been introduced by Hurwitz [20]. The literature says, in 1950, J. Dugundji
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viewed the fundamental group as a topological space by introducing topol-
ogy on it [12]. By generalizing the results of J. Dugundji, Biss introduced
a quotient topology inherited from Hom((S1, 1), (X,x)) with the compact-
open topology on the fundamental group [6]. This space is denoted as π1

top

and it is a topological invariant finer than the usual fundamental group
[20].

Classification of spaces plays a vital role not only in topology but also
in geometry. Therefore, this becomes the reason for interest in finding
such invariants of smooth manifolds, Lie groups and Riemannian manifolds
[18, 23]. A similar study for smooth manifolds was initiated by R. Hamilton
around 1980s by introducing the Ricci flow technique [28]. Such invariants
of smooth manifolds also act as topological invariants since smooth man-
ifolds are topological spaces and diffeomorphism implies homeomorphism.
But, modern geometry has developed a lot of invariants, from which cer-
tain kinds of spaces are partially classified. Also, by confining to specific
spaces (like Manifolds) with some weaker conditions, a complete classifi-
cation in geometry took place [26, 27]. One such classification problem
was resolved by Russian mathematician Grigori Perelman in 2006 and he
proved Poincare’s conjecture, which is one of the classification problems of
geometry and topology [14, 24]. But, up to diffeomorphism, not all smooth
manifolds are completely classified. Characterizing homeomorphism can-
not imply characterization of diffeomorphism, but this would be a neces-
sary condition. Such developments will gain significant progress in Physics
through Topology, Knot theory and Geometry.

Let M and N be two closed hyperbolic 3-manifolds, Mostow rigidity
implies that M and N are homeomorphic if and only if their fundamental
groups are isomorphic [27, 34]. The authors of [34] appealed to Sela’s solu-
tion of the isomorphism problem for torsion-free word hyperbolic groups,
the homeomorphism problem forM andN and the mentioned can be solved
[34]. Further, the initial objective of this [27] paper was to provide a more
geometrical approach to the homeomorphism problem. But the authors Pe-
ter Scott and Hamish gave a more geometric approach to an algorithm for
deciding whether two hyperbolic 3-manifolds are homeomorphic, besides,
they also gave a more algebraic approach to some other parts of the home-
omorphism problem. Therefore, the fundamental group is sufficient for the
homeomorphisms in their work, but it is not sufficient in general topolog-
ical spaces. We can see this fact by a simple example, i.e., the real line
and a closed interval in the real line are not homeomorphic, even though
their fundamental groups are isomorphic. Therefore, we have considered
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this problem as an interesting case in characterizing homeomorphism in
terms of a good invariant. We are trying certain associations to topological
space with the help of groupoid structure and we will demand it as a good
topological invariant for classification.

The notion of a groupoid is an algebraic concept, this appeared for the
first time in 1926 by H. Brandt, which is a generalization of the group and
having certain beautiful identities [15]. C. Ehresmann generalized Brandt
groupoids in which topological and differentiable structures are added [9].
Many applications of the structure of a groupoid are available in different
branches of science, for instance, one can see that mainly in the name of
partial actions (in the actual name of groupoid actions) in many problems.
The notion of groupoid could help as an invariant as Ronald Brown men-
tioned in the name of “fundamental groupoid” as in the categorical sense in
his book “Topology and groupoid” [31]. He has discussed the fundamental
groupoid (category sense) as a topological invariant and placed a lot of its
basic properties along with applications. In this context and the consid-
ered problem, we have tried this investigation to arrive at a new invariant.
Moreover, defined invariant has significant applications in allied branches
of both topology and geometry. Interestingly, it takes a role in the con-
struction of covering spaces of certain topological spaces and the detailed
discussion of a special quotient topology on such non-trivial construction
is discussed in [7].

In this present detailed investigation, we have introduced an algebraic
version of a groupoid and named it as Core fundamental groupoid, which
we felt is a good topological invariant. We have discussed the algebraic
structure and also a natural topological structure induced by the topology
of base space on the introduced Core fundamental groupoid. And, we
have presented a characterization of homeomorphism through this good
invariant. This is a kind of solution to the considered open problem, and
an explanation of it is in Proposition 4.30.

2. Preliminaries

In the entire paper, we denote by (M, IM) or whenever there is no con-
fusion, simply M for a topological space. Generally, π1(M,x) denotes
the fundamental group of topological space M and for a point x ∈ M
[3, 19, 22, 24]. Throughout this paper, we denote γx for a loop based at
x and γ for the reverse of the path γ and cx to the constant loop based
at x. Indeed, the path homotopy equivalence class [cx] is the identity el-
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ement in the fundamental group. For each continuous map f : M → N
and x ∈ M , there is an induced homomorphism and which is defined by
f#x : π1(M,x) → π1(N, f(x)) by f#x([γx]) = [f ◦ γx] for all equivalence
classes of loops based at x, i.e., [γx] ∈ π1(M,x) [3, 19, 22, 24].

A non-empty set G associated with ∗−1 : G→ G a unary operation and
∗ : G×G→ G a partial function, but not a binary operation satisfying i)
Associativity: If a ∗ b and b ∗ c are defined then a ∗ (b ∗ c) and (a ∗ b) ∗ c
are defined and in such case a ∗ (b ∗ c) = (a ∗ b) ∗ c, ii) Inverse: a−1 ∗ a
and a ∗ a−1 are always defined. iii) Identity: If a ∗ b is defined, then a ∗
b ∗ b−1 = a and a−1 ∗ a ∗ b = b are always defined, is called a groupoid
[2, 4, 5, 10, 13, 21, 25, 29]. Generally, one can see that (a−1)

−1
= a and

(a ∗ b)−1 = b−1 ∗ a−1 for defined a ∗ b, are the often used properties in
groupoid [21]. An element e ∈ G is called an identity if there exists e ∗ g
implies e ∗ g = g and there exists g0 ∗ e implies g0 ∗ e = g0. Commonly,
G0 denotes set of all identities of groupoid G, it is called identity set of
G. There are some important definitions and results, which are to be used
later.

Definition 2.1. [2, 11, 13, 21] A subgroupoid H of G is called wide if
H0 = G0.

Definition 2.2. [5, 11, 13, 21] Let G,G0 be groupoids under partial func-
tions ∗ and ∗0 respectively, a map T : G → G0 is called a groupoid homo-
morphism if ∀a, b ∈ G and a∗ b defined implies T (a)∗0 T (b) defined, in such
case T (a ∗ b) = T (a) ∗0 T (b).

Definition 2.3. [13, 21] Let G,G0 be groupoids a map T : G→ G0 is called
groupoid isomorphism if it is bijective and both T and T−1 are groupoid
homomorphisms.

Definition 2.4. [21] Let G,G0 be groupoids, T : G → G0 be a groupoid
homomorphism and H ⊂ G and F ⊂ G0 then T (H) = {T (a) ∈ G0 : for a
∈ G}, T−1(F ) = {a ∈ G : T (a) ∈ F}, also Ker(T ) = {a ∈ G : T (a) ∈ G00}.

Proposition 2.5. [11] Let G,G0 be groupoids and T : G → G0 be a
groupoid homomorphism, then T (a−1) = (T (a))−1,∀a ∈ G.

Corollary 2.6. [11] Let G,G0 be groupoids and T : G→ G0 be a groupoid
homomorphism, then T (a ∗ a−1) = T (a) ∗0 (T (a))−1,∀a ∈ G.
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Proposition 2.7. [5, 21] Let G,G0 be groupoids and T : G → G0 be a
groupoid homomorphism and Ker(T ) ⊂ G0 then T is a groupoid monomor-
phism.

Proposition 2.8. The composition of two groupoid homomorphisms is a
groupoid homomorphism.

Definition 2.9. [10, 25, 29, 32] A topological groupoid is a groupoid (G, ∗)
together with a topology on G such that unary operation and its partial
function are continuous.

Definition 2.10. [33] LetG,G0 be two topological groupoids and a groupoid
homomorphism T : G→ G0 is said to be a topological groupoid homomor-
phism if T is continuous. And if both T and T−1 are topological groupoid
homomorphism, then it is called a topological groupoid isomorphism.

In this paper, we call a groupoid homomorphism T : G → G0 is a
trivial whenever the T (G) ⊆ G00. There is an interesting result in groupoid
theory that, the disjoint union of two groups forms a groupoid under the
operation of restriction operations on elements from the same group and
a unary operation is just an inverse operation on the respective groups
[11]. Besides, another result is that two group homomorphisms yield a
groupoid homomorphism from the disjoint union of groups of domains to
disjoint union of groups of the codomains of those group homomorphisms
and which is restricted under respective group homomorphisms [11].

3. Core Fundamental groupoid: a topological invariant

All topological invariants are not necessarily algebraic structures. But,
some of them are indeed such structures and they enabled us to partially
settle the homeomorphism problem and lead to key points in classification
theory. We define an algebraic structure associated with the topological
spaces that we have claimed and have shown a good topological invariant.
The theory of homotopy and fundamental groups are well-known for a long
back, which has prominent applications in topology and geometry [3, 19,
22, 24]. The fundamental group is one, that acts as a notable invariant in
topology.

Now, we define Core fundamental groupoid of a given topological space
M . Define Core fundamental groupoid as the disjoint union of the funda-
mental groups at points of M and will be denoted by π̄1M and mathemat-
ically π̄1M =

S
x∈M π1(M,x). Most of the topological properties of space
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can indeed be absorbed with only the help of loops and their class (path
homotopy). In fact, for instance, we are seeing this in the fundamental
group. Studying topological spaces employing all paths and their class is
found in the fundamental groupoid. But, the same kind of information
can yield only by collecting core parts out of fundamental groupoid. That
is, either only a set of all loops or only their classes contain the most of
all information about space, which indeed is the core part of data associ-
ated with the space as well as the core part of them out of the association
“fundamental groupoid”. Therefore, construction π̄1M =

S
x∈M π1(M,x)

contains the said one and it is a minimum data to study a topological space
for many good reasons and applications. Hence the name is natural to have
on π̄1M as Core fundamental groupoid and also its notation.

We consider groupoid in the algebraic sense, not as a category (Groupoid
is a small category in which every morphism is invertible [31, 32]). In ad-
dition, the defined algebraic sense of this Core fundamental groupoid is
different from the existing fundamental groupoid that contains path ho-
motopy equivalence classes of paths in M , which forms a groupoid in the
category sense [30, 31, 32, 33]. But in the category point of view, this
Core fundamental groupoid becomes a wide subgroupoid of fundamental
groupoid.

The defined Core fundamental groupoid structure will be an extension
of the fundamental group. This new notion seems like a bundle structure
as in differential geometry as well as topology (tangent bundles, cotan-
gent bundle, fibre bundle, etc.), but intuitively provides better applications
for many areas of Mathematics. As we have, the defined Core fundamen-
tal groupoid is a set that contains path homotopy classes of loops based
at all points of the topological space M . It is an arbitrary union of the
fundamental groups of a topological space. Using the induced homomor-
phism on the respective fundamental groups of a continuous map, we extend
such induced maps to Core fundamental groupoids. We define that as, if
f : M → N is a continuous map, then define a map f# : π̄1M → π̄1N
by f#([γx]) = f#x([γx]) or [f ◦ γx] for all [γx] ∈ π̄1M , it will be called as
induced groupoid homomorphism.

In addition to this, we define standard projection p : π̄1M → M , by
p([γx]) = x. It is clear that the triple (π̄1M,p,M) becomes a bundle but
not necessarily a fibre bundle. In some cases, one can see π̄1M lead to
a fibre bundle structure, which we will discuss in future research work.
The composition of path homotopy equivalence classes ∗ is a well-defined
operation in fundamental groups, but cannot be defined on the set π̄1M , for
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that i.e., to define under this ∗ operation between two elements, they have
to be path homotopy classes of loops based at the same point [3, 19, 22, 24].
Thus, this operation cannot be defined between any two arbitrary elements
of π̄1M . But, we can see with the same definition of ∗, it has a certain
algebraic structure on π̄1M as in the following proposition.

Proposition 3.1. i) Let M be a topological space then π̄1M forms a
groupoid, under a unary operation ∗−1 : π̄1M → π̄1M defined by ∗−1([γ]) =
[γ]−1 = [γ] for all [γ] ∈ π̄1M and a partial function ∗ : π̄1M × π̄1M → π̄1M
defined by [γ] ∗ [δ] = [γ ∗ δ], whenever both loops γ and δ have the same
base point for all [γ], [δ] ∈ π̄1M .
ii) Let π̄1M be the Core fundamental groupoid of a space M then (π̄1M)0
the set of identities of π̄1M is a wide subgroupoid.
iii) Let π̄1M be the Core fundamental groupoid of a space M and N ⊂M
then

S
x∈N π1(M,x) is a subgroupoid of π̄1M .

Proof. All are trivial to see and the second is true because (π̄1M)0 =
((π̄1M)0)0. 2

Proposition 3.2. Let f :M → N be a continuous map then f# : π̄1M →
π̄1N is a groupoid homomorphism.

Proof. This is due to the induced homomorphisms between fundamental
groups. 2

Proposition 3.3. Let f :M → N be a continuous map then
i) The induced groupoid homomorphism f# : π̄1M → π̄1N satisfy f#([cx]) =
[cf(x)], for every [cx] ∈ π̄1M .
ii) If N is a simply connected space then f# : π̄1M → π̄1N is a trivial
groupoid homomorphism.
iii) If f :M → N be a constant map, then f# : π̄1M → π̄1N is a constant
trivial groupoid homomorphism.

Proof. i) For the continuous map f : M → N the f# : π̄1M → π̄1N
is a groupoid homomorphism. Therefore, for every [cx] ∈ π̄1M , choose one
of [γx] ∈ π1(M,x) and we can see f#([cx]) = f#([γx ∗ γx]) = f#([γx]) ∗
f#([γx]) = f#x([γx])∗ (f#x([γx]))−1 = [f ◦γx]∗ [f ◦ γx] = [cf(x)]. Hence the
proof.
ii) It follows from Proposition 3.2 and simply connectedness of N .
iii) Trivial. 2
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Proposition 3.4. Let f :M → N be a continuous map and pM : π̄1M →
M,pN : π̄1N → N be the standard projections of π̄1M and π̄1N respec-
tively, then diagram commutes.

i.e., f ◦ pM = pN ◦ f#.

Proof. It is quite clear that, for every [γx] ∈ π̄1M , we can have f ◦
pM([γx]) = f(x) and also pN ◦ f#([γx]) = pN ([f ◦ γx]) = f(x). In addition,
Proposition 4.19 shows that both f ◦ pM and pN ◦ f# are continuous. 2

Proposition 3.5. i) Let f : M → N be a homeomorphism then f−1# =

(f#)
−1.

ii) Let Id :M →M be the identity map then Id# = Idπ̄1M .

Proof. i) Let [βy] ∈ π̄1N be an arbitrary element, then f−1# ([βy]) =

[f−1 ◦βy] = (f#)−1([βy]). Because f#((f#)−1([βy])) = [f ◦ f−1 ◦βy] = [βy].
ii) Let [γx] ∈ π̄1M be an arbitrary element, then we can see Id#([γx]) =
[Id ◦ γx] = [γx] = Idπ̄1M([γx]). 2

Proposition 3.6. Let f : M → N and g : N → R be continuous maps
then
i) (g ◦ f)# = g# ◦ f#.
ii) If both f, g are homeomorphisms then (g ◦ f)−1# = f−1# ◦ g

−1
# .

Proof. i) It is clear that, f# : π̄1M → π̄1N and g# : π̄1N → π̄1R
are groupoid homomorphisms, hence composition g# ◦ f# exists and is a
groupoid homomorphism. Let [γx] ∈ π̄1M be an arbitrary element then
(g ◦ f)#([γx]) = [g ◦ f ◦ γx] = g#([f ◦ γx]) = g#(f#([γx])) = g# ◦ f#([γx]).
ii) This follows from Propositions 3.5(i) and 3.6(i). 2

Proposition 3.7. Let T : π̄1M → π̄1N be a groupoid homomorphism
then

pc
f-1
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i) If [cx] ∈ π̄1M then T ([cx]) = [cy], for some y ∈ N .
ii) If T ([cx]) = [cy], for some y ∈ N then T ([γx]) = [δy], for some loop
δy based at y for all [γx] ∈ π1(M,x) (or simply T ([γx]) ∈ π1(N, y) for all
[γx] ∈ π1(M,x)).

Proposition 3.8. Let f, g : M → N be two continuous maps then f# =
g# if and only if f = g.

Proof. If f = g then it is obvious that f# = g#. Conversely, if f# = g#,
let us see the result by contrary assumption, i.e., suppose f 6= g this implies
there exists at least one x0 ∈ M such that f(x0) = y0 (say) is not equal
to g(x0) = y1 (say). But, this implies that, f#([cx0 ]) = [cy0 ] 6= [cy1 ] =
g#([cx0 ]), which is a contradiction to the hypothesis. Therefore f = g. 2

Proposition 3.9. Let T : π̄1M → π̄1N be a groupoid homomorphism
then there exists a unique map bT : M → N such that pN ◦ T = bT ◦ pM
(bT is induced by T , so, we will call it as induced base map ).

Proof. Let T : π̄1M → π̄1N be a groupoid homomorphism. This implies
∀[cx] ∈ π̄1M , T ([cx]) = [cy] for some y ∈ N by Proposition 3.7. Utilising
this result and keeping the base point correspondence for our construction,
we define a map bT : M → N by setting bT (x) = y for every respective
x ∈ M . It is a well-defined map, because, for each x ∈ M it is uniquely
assigned. In addition, we can see that pN ◦ T = bT ◦ pM trivially. Because
∀[γx] ∈ π̄1M , consider pN ◦ T ([γx]) = pN (T ([γx])) = y = bT (x) (whenever
T ([cx]) = [cy], for some y ∈ N) and also bT ◦ pM([γx]) = bT (x). Hence, it
satisfies pN ◦ T = bT ◦ pM . 2

Proposition 3.10. i) Let T, S : π̄1M → π̄1N be two groupoid homomor-
phisms such that for some [γx] ∈ π̄1M , the T ([γx]) and S([γx]) are in the
different fundamental groups then bT 6= bS .
That is if T ([γx]) /∈ π1(N, y) 3 S([γx]) for some y in N then bT 6= bS.
ii) Let T : (π̄1M, IpM ) → (π̄1N, IpN ) be a constant topological groupoid
homomorphism then bT is a constant.

Proof. Both results follow Propositions 3.7 and 3.9. 2

Proposition 3.11. i) Let T : π̄1M → π̄1N be a groupoid isomorphism
and bT :M → N be the induced base map of T , then (bT )

−1 = bT−1 , hence
the bT is bijective.
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ii) Let Idπ̄1M : π̄1M → π̄1M be the identity groupoid isomorphism then
bIdπ̄1M = IdM .

Proof. i) Here, T : π̄1M → π̄1N is a groupoid isomorphism. So, by
Proposition 3.7 ∀[cx] ∈ π̄1M the T ([cx]) = [cy], for some y ∈ N . Under the
map T−1 : π̄1N → π̄1M , it is true that ∀[cy] ∈ π̄1M the T−1([cy]) = [cx].
Therefore, for every y ∈ N , the b(T−1)(y) = x = (bT )

−1(y). Hence the
proof.
ii) It follows from Propositions 3.7 and 3.9. 2

Proposition 3.12. i) Let T : π̄1M → π̄1N and S : π̄1N → π̄1R be two
groupoid homomorphisms then bS◦T = bS ◦ bT .
ii) Let T : π̄1M → π̄1N and S : π̄1N → π̄1R be two groupoid isomorphisms
then b(S◦T )−1 = b(T−1) ◦ b(S−1) = (bT )−1 ◦ (bS)−1.

Proof. i) The composition of two groupoid homomorphisms is a groupoid
homomorphism, hence, SoT : π̄1M → π̄1R is so. Therefore, induced base
map of SoT is bS◦T and this is well-defined for all x ∈ M by bS◦T (x) = z,
where S ◦ T ([cx]) = S(T ([cx]) = [cy]) = [cz] for some z ∈ R. Since bS and
bT are composable, we can have it and also bS ◦ bT (x) = bS(y) = z. This
involves the mapping of the base point by the respective groupoid homo-
morphism when the point of respective identity elements of fundamental
groups come into the picture, hence the proof.
ii) Propositions 3.11(i) and 3.12(i) combine to give proof. 2

Proposition 3.13. Let T : π̄1M → π̄1N be a groupoid homomorphism
and define OT : π̄1M → π̄1N by OT ([γx]) = [cbT (x)],∀[γx] ∈ π̄1M then OT

is the unique trivial groupoid homomorphism such that bT = bOT
.

Proof. Let T : π̄1M → π̄1N be a groupoid homomorphism, we can see
that the defined map OT is preserved under groupoid operations and also
maps all elements to identity elements of the respective fundamental groups.
Hence OT : π̄1M → π̄1N is a trivial groupoid homomorphism. Moreover,
∀[cx] ∈ π̄1M the OT ([cx]) = [cbT (x)], and T ([cx]) = [cbT (x)], so this gives
that bT = bOT . Suppose OT is not unique, there is another trivial groupoid
homomorphism O0T . This implies OT ([γ(x0)]) = [cbT (x0)] 6= [cz] = O0T ([γx0 ]),
for some [γx0 ] ∈ π̄1M , but, this further gives bT 6= bO0T . Therefore OT is
the unique trivial groupoid homomorphism such that bT = bOT

. 2



284 Chidanand Badiger and T. Venkatesh

Note. i) If T is trivial groupoid homomorphism then OT = T .
ii) Let ρ ∈ Bijection(M,N) and ∀[γx] ∈ π̄1M , define Tρ([γx]) = [cρ(x)] then
it is a trivial groupoid homomorphism such that bTρ = ρ and OTρ = Tρ.

Proposition 3.14. Let T : π̄1M → π̄1N be a groupoid homomorphism
then for each x ∈M , restricted map the Tπ1(M,x) : π1(M,x)→ π1(N, bT (x))
is a group homomorphism.

Proof. Proposition 3.7 guarantees that, if T ([cx]) = [cy], for some
y ∈ N then ∀[γx] ∈ π̄1M,T ([γx]) = [δy] for some [δy]. Further, we can
see T ([γx]) = [δy] = [δbT (x)=y] from Proposition 3.3. So the restriction map
Tπ1(M,x) defined from π1(M,x) to π1(N, bT (x) = y) is well-defined. Since
groupoid homomorphism is a weaker form of group homomorphism, the re-
striction on the respective fundamental group of groupoid homomorphism,
i.e., Tπ1(M,x) is a group homomorphism. 2

Remark 3.15. i) Let f : M → N be a map and for every loop γx in M
f ◦γx is continuous then f need not be a continuous map. For this, we have
a counterexample, that is, for the rational number set Q under subspace
topology induced by the usual topology of the real line, choose a (or every
discontinuous map) map f : Q→ Q defined by

f(x) =

⎧⎪⎨⎪⎩
2 if x = 1
1 if x = 2
x otherwise

is a discontinuous map. But, since connected components of Q are single-
ton, every loop γx in Q is a constant loop and also f ◦γx becomes constant
and hence continuous. Whereas the choice that f is not continuous.
ii) If f : M → N is a continuous map then f# : π̄1M → π̄1N by
f#([γx]) = [f ◦ γx] for all [γx] ∈ π̄1M is well-defined. But not converse.

That is, even function f is not a continuous map, but f# : π̄1M →
π̄1N by f#([γx]) = [f ◦ γx] for all [γx] ∈ π̄1M is well-defined. We have a
counterexample, that is due to Remark 3.15(i). The function defined in
3.15(i) is not continuous, but, since the connected components of Q are
singleton, the fundamental group at each point of the rational set is trivial
thus |π̄1Q| = |Q| and also obviously, f# : π̄1Q→ π̄1Q by f#([γx]) = [f ◦γx]
for all [γx] ∈ π̄1Q is well-defined due to the details of Remark 3.15(i).

Theorem 3.16. (Main result) If f : M → N is a homeomorphism then
f# : π̄1M → π̄1N is a groupoid isomorphism.
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Proof. If f is a homeomorphism then f# and (f−1)# = (f#)
−1 are

groupoid homomorphisms from Propositions 3.2 and 3.5(i). Hence f# is a
groupoid isomorphism. 2

Generally, the converse need not hold, as we can see in the following
example.

Example 3.17. The function considered in Remark 3.15(ii) becomes a
counter example. Here, the induced map f#([γx]) = [f ◦ γx] for all ([γx]) ∈
π̄1Q and is a well-defined groupoid isomorphism, but f is not a continuous
map.

Remark 3.18. Theorem 3.16 is not a characterization of the homeomor-
phisms, but, it shows that the Core fundamental groupoid is a topological
invariant. Homeomorphism of f implies induced groupoid homomorphism
f# is a groupoid isomorphism, thus M homeomorphic N implies π̄1M is
groupoid isomorphic π̄1N . But, with this structure, we cannot coin this
result “M is homeomorphic to N if and only if π̄1M is groupoid isomorphic
to π̄1M”. This is because sometimes two Core fundamental groupoids are
groupoid isomorphic, but, may or may not the spaces are homeomorphic.
The following example clarifies us. For the topological spaces, M = [0, 1]
and N = {−1, 2} ∪ (0, 1) under subspace topology induced by the usual
topology of the real line, it is true that the map T : π̄1M → π̄1N defined
by

T ([γx]) =

⎧⎪⎨⎪⎩
[c−1] if [γx] = [c0]
[c2] if [γx] = [c1]
[γx] Otherwise

∀[γx] ∈ π̄1M is a groupoid isomorphism, but M is not homeomorphic to
N .

To overcome this problem or to build sufficient conditions, we are in-
troducing a richer structure on the Core fundamental groupoid with the
help of topology, which will at least help us in characterizing the homeo-
morphism. We will give a kind of explicit solution for the homeomorphic
spaces problem in Proposition 4.30 and 4.31 in the next section.

We denote byGpdHom(π̄1M, π̄1N) for the set of all groupoid homomor-
phisms from π̄1M to π̄1N , if there is no confusion use simplyHom(π̄1M, π̄1N).
For different homomorphisms T, S ∈ Hom(π̄1M, π̄1N) the induced base
map may be the same. That is even T 6= S of Hom(π̄1M, π̄1N) then
bT = bS may be possible, see Remark 4.28. This idea builds an intuition
of partitioning the Hom(π̄1M, π̄1N) by means of the following equivalence
relation.
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Proposition 3.19. Let M,N be two topological spaces and define µ :
Hom(π̄1M, π̄1N)→ Hom(π̄1M, π̄1N) by, TµS if and only if bT = bS , then
it is an equivalence relation.

Under this equivalence relation, we can partition the setHom(π̄1M, π̄1N).
Denote [T ]µ for µ equivalence class containing T . If the fundamental groups
at each point of space N is abelian then we can obtain groupoid struc-
tures on Hom(π̄1M, π̄1N) as follows. Define a unary operation ⊗−1 :
Hom(π̄1M, π̄1N) → Hom(π̄1M, π̄1N) by ⊗−1(T ) = T = T−1 for all
T ∈ Hom(π̄1M, π̄1N) and a partial function
⊗ : Hom(π̄1M, π̄1N) ×Hom(π̄1M, π̄1N) → Hom(π̄1M, π̄1N) by T ⊗ S =
T ∗ S, where T = T−1 : π̄1M → π̄1N by T ([γ]) = (T ([γ]))−1 and T ∗ S :
π̄1M → π̄1N by (T ∗ S)([γ]) = T ([γ]) ∗ S([γ]), whenever both T ([γ])
and S([γ]) are in the same fundamental group, for every [γ] ∈ π̄1M then
Hom(π̄1M, π̄1N) forms a groupoid.

Proposition 3.20. Let fundamental groups at each point of space N be
abelian and [T ]µ be a µ equivalence class containing
T for a T ∈ Hom(π̄1M, π̄1N) and define ⊗ : [T ]µ× [T ]µ → [T ]µ by S⊗L =
S ∗ L for all S,L ∈ [T ]µ, where S ∗ L : π̄1M → π̄1N by (S ∗ L)([γ]) =
S([γ]]) ∗ L([γ]]) for all [γ] ∈ π̄1M then ([T ]µ,⊗) is an abelian group.

Proof. For all S,L ∈ [T ]µ, the S ⊗ L = S ∗ L : π̄1M → π̄1N defined
by (S ∗ L)([γ]) = S([γ]) ∗ L([γ]), for all [γ] ∈ π̄1M is a well-defined map.
Moreover, for all [γ], [δ] ∈ π̄1M , such that [γ]∗[δ] is defined, then (S⊗L)([γ]∗
[δ]) = S([γ] ∗ [δ]) ∗ L([γ] ∗ [δ]) = S([γ]) ∗ S([δ]) ∗ L([γ]) ∗ L([δ]) = S([γ]) ∗
L([γ])∗S([δ])∗L([δ]) = (S⊗L)([δ])∗(S⊗L)([δ]), hence, S⊗L is a groupoid
homomorphism. Since for every [cx] ∈ π̄1M the S ⊗ L([cx]) = [c(bT (x)]
or [c(bS(x))], one can see b(S⊗L) ∈ [T ]µ. Associativity is followed by the
associativity of fundamental groups. The mapO([γx]) = [c(bT (x))] is a trivial
groupoid homomorphism and also O ∈ [T ]µ such that S ⊗O = S = O ⊗ S
vacuously. Finally for every S ∈ [T ]µ, there is a groupoid homomorphism
S−1 : π̄1M → π̄1N defined by S−1([γ]) = (S([γ]))−1 and also we can see
S⊗S−1 = O = S−1⊗S. Lastly, commutativity of each fundamental groups
at each point of space N guarantees that ⊗ is commutative. Thus ([T ]µ,⊗)
is an abelian group. 2

Proposition 3.21. Let Gpdiso(π̄1M, π̄1M) be set of all groupoid isomor-
phisms from π̄1M to π̄1M then it is a group under the composition of
function.
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Proof. It is well-known that the composition of groupoid isomorphism is
a groupoid isomorphism. The associativity is trivial and the element Idπ̄1M
is an identity element here because it is true that T◦Idπ̄1M = T = Idπ̄1M◦T ,
for all T ∈ Gpdiso(π̄1M, π̄1M). Finally, for every T ∈ Gpdiso(π̄1M, π̄1M)
there is S ∈ Gpdiso(π̄1M, π̄1M) defined by S([γ]) = (T

−1([γ])) this satisfy
S ◦ T = Idπ̄1M = T ◦ S. Thus Gpdiso(π̄1M, π̄1M) forms a group. 2

4. A natural Topology on Core fundamental groupoid yields
a topological groupoid: A good invariant

We establish a topology on an algebraic structure defined in section 3 called
Core fundamental groupoid, which makes it richer under an extra struc-
ture. Moreover, this becomes a good topological invariant and gives a kind
of characterization to homeomorphism. Let (M,IM) be a topological space
and the standard projection induces a unique topology on Core fundamen-
tal groupoid π̄1M from the topology of (M, IM), that topology is defined
explicitly by Ip = {p−1(U) : U ∈ IM}, which guarantees that the map p is
a quotient map. Hence, the topology acquired by the base space is unique
and in fact, it is the induced topology from the base space by the standard
projection p on the Core fundamental groupoid. Since under this topology
the map standard projection p is a quotient map, we are calling this topol-
ogy on π̄1M by quotient topology instead of induced topology(one may use
name induced topology). Moreover, the standard projection becomes an
open map, because, for every open set O in π̄1M , we can see O = p−1(U)
for some open set U in M and also p(O) = p(p−1(U)) = U is an open set
in M . If the space M is simply connected space then |M | = |π̄1M | and
moreover, those two spaces behave same.

On the way of topological groupoid, we can see Core fundamental
groupoid is one such object with a unique topology on it. Including such a
result, the following outcomes are some of the topological properties of the
Core fundamental groupoid.

Proposition 4.1. Let Ip be the induced topology on π̄1M by the standard
projection, then π̄1M is a topological groupoid.

Proof. Proposition 3.1 says π̄1M is a groupoid. One can see ∗−1 :
π̄1M → π̄1M is a continuous map because for every open set O in π̄1M
then O = p−1(U) =

S
x∈U π1(M,x) for some open set U in M . If [γ] ∈ O

implies ∗−1([γ]) = [γ] ∈ O, therefore the inverse image of O under map
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∗−1 is O itself. And also, for every open set O in π̄1M there is an open
set O×O in product space π̄1M × π̄1M such that ∗(O×O) = {∗([γ], [δ]) :
[γ], [δ] ∈ O} = O, so that partial function ∗ is also continuous. Thus π̄1M
is a topological groupoid. 2

From now onwards, the Core fundamental groupoid π̄1M will be used
as a topological groupoid.

Proposition 4.2. Let Ip be the induced topology on π̄1M by the standard
projection, then π̄1M is Hausdorff if and only if M is Hausdorff and has
the trivial fundamental group at each point of M .

Proof. Choose arbitrary distinct points x, y from M and we can see
that [cx], [cy] are distinct elements of the Core fundamental groupoid π̄1M .
Since π̄1M is a Hausdorff space, there exist two disjoint open sets O1 3 [cx]
and O2 3 [cy]. By definition of Ip the O1 = p−1(U1) and O2 = p−1(U2) for
some open sets U1 and U2 inM . The definition of the open sets guarantees
that, we can see that U1 and U2 are containing x and y respectively and
also U1 ∩ U2 = p(p−1(U1)) ∩ p(p−1(U2)) ⊆ p(p−1(U1) ∩ p−1(U2)) = ∅.

And on the contrary, the Core fundamental groupoid π̄1M be non-
trivial at some x0, hence cordiality for the fundamental group satisfies,
|π1(M,x0)| > 1. Therefore, there exist at least two distinct elements [γx0 ]
and [αx0 ] in the same fundamental group based at x0. There are indeed no
two disjoint open sets containing [γx0 ] and [αx0 ] respectively. Suppose there
exist open sets O1 and O2 in π̄1M such that O1 3 [γx0 ] and O2 3 [αx0 ]. By
definition of Ip the O1 = p−1(U1) and O2 = p−1(U2) for some open sets U1
and U2 in M . Moreover, one can see that both U1 and U2 are containing
x0 therefore O1 ∩ O2 = p−1(U1) ∩ p−1(U2) = p−1(U1 ∩ U2) is non-empty,
which contradicts to Hausdorffness of π̄1M . Hence the proof.

Conversely, for the trivial group π1(M,x) for each x ∈M , we can pick
only a single element from each fundamental group based at x, but not
more elements. For arbitrary distinct points [γx], [αy] from π̄1M , implies
x 6= y. Property Hausdorff of M gives there exist disjoint open sets U1
and U2 in M , respectively containing x and y. This implies p−1(U1) and
p−1(U2) are open sets in π̄1M and also contain [γx] and [αy] respectively,
such that p−1(U1) ∩ p−1(U2) = p−1(U1 ∩ U2) = ∅. 2

In general, concerning almost all the topological spaces, their Core fun-
damental groupoid is not necessarily a Hausdorff space. To attain Haus-
dorffness in the Core fundamental groupoid, necessarily the base space has
trivial fundamental groups at each point. A Contrapositive version of this
is “If π1(M,x) is non-trivial for some x0 ∈M then π̄1M is non-Hausdorff”.
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Proposition 4.3. Let Ip be the induced topology on π̄1M by the standard
projection then M is compact if and only if π̄1M is compact.

Proof. Let us prove that π̄1M is a compact space, taking arbitrary
open cover G = {Oλ} for some index set 4. The set H = {Uλ} where
p−1(Uλ) = Oλ for all λ ∈ 4, forms an open cover for M . Since M is
compact, it possess a finite subcover H0 = {Ui : i = 1, 2, ..., n}, which
guarantee that the G0 = {p−1(Ui) : i = 1, 2, ..., n} forms finite subcover for
π̄1M due to

nS
i=1

p−1(Ui) = p−1(
nS
i=1

Ui) = p−1(M) = π̄1M .

On the other hand, it is well-known that the continuous image of a
compact space is compact. It is therefore obvious that M is compact, due
to the standard projection p is a continuous map. 2

Proposition 4.4. Let Ip be the induced topology on π̄1M by the standard
projection then M is connected if and only if π̄1M is connected.

Proof. Suppose π̄1M is not connected, this implies that there are two
non-empty disjoint open sets O1 and O2 such that O1 ∪ O2 = π̄1M . By
definition of topology on π̄1M , the O1 = p−1(U1) and O2 = p−1(U2) for
some open sets U1 and U2 in M . One can see U1 ∪ U2 = p(p−1(U1)) ∪
p(p−1(U2)) = p(O1) ∪ p(O2) = p(O1 ∪ O2) = M . And also U1 ∩ U2 =
p(p−1(U1)) ∩ p(p−1(U2)) ⊆ p(p−1(U1) ∩ p−1(U2)) = ∅. It is a contradiction
to the connectedness of M . Hence π̄1M is connected.

On the other hand, it is well-known that the continuous image of a
connected space is connected. It is therefore obvious that M is connected,
due to the standard projection p is a continuous map. 2

Proposition 4.5. Let Ip be the induced topology on π̄1M by the stan-
dard projection then M is second countable if and only if π̄1M is second
countable.

Proof. Let us prove M is second countable. Since π̄1M is a second
countable space, there exists a countable basis set β = {Bλ : λ ∈ N}. It is
well-known that every element of β is an element of the topology of π̄1M ,
so every Bλ ∈ β implies Bλ ∈ Ip. Under the topology Ip, it is true that
the Bλ = p−1(Uλ) for some open set Uλ in M for each λ ∈ N. Therefore,
we can construct a set β0 = {Uλ : λ ∈ N}, which becomes a countable
basis for M . Because

S
λ∈N

Uλ =
S

λ∈N
p(p−1(Uλ)) = p(

S
λ∈N

p−1(Uλ)) = M .
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Also, if Uλ ∩ Uδ 6= ∅ and for every x in Uλ ∩ Uδ, there is a p−1(x) ∈
p−1(Uλ)∪p−1(Uδ) = Bλ∩Bδ and the definition of the basis of β gives there
exists Bσ 3 p−1(x) in β, such that p−1(x) ∈ Bσ ⊂ Bλ ∩ Bδ. This implies
x ∈ Uσ ⊂ Uλ ∩ Uδ for element Uσ in β0. Therefore M is second countable.

On the other hand, second the countable ofM implies that there exists
a countable basis set H = {Dλ : λ ∈ N}. It is well-known that every
element of H is an element of the topology of M , so for every Dλ ∈ H
implies Dλ is an open set in M , so every p−1(Dλ) is an open set in π̄1M .
We can construct set H 0 = {p−1(Dλ) : λ ∈ N}, which becomes a countable
basis for π̄1M . Because

S
λ∈N

p−1(Dλ) = p−1(
S

λ∈N
Dλ) = π̄1M . Also if

p−1(Dλ)∩p−1(Dδ) 6= ∅ and for every q in p−1(Dλ)∩p−1(Dδ), implies there
exists some x ∈ Dλ ∩ Dδ such that p

−1(x) = q. Since H is a basis set,
there exists Dσ containing x such that x ∈ Dσ ⊂ Dλ ∩ Dδ. This implies
p−1(x) ∈ p−1(Dλ) ⊂ p−1(Uλ)∩p−1(Uδ), therefore π̄1M is second countable.
2

Proposition 4.6. Let q : M → π̄1M be defined by q(x) = [cx] then it is
a continuous map such that p ◦ q = IdM .(This is an important map which
is actually a section of π̄1M , we will study in-details of sections of it in a
future paper).

Proof. It is clear to see that, the defined q : M → π̄1M by q(x) = [cx]
is a well-defined map and also p ◦ q(x) = p([cx]) = x = IdM(x). Choose
arbitrary open set O of π̄1M , by definition of topology on π̄1M we can see,
O = p−1(V ) for some open set V inM . Consider q−1(O) = q−1(p−1(V )) =
(poq)−1(V ) = (IdM)

−1(V ) = V , this is an open set in M . Thus q is a
continuous map. 2

The section is an important notion that has a lot of applications in both
geometry and topology. The relatedness of a map on sections is indeed
responsible for the Lie algebra of a Lie group in the theory of manifold,
and its detailed discussion and generalization are available in [8]. We take
motivation from this idea to construct sections on the Core fundamental
groupoid.

Proposition 4.7. Let M be a simply connected space then the standard
projection map p : π̄1M →M is a homeomorphism.

Proof. The defined standard projection map p : π̄1M →M by p([γx]) =
x becomes a bijection due to the simply connectedness of M . In the intro-
ductory part of the standard projection, we have discussed that the map p
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is a continuous map as well as an open map. Therefore p is a homeomor-
phism. 2

Corollary 4.8. LetM be a simply connected space thenM is homeomor-
phic to π̄1M .

Proposition 4.9. Let M be a topological space then M is a simply con-
nected space if and only if π̄1M is a simply connected space.

Proof. IfM is a simply connected space, Proposition 4.7 guarantees the
standard projection p : π̄1M → M is a homeomorphism. The property of
simply connectedness is preserved under a homeomorphism, therefore π̄1M
is a simply connected space.

Conversely, first about path connectedness of M , let x, y be arbitrary
elements of M , then certainly [cx], [cy] are elements of π̄1M . Since π̄1M
is simply connected, it is a path connected. Therefore, there is a path θ
from [cx] to [cy]. The composition of this θ with the standard projection p
gives a path say p ◦ θ such that p ◦ θ(0) = x and p ◦ θ(1) = y. Thus M is a
path-connected space.

Finally, it is enough to see that, every loop inM is contractible to a base
point. Choose arbitrary loop γx inM then we can see q ◦γx is a loop based
at [cx] in π̄1M by Proposition 4.7. Simply-connectedness of π̄1M implies
q ◦ γx 'p c[cx], and standard projection p : π̄1M → M is continuous and
post-composition theorem [19, 24] combinedly gives p◦q◦γx 'p p◦c[cx], this
implies IdM ◦ γx 'p p ◦ c[cx] also γx 'p cx. Thus M is a simply connected
space. 2

Corollary 4.10. Let M be a topological space
i) M is a contractible space if and only if π̄1M is a contractible space.
ii)M is a star convex space if and only if π̄1M is a star convex space (there
is an addition and scalar([0,1]) multiplication on π̄1M such that it satisfy
convex property).

Proof. Both follow Proposition 4.9. 2

Proposition 4.11. [22, 23] LetM be a simply connected space thenM is
a topological manifold if and only if π̄1M is a topological manifold.
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Proof. Hausdorff property, second countability and local Euclideanness
of a fixed dimension-n are all preserved under a homeomorphism. SinceM
is a simply connected space, Proposition 4.7 implies standard projection
map p is a homeomorphism, this is enough for the proof. 2

Proposition 4.12. [18, 23] LetM be a simply connected space thenM is
a smooth (respectively ck differentiable) manifold if and only if π̄1M is a
smooth (respectively ck differentiable) manifold.

Proof. If M is a smooth (respectively ck differentiable) manifold then
there is a smooth (respectively ck differentiable) n-atlas AM = {(Ui, φi) :
i ∈ I}. We can construct Aπ̄1M = {(p−1(Ui), φi ◦ p = ψi) : i ∈ I} which a
smooth (respectively ck differentiable) n-atlas on π̄1M . Because, the first
two conditions for atlas are obvious by homeomorphism standard projection
map p. Lastly, about transition maps, choose arbitrary ψi, ψj in Aπ̄1M , we
can see ψi ◦ ψj−1 = (φi ◦ p) ◦ (φj ◦ p)−1 = φi ◦ p ◦ p−1 ◦ φj−1 = φi ◦ φj−1
which is a smooth (respectively ck differentiable) map due to AM is a
smooth (respectively ck differentiable) atlas.

Conversely, If π̄1M is a smooth (respectively ck differentiable) mani-
fold then there is a smooth (respectively ck differentiable) n-atlas Aπ̄1M =
{(Oi, ψi) : i ∈ I}. We can construct AM = {(p(Oi), ψi ◦ p−1) : i ∈ I} which
forms smooth (respectively ck differentiable) n-atlas on M . 2

Proposition 4.13. Let M be a simply connected smooth (respectively
ck differentiable) manifold then the standard projection map p : π̄1M →
M is smooth (respectively ck) diffeomorphism under the smooth structure
defined on π̄1M in Proposition 4.12.

Proof. The standard projection p : π̄1M →M by p([γx]) = x becomes a
bijection due to the simply connectedness of M , and Proposition 4.7 guar-
antees that the p is a homeomorphism. Finally for smoothness (respectively
ck) of p, for every chart (Ui, φi) in AM and for every (p−1(Ui), φi ◦ p = ψi)
in Aπ̄1M , we can see φi ◦p◦ψi−1 = φi ◦p◦(φi ◦ p)−1 = Id. Thus φi◦p◦ψi−1
is a smooth (respectively ck) map, so p is smooth (respectively ck) map.
Similarly p−1 is also a smooth (respectively ck) map, therefore p is a smooth
(respectively ck) diffeomorphism. 2

Proposition 4.14. [18] Let M be a simply connected space then M be a
Riemannian manifold if and only if π̄1M is a Riemannian manifold.
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Proof. Riemannian metrics are preserved under diffeomorphisms. There-
fore, under the diffeomorphism standard projection p, Riemannian metrics
of M and π̄1M are encoded. 2

Proposition 4.15. Each π1(M,x) = p−1({x}) acquires indiscrete topol-
ogy under subspace topology induced by Ip of π̄1M .

Proof. It is sufficient to show that, the non-trivial subsets of π1(M,x) =
p−1({x}) are not open in π1(M,x). It is obvious that the empty set and
π1(M,x) are elements in subspace topology, because, for every open set
U containing x, the p−1(U) is an open set in π̄1M , contains p−1(x) =
π1(M,x), hence π1(M,x) = π1(M,x) ∩ p−1(U). Moreover, no non-trivial
subsets are open in subspace topology and we can see by contradiction.
That is, suppose there is a ∅ ⊂

6−
B ⊂

6−
π1(M,x) which is open in π1(M,x).

Since here B is non-empty, there exists at least one [γx] ∈ B and π1(M,x)∩
p−1(V ) = B for some open set V in M that contains x. This implies
p−1(x) ⊆ p−1(V ) and also π1(M,x) = B which contradicts the assumption.
Hence π1(M,x) = p−1({x}) acquires the indiscrete topology. 2

Proposition 4.16. Let M be a T1 space (or a topological manifold) then
each π1(M,x) = p−1({x}) is a closed subset of π̄1M .

Proof. Each singleton is a closed set in the T1 space (or a topological
manifold). The set π1(M,x) can be viewed as the inverse image of this
closed set under the continuous standard projection. 2

Proposition 4.17. LetM be a topological space and π1(M,x) be a space
under the subspace topology inherited from π̄1M then
i) The π1(M,x) non-Hausdorff (for trivial and non-trivial of π1(M,x))
ii) For every x ∈ M the group π1(M,x) is a topological group under sub-
space topology inherited from π̄1M .

Proof. i) Since π1(M,x) is indiscrete space, it cannot be Hausdorff.
ii) It is well-known that the π1(M,x) is a group, for every element x of
M . It is indiscrete topological space under subspace topology of π̄1M by
Proposition 4.15. Since every map from indiscrete topological space to
indiscrete topological space is always continuous, both group operations ∗
and ∗−1 are continuous. 2
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Proposition 4.18. Let f :M → N be a continuous map and π1(M,x), π1(M,f(x))
be subspaces of π̄1M and π̄1N respectively for each x ∈M , then
i) The induced map f#x : (π1(M,x), IS)→ (π1(M,f(x)), IS) is a topolog-
ical group homomorphism (basically a homomorphism [3, 19, 22, 24]).
ii) If f : M → N be a homeomorphism then f#x : (π1(M,x), IS) →
(π1(M,f(x)), IS) is a topological group isomorphism (basically an isomor-
phism [3, 19, 22, 24]).

Proof. In both cases, both π1(M,x) and π1(M,f(x)) are indiscrete
topological spaces, so the induced map f#x trivially satisfies the results.
2

Note. [3, 19, 22, 24] i) Let f : M → N be a covering projection then
f#x : (π1(M,x), IS) → (π1(M,f(x)), IS) is a topological group monomor-
phism.
ii) Let B be a retract of M and r : M → B be a retraction then j#x :
(π1(B, x), IS) → (π1(M,x), IS) is a topological group monomorphism for
the inclusion map j and r#x : (π1(M,x), IS)→ (π1(B, r(x)),IS) is a topo-
logical group epimorphism.
iii) Let B be a deformation retract of M and j be the inclusion map then
j#x : (π1(B, x), IS)→ (π1(M,x),IS) is a topological group isomorphism.

Proposition 4.19. Let f :M → N be a continuous map and pM : π̄1M →
M , pN : π̄1N → N be the standard projections of π̄1M and π̄1N respec-
tively, then f# : (π̄1M,IpM )→ (π̄1N, IpN ) is a topological groupoid homo-
morphism.

Proof. Take an arbitrary open set O ∈ IpN and it implies O =
pN

−1(V ) for some open set V in N . Consider f−1# (O) = f−1# (pN
−1(V )) =

(pN ◦ f#)−1(V ), from the commute result of Proposition 3.4, we have (f ◦ pM)−1(V ) =
pM

−1(f−1(V )) which is open in π̄1M , because both f and pM are continu-
ous. By Proposition 3.2, f# is a groupoid homomorphism, therefore f# is
a topological groupoid homomorphism. 2

Note. i) Let f :M → N be a covering projection, then f# : (π̄1M,IpM )→
(π̄1N, IpN ) need not be a topological groupoid monomorphism.
ii) Let B be a retract of M and r : M → B be a retraction, then j# :
(π̄1B, IpB )→ (π̄1M,IpM ) is a topological groupoid monomorphism for the
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inclusion map j and r# : (π̄1M, IpM )→ (π̄1B,IpB ) is a topological groupoid
epimorphism.

Remark 4.20. We cannot extend all properties exhibited by induced ho-
momorphism f#x to induced topological groupoid homomorphism. We
support the claim by the following examples.
i) Let f : M → N be a homotopy equivalence then f# : (π̄1M, IpM ) →
(π̄1N, IpN ) need not be a topological groupoid isomorphism.
ii) Let B be deformation retract of M then j# : (π̄1B, IpB)→ (π̄1M, IpM )
need not be a topological groupoid isomorphism for the inclusion map j.

Proposition 4.21. Let M,N be two topological spaces, then π̄1(M ×N)
is topological groupoid isomorphic to π̄1M × π̄1N .

Proof. It is well-known that first and second projection maps p1 :M ×
N →M by p1(x, y) = x and p2 :M ×N → N by p2(x, y) = y are continu-
ous maps and they induced (p1)# : π̄1(M×N)→ π̄1M and (p2)# : π̄1(M×
N) → π̄1N as topological groupoid homomorphisms. Define a map Q :
π̄1(M×N)→ π̄1M×π̄1N byQ([γ(x,y)]) = ((p1)#([γ(x,y)]), (p2)#([γ(x,y)])) =
([p1 ◦ γ(x,y)], [p2 ◦ γ(x,y)]) it is a well-defined continuous map because both
component functions are continuous maps, also it is a groupoid homo-
morphism. Let us see that this is surjective, take an arbitrary element
([δx], [βy]) ∈ π̄1M × π̄1N this implies δx and βy are loops based at x and y
in the space M and N respectively. We can construct α = (δx, βy) a loop
based at (x, y), so [α] ∈ π̄1(M ×N) such that Q([α]) = ([p1 ◦α], [p2 ◦α]) =
([δx], [βy]) therefore surjective.

For injective, let us have Ker(Q) = {[γ] ∈ π̄1(M × N) : Q([γ]) ∈
(π̄1M × π̄1N)0}. That is, we have to collect all [γ] ∈ π̄1(M ×N) such that
Q([γ]) = ([p1◦γ], [p2◦γ]) = ([cx], [cy]) for some ([cx], [cy]) ∈ (π̄1M × π̄1N)0.
Therefore, p1 ◦γ 'p cx and p2 ◦γ 'p cy, suppose γ = (γ

1, γ2) then γ1 'p cx
and γ2 'p cy and also there exist two homotopies between respective loops
say G : γ1 'p cx and H : γ2 'p cy. Now Define F : I × I → M × N
by F (s, t) = (G(s, t),H(s, t)), which satisfy F (s, 0) = (G(s, 0),H(s, 0)) =
(γ1, γ2) = γ and F (s, 1) = (G(s, 1),H(s, 1)) = (cx, cy) = c(x,y), for all
s ∈ I and F (0, t) = (G(0, t),H(0, t)) = (x, y) = (G(1, t),H(1, t)) = F (1, t),
for all t ∈ I. One can check it is a continuous map, hence F is a path
homotopy between γ and a constant loop c(x,y), so [γ] ∈ (π̄1(M ×N))0 and
implies Ker(Q) ⊂ (π1(M ×N))0. Hence Q is an injection. Moreover, Q is
indeed an open map, thus π̄1(M × N) is topological groupoid isomorphic
to π̄1M × π̄1N . 2
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Proposition 4.22. Let M and N be two topological spaces then f, g :
M → N are homotopic if and only if induced groupoid homomorphisms
f#, g# are homotopic.

Proof. First, let f, g : M → N be homotopic, this implies there is a
homotopy H : M × I → N by (x, t) → H(x, t) satisfying H(x, 0) = f(x)
and H(x, 1) = g(x) for all x ∈ M . Define a map F : π̄1M × I → π̄1N
by F ([γ], t) = (Ht)#([γ]), where Ht : M → N by Ht(x) = H(x, t) for
each t ∈ I and (Ht)# is its induced groupoid homomorphism. This gives
F ([γ], 0) = (H0)#([γ]) = f#([γ]), F ([γ], 1) = (H1)#([γ]) = g#([γ]) for all
[γ] ∈ π̄1M and also F continuous, so a homotopy between f# and g#.

Conversely, let f#, g# be induced groupoid homomorphisms of two con-
tinuous functions f, g and f# and g# be homotopic. So, there exists a ho-
motopy G : π̄1M × I → π̄1N satisfying G([γ], 0) = f#([γ]) and H([γ], 1) =
g#([γ]) for all [γ] ∈ π̄1M . Define a map L : M × I → N by L(x, t) =
pN (G([cx], t)) and it satisfy L(x, 0) = pN(G([cx], 0)) = pN(f#([cx])) = f(x),
L(x, 1) = pN(G([cx], 1)) = pN (g#([cx])) = g(x), for all x ∈ M . It is clear
that L is continuous, thus a homotopy between f and g. 2

Proposition 4.23. LetM and N be two topological spaces then f :M →
N and g :M → N is a homotopy equivalence if and only if induced groupoid
homomorphisms f#, g# is a homotopy equivalence.

Proof. Let f : M → N and g : N → M be a homotopy equivalence,
this implies f ◦ g ' IdN and g ◦ f ' IdM . Proposition 4.22 implies that
(fog)# ' (IdN )#, on simplification, we can have f# ◦ g# ' Idπ̄1N and also
similarly g# ◦ f# ' Idπ̄1M . Thus f#, g# is a homotopy equivalence.

Conversely, let f# : π̄1M → π̄1N and g# : π̄1N → π̄1M be a homotopy
equivalence, this implies f# ◦ g# = (f ◦ g)# ' Id(π̄1N) = (IdN )#, and
g# ◦ f# = (g ◦ f)# ' Id(π̄1M) = (IdM)#, Proposition 4.22 implies that
f ◦ g ' IdN and g ◦ f ' IdM . Thus f, g is a homotopy equivalence. 2

Corollary 4.24. LetM and N be two topological spaces thenM be same
homotopy type to N if and only if π̄1M is same homotopy type to π̄1N .

Proof. The proof follows from Proposition 4.23. 2

Proposition 4.25. Let T : (π̄1M,IpM ) → (π̄1N, IpN ) be a topological
groupoid homomorphism then induced base map bT :M → N is a contin-
uous map such that (bT )#([cx]) = T ([cx]),∀[cx] ∈ π̄1M .
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Proof. Here T : (π̄1M, IpM ) → (π̄1N, IpN ) is a topological groupoid
homomorphism. So by Proposition 3.9, induced base map bT : M → N
is a well-defined map and also satisfies that pN ◦ T = bT ◦ pM . Lastly,
about the continuity of bT , for every open set V of N , the (pN ◦ T )−1(V ) =
(bT ◦ pM)−1(V ) = pM

−1(bT
−1(V )) is an open set in π̄1M . Since standard

projection pM is an open map, the pM((pM)
−1(bT

−1(V ))) = bT
−1(V ) is an

open set in M . Thus bT is a continuous map. Moreover, bT gives induced
map (bT )# : (π̄1M, IpM )→ (π̄1N, IpN ) and ∀[cx] ∈ π̄1M the (bT )#([cx]) =
[bT ◦ cx] = [cbT (x)] = T ([cx]). 2

Remark 4.26. i) If T, S : (π̄1M, IpM ) → (π̄1N, IpN ) are two topologi-
cal groupoid homomorphisms and even though they may be different, but,
sometimes one can see bT = bS .
For this, we have an example, consider the projective plane P 2 = S2/ ∼ is
the quotient space of the sphere over antipodal identification. The identity
map Id : (π̄1P

2, IpP2 )→ (π̄1P
2, IpP2 ) and S : (π̄1P

2, IpP2 )→ (π̄1P
2, IpP2 )

defined by S([γx]) = [γx] are obviously topological groupoid homomor-
phisms and they are different, but we can see bId = bS . In fact, both
of them are equal to IdP 2 . Therefore, we cannot coin a proposition that
“T, S : (π̄1M, IpM ) → (π̄1N, IpN ) be two topological groupoid homomor-
phism then T = S If and only if bT = bS”.
ii) Converse of Proposition 3.10 need not be true, because for the map
T : (π̄1P

2, IpP2 )→ (π̄1P
2, IpP2 ) by

T ([γx]) =

(
Idπ1(P 2,x0)([γx]) if [γx] ∈ π1(P

2, x0)

[cx0 ] Otherwise,

is a non-constant topological groupoid homomorphism, but, bT is a con-
stant.

Proposition 4.27. Let g :M → N be a continuous map and g# : (π̄1M, IpM )→
(π̄1N, IpN ) be its induced groupoid homomorphism then b(g#) = g.

Proof. Proposition 4.25 implies (b(g#))#([cx]) = g#([cx]),∀[cx] ∈ π̄1M .

We can see this result by contradiction, that is, suppose b(g#) 6= g, this
implies there exists at least one x0 ∈ M such that b(g#)(x0) = y0 (say)
is not equal to g(x0) = y1 (say). But this gives that, g#([cx0 ]) = [cy1 ] 6=
[cy0 ] = (b(g#))#([cx0 ]), which is a contradiction. Therefore b(g#) = g. 2

Proposition 4.28. Let T : (π̄1M,IpM ) → (π̄1N, IpN ) be a topological
groupoid homomorphism then bT = b(bT )# .
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Proof. By Proposition 4.25, (b(bT#))#([cx]) = g#([cx]),∀[cx] ∈ π̄1M .
We can see this result by contradiction, that is, suppose bT 6= b((bT )#), this

implies there exists at least one x0 ∈M such that bT (x0) = y0 (say) is not
equal to b((bT )#)(x0) = y1 (say). But this gives that, bT#([cx0 ]) = [cy1 ] 6=
[cy0 ] = b((bT )#)([cx0 ]), which is a contradiction. Therefore bT = b(bT )# . 2

Proposition 4.29. Let T : (π̄1M,IpM ) → (π̄1N, IpN ) be a topological
groupoid isomorphism and bT : M → N be the induced base map of T ,
then (bT )

−1 = bT−1 and the bT is a homeomorphism.

Proof. Here T : (π̄1M, IpM ) → (π̄1N, IpN ) is a topological groupoid
isomorphism. So bT is bijective by Proposition 3.11(i), and by Proposition
4.27 both bT and (bT )

−1 = bT−1 are continuous. Hence the proof. 2

Theorem 4.30. (Main result) Let M,N be two topological spaces and
f : M → N be a map then f is a homeomorphism if and only if f# :
(π̄1M, IpM )→ (π̄1N, IpN ) is a topological groupoid isomorphism.

Proof. If f is a homeomorphism then f# and (f#)
−1 = (f−1)# are

topological groupoid homomorphisms by Propositions 4.19. Hence f# is a
topological groupoid isomorphism.

Conversely, if f# : (π̄1M,IpM ) → (π̄1N, IpN ) is a topological groupoid
isomorphism, by Proposition 4.27, the b(f#) = f and b(f−1

#
) = f−1 and they

are continuous by Proposition 4.25. Thus f is a homeomorphism. 2

Corollary 4.31. (Main result) Let M,N be two topological spaces, then
M is homeomorphic to N if and only if π̄1M is topological groupoid homo-
morphic to π̄1N .

Proof. If M is homeomorphic to N then there exists a homeomorphism
f : M → N . Its induced groupoid homomorphism f# : (π̄1M, IpM ) →
(π̄1N, IpN ) become a topological groupoid isomorphism.

Conversely, if π̄1M is a topological groupoid homomorphic to π̄1M
then there exists a topological groupoid isomorphism T : (π̄1M, IpM ) →
(π̄1N, IpN ), and also from Proposition 4.30, the induced base map bT :
M → N is a homeomorphism. 2
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