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Abstract

This article establishes the Holder continuity of the solutions to a
quasi-linear system of elliptic partial differential equations with sin-
gular coefficients under the assumption of its form-boundary.
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1. Introduction

This article is dedicated to the Holder regularity conditions for the solu-
tions to the quasi-linear system of elliptic partial differential equations with
singular slow-growing coefficients [1-6]. In our previous works was shown
that such a system has the solutions in Sobolev space [1]; in the present ar-
ticle, the Holder properties of these solutions are studied [47-49], [7-10, 36,
37]. The main goal of this article to establish conditions under which the
solutions to a quasi-linear system of elliptic partial differential equations
belong to the functional Holder space.

Let us consider the quasi-linear system of elliptic partial differential
equations

(g — > 18%1- (aij(fv,ﬁ)%uk> + Wz, @, Va) = f*, k=1,.,N

i,j=1,..., J

where A > 0 is a real number; the ¢ is an unknown vector-function of
vector-argument z € R, | > 2 and f = f(z) is given vector-function
f e LPNL>®. The I;(:L‘,u, Vu) is given vector-function. 1. b(zx,y,z) is a
real measurable function of its arguments and b € L} (R'); 2. Function

-

b(x,y, z) almost everywhere satisfies an inequality
(1.2) ey, V)| < gua(@) Vil + pio(a) [ + i)

where p2 € PKg(A), p2 € PKg(A), us € LP(R!); 3. Growth of the function

-

b(x,y, z) almost everywhere satisfies a condition
(13) [6 (e, @, V) ~ (2,5, V0)| < pa(@) |V (@ = )| + ps (@) | — ],

where 3 € PKg(A), us € PKg(A).
The a;;(z) is a measurable matrix of [ x [ size and satisfies the condition
dv, p: 0 <v < p<oosuch that

l l
(1.4) vy &< Y aybg <y & VEeR.
=1

ij=1,...,l i=1

The functional class of form-bounded functionsPKg can be defined as

PEy(A) = {f € L (R, d'w):  |(f[n]*)] < B(A3h, A3h) +c(8)|h}3},
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where a function h € D(A%) and a number 3 > 0 is a form-boundary and

constantc (3) € R [6].
> >—( > >)
LN i=1,.,N

“ﬁ||LP(Rl) = <

Let us denote
) o

(i1, 7) = Z <uv> Yu € LP(R') Yo € LY(RY),
i=1,...,N

[RAES}

then we have equality

=

p—1
(2
u

Wi ={ 20 =2, (

Next, we denote

VY =lar

La(R')’

vl = Z 2

N k=1,.

8:1:k

and

N
Jully = <Zuu u
=1

_2> = é (i [ul? ).

Definition (of weak solution). A vector-function it € WP (R!, d'z) is called

a weak solution to a quasilinear system of elliptic partial differential equa-
tions if the integral identity

. g ., 0 _ > 7o
AU, V) + <”§l aij%ju, 8—331]/> + <b, l/> = <f, 1/>

is valid for all vector-functions v € WﬁO(Rl, d'z).
The main result of this article can be formulated follows.

Theorem 1. The weak solution i € W{(R', d'z) to the quasilinear sys-

tem (1) under the assumptions 1-4 belongs to Holder space of continuous
functions.
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2. The estimation of the main part of the elliptic differential
operator

Let us consider a simpler elliptic system

) A

let us compose the integral identity as

0

Z ;i —1uU if}’ =0
”8333- 78.17,‘ a

i5=1,...1

where 7 € W2, (R', d'z) and @ € W{(R!, d'x) under the ellipticity condition
and the condition vrai max || < oo .

Let us assume that function @ (x) measurable in a ball K,, and there
are Nj functions w'(z), ..., W™ (z) such that for the arbitrary ball K,
concentric with K, there is at least one function " (x) such that

osc{|w"|, Q,} > 61 max osc {|u|, N},

for the function @ (x), we are obtaining that holds at least one of the fol-
lowing inequalities
OSC{|U_;T| ) Qp} < Clpaa

Or
osc{|w"|, Q,} < Dosc{|w"|, Ny},

where the balls K,,, K, and Kj, have the same center, and constant b is
a fix; others satisfy the following conditions bp < pg, b > 1, ¢; <1, § <
1, 9 <19, =QNK,.

Then for p < pg there is an estimation

osc{u, Q,} < A (ﬁ) )
P0

where we denote .
. (e} + —
a = §-min{—log, ¥, 6}, ¢ = b 5 — max{b*M mex osc{|wW], Uy}, c1p0}

and u = |u.
To assert that the function « belongs to Holder space enough to show
that
osc{|d], Kr} < vosc{|u|, Kar}.
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For a positive number € > 0, let us consider the function (@) =
—In2(1 — |@| + ¢€), presuppose that in the ball Kr holds the estimation
—In2(1 — |@] +€) < L, then we obtain that w < 1—|dl +e¢, or
li(z)] < 1— %;—L) + ¢ if we put ¥ =1 —Mpz_—L) + ¢ and the number
e > 0 converges to zero we obtain that osc{@, Kr} < Josc{u, Kar}. So,
we have to show that the function w(z) = ¥(@)(x) = —In2(1 — |td(z)| + €)
is bounded.

It can be assumed that the oscillation of function @ (z) in the ball Kap
equals one, that is 0 < @(xz) < 1, then one of the properties is always
executed:

1 1
mes {a: € Kg, |u(z)| < 5} > §mesKR,

1 1
mes {a: € Kp,1— Ju(z)| < 5} > §mesKR,

if holds the first property we consider the function @ (x), if the second is
true we consider 1 — 4 (x). Assume that the first property executes then
for arbitrary function ¢ € W12,0 (K2Rr), we have

0

Z ;i —1U i@’ =0
Zja%'j 761'1‘ K -
2R

i,j=1,...,1

To show that the function w(z) = ¥(4)(z) = —In2(1 — |[d(z)| + €) is
bounded above, we denote

- E(l') e o
e) = s = ¢ D@
since 9 5 5
S onE Yoo 1 Y7
we are obtaining
<4 _Z awa.’I}jU7¢) gaxz |u|> * < _Z ij 81}ju’¢ 8$Z£> =0
i,7=1,...,l Kor i,5=1,...,0 Kar
o -0 o . 0\
<. 2 gy Oy '“"> +<. 2 %“’%f> =0
i,5=1,...,0 Kar i,7=1,...,0 Kar

Denote function & = ¢? (Jx_—RmOl), where the function ¢(t) equals one if
Lﬁ € {0, %] and if argument equals two ¢(t) linearly decreases to zero
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|z — xo| = 2R. Applying elliptic condition v 3!, €2 < Dij=t,.. @i (2)6i€5 <
uZézl £ V¢ € Rl we obtain

o 164
<|Vw|2>K3R < U—RQmesKQR.
5

Next step, we will apply Moser’s idea: that from the boundedness of
the convex function

w(z) = P(u)(r) = =21 — |i(z)] + €)

follows that the function « is Holder continuous.
Since 0 < (x) <1 and

w(x) = (@) (x) = —In2(1 - |a(z)| +¢)

we have
infw(z) =—1In2(1+¢).

The value <|w|2>K can be estimated by applying the De Giorgi
3R
method or Nash estimaiion, we will use the De Giorgi lemma [23, 24].

Let vector @ € WP(Q), for all positive number k, we denote by Ay
the set Ay = {x € Q: |ii(x)| > k} and the sets A = {x € Q : |i(x)| = k},
App = {z € K, |[d(x)| > k} and function ui(z) = max (|u(z)| -k, 0).
Form definition we deduce the following properties:

1-Ak = U Ak+€

e>0

2.mes (Ak\Ak+te) =%0
3.mes (Ak,g\Ak UA%) =%
duy € WIP(Q)

Lemma 1. Let @ € WZ(K,) and A is an arbitrary subset of a set K,,
denote set Ag = {z € K, : |u(z)| =0} and positive number 3 > 0 that
only depended on the dimension of space then for all k > n the following
inequalities hold

[

(Jil)a < Bt (mesA)

1=

(Vi) g, »
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1=

p ~
<

(n—k) (mesAn,p)l_

= |m —| M ﬁ — m 17#
AV (™) i, < m (V@™ %, (la) — k™)

There is a constant that ¢ that depends only on the dimension of the
space and the ellipticity of the matrix, such that

<|Vw|2>K3 < cR.

3R
Let us denote
¢(z) = ¢*(x) max (w(z) —k, 0) Vk

where the function ¢ is a cutoff function for the ball K,, p € [R, %R

I

then we obtain estimation (here we denote A , = {z € K, : w(z) > k} )

o .0 ) )
E : LY E Y _ <
< Qg a$jw7(p 8$w>A +< Ay 8:ij’2('0 (w k) al‘z(p>A <0
k.p

i,j=1,...,1 L i,j=1,...,1

that is
(Ivele?) <=1 IVel),

thus, we have obtained that there is a constant M that depends only on the
ellipticity constants and dimension [ of the space such that holds inequality

vraimax w(z) < M,
Kpg

so, the function-solution u belongs to the Holder’s functional class.

Lemma 2. Let @ (x) is a given measurable in a ball K function and balls
Ky, Ky,and K, ,, with a common center, and constants 1 > oq > 0, v >
0, «a>0,e>0,and ¢ <G, m < a<em+m, and for arbitrary natural
number k > ko holds the inequality

(Iva™) <o ((fu] = k)™ 4, + VR (mesAy )T

Ak,p—rfﬂ

Then in the ball Ki_,, the value vrai max |ti(z)| can be estimated by
1—0o

a constant that only depends on oo, v, «, €, ko, m, | and magnitude
a= (@ ()] — k™)

Agg”
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Proof. Let k > ko be the natural number and consider the Sequence

K, of balls having a common center and with radii p; = 1 —o0o+ 2, 7=

21 9y
0,1, 2,...., and the sequence of the planes k; = 2k — 22, 1=0,1,2,...
Let us denote & (t) the continuous differentiable non-increase function of
the argumentt € (—oo, 00), which equals one when ¢ < o and zero when
t> %00 next we denote the sequence of functions

&(t) =€ (27 (12l = 1+00)), i =0,1,2,...
and sequence of numbers

Ji=((u—=k)"),, ,i=0,1,2 ..

i1Pg

We estimate

Jiv1 < ((u—kip1)™EM) 4 L i=0,1,2,....

k¢+17pi+gi+1
and applying Holder estimation, we are obtaining recurrent inequality

Jivr < {(u = ki)™ 6" 4 et
1

<C (mesA o pz-&-pz 1) (|Vul™)

~|3

) Pit+Pi41
kit1,—o—

m
!

Lo (mesA ) €™ 2 (w— k)™, =
tEO'O,iO'O

1P

~I3

=C (mesA pl+pz+1> (|Vul™)
%

+C <mesA pﬁml) E'@)|™ 2™, i =0,1,2, ...
t€ 0‘0,50'0

Pitrit1
b=

We put k = ki1, p = pi, p— op = 254 then

m im—+3m L. m
IVl >Ak BpALIES! <72 (= it >A’“i+1vpz‘
+’7kz+1 (meSAszrl pz)li_+€ < m
<y (23m 4 29) 20 ] 4 (23 - 29) ke (mesAkHl,pi)l_TJrE )

Further, we assess

Ji > (Ju— Eki|™) > (ki1 — ki)™ (mesAp,, 1 p) = 27 MHDE™ mes Ay,

Aki+1 Pi

i+150%°
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Then, when &~ > m+me —a >0, we have

+1 < 012 ( ) ( *—JZ1+T +k m— m5+aJ1+g> .
However, the estimations

Ji=((w=k)" g <{(u- %)m>Ako,1 L i=0,1,2,..

iPq

are holding and so for k& > 1 we are obtaining the recurrent inequalities

Jis1 < C4 (1 1 <(u - l%)m>%_a> 2i(m+m72)/2—m—me+aJ11+f, i=0,1,2, ..

Ak 1

Let us choose the value k > 1 such that the inequality

b2 ma (i 1, (001 04 (u= )Y
kg, 1

£

m?2 1
) (m+T) e(m+me—oa)(1+e) <(u _ ]%)m> m+msa>

Akg 1

holds. So, we have

R G P L (IO

1

< (011+01<( k)m>7) ‘g (m+m7>e2

Ako,l

applying the recursivity of the last estimation we obtain

m2

_ 4 m= K
Jir1 < Const2 (m l )E,i:O, 1,2, ...,

1—00

Jiy1 — 0.

Thus, we have obtained vrai nax lu(x)| = 2k, the lemma 2 has been
1—0o
proven. ’

Lemma 3. Let function @ € Wi (Q), [ > 2 and B (r) is a ball radius 7.
Then there is an estimation

1
7

mes (©) (|al)z < Br! (mes (2))7 (V@ (-)]) gy
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here © is a set of points of the ball B (r) such that # (z) = 0, and constant
B is a function of the dimension of Euclid space.

Proof. For almost every = € B (r) and y € =, there is a representation

2=yl 9t (x + w
i) -G = [ P,

where (p, w) are spherical coordinates. Next, we integrate this with re-
spect to y € 2 and obtain a iquality

lz=yl 91 (x + w
—ii (z) mes (©) = </0 %Jprp)d» .
B

We can estimate

<f0\z—y| o1 aé—;wp dp> <

< o b =yl df = y| f57 2 dp <
<fle—ul eyl ([ZE%) - (v
B(r) B(r)

so, we have an inequality

) <2r>’< i () >
u(x)| mes(0©) < .
ames (©) < - ()

We integrate over =

([d])g mes (©) <

, d§
] /B(T) ’VU(Z/)WZ//EW

It is easy to see that
d
/ % =¢e-mes (9)
ly—¢|<e |y — €|

and

d
/ % < el mes (2)
ly—€l>e |y — €|

so, we obtain an estimation
d
/ ﬁ <e-mes(S)+et-mes ().
E |y —

Lemma 3 is proven.
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3. Quasilinear system of elliptic partial differential equations
with nonlinear perturbation

Let us consider a more general case of a quasilinear system of elliptic partial
differential equations with nonlinear perturbation b

ML — 813% (aij(x, ﬁ)%ﬁ) -+ b($, ﬁ, Vﬁ) =0,

The investigation will be carried out according to the scheme: we study
the solution @ € W? (R!,d'z) of the quasi-linear partial differential sys-
tem of elliptic type, establish certain a priori estimations of this solu-
tion and its derivatives (applying the definition of a weak solution and
assuming that element v € W{{O(Rl ,d'z), we are obtaining the theorems
about this solution); study the properties of some functions of this solution
i€ WP(R', d'z) (in the simplest case (@) = —In2(1 — || + ¢)).

Applying this definition of a weak solution, we compile the following
differential form A% : W} x Wi — R as

—

W (@, 7) = M@, 7) + (Vi 0 a o Vi) + (b, @, VD), 7)

which is well defined over the functional space WY (R!, d'z) x W{(R!, d'z).

Let us assume that function @ € W} (R!, d'x) is the solution of (1) that
means that for an arbitrary function 7 € WﬁO(Rl ,d'z) holds an integral
tautology

0 0 -
hp(ﬁ,ﬁ)z)\(ﬁ,27>+< ai‘—ﬁ,—27>+ 5.3) = 0.
* zjgl 0x; 7 O < >

To prove that function  is Holder continuous let us introduce a function
of the solution of (1) as

P osc{u, Kor} — i(z)| +¢
w(z) =Y(u)(zr) = —In < 8o 0320?71, Kor} >

then we are going to show that

osc{u, Kop} — |u(x)| + 6)
_ <
In ( 09 osc{u, Kog} M

and

9o 0sc{u, Kor}
< M
osc{u, Ton] — i) 1= = “PM)
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and its conclusion
|i(z)| < (1 —exp(—M)d2) osc{u, Kor} + ¢,

where u = |
Let us assume that in the integral tautology of weak solution @ €
WP(R!,d'x) the function v € WﬂO(Rl, d'z) is @ |@|P! then we obtain

Maalar) + < Z ama 9 (ﬁ|ﬁ|p1)>+<5,ﬁ|ﬁ|p1>:0,
1,j=1

and

—*; —-\p — 7 S o p—
A|| ”p+ p < Z az]2 U 2 VU§| | 2 VZU>+<b,u|u|p 1>:O7

,J=1,..

p=2 p=2
let denote @ = @|u| 2 and respectively Vi = £ i| "2 Vi, the in all R!,
applying Holder and Young inequalities to Lebesgue’s norms, we have
= L Sip— 2 o
’<b,u |al? 1>‘ < ((% + 1) c(B) + U—qq) | +
2 -
—l—(‘%—l—ﬁ—l—%e%) <VwoaOVw>+%7 13"
or
L, 4(p—1 - - 2 -
Aa|)? + (p ) (Vi 0 a0 Vi) < ((% + 1) c(B) + qu> @) +
+ (& +p+ 1) (V@oao Vi) + 2 s
Let K,,, K, and K, be concentric balls and constant b such that

bp < po, b>1 cg <1,0<1 9<1land Q, =0QnNK,. Theg()
a cutoff function in the ball Ky and let us choose v = ¢Pu \u|p , we have

< 3 %8 i, (gpu]u\p 2)>

,7=1,..

)\<ﬂ', gpﬁ\u|p_2>

Kor

9 = 8 7 P2
<Zi,j:1,...l awa—zju,a—xl (Cpu]u|p >>K2 =
L2 5
= (p— 1) (Xijor..iPay 07 20|

2|7 P—2 0~ 0
+p<21,j:1,...zaUUIu\ g W axi§>K2R
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—2
we denote W = ﬁ]ﬁ\pT then
0 0 _ 4(p—1)
p,. .~ = Y (=22p2 — 2\ ) PTaT =
<ij:21:ml§ aij 0xju’ o7, (u|u| )> pe (s VwoaoVw>K2R,

Kop

after the transformation of the second term on the right side

0 0 0 0
= 1op—2 = p _ p—1_ =|=p—2 -
< Z a5 |1 axju’ ox; (¢ )>K p< Z < aiald) 8a:ju’ 3wig>K
2R 2R

i,j=1,...1 ij=1,...1

by Young inequality, we have had

-1 — | = p—2 - 9
(Sijmra P a2 il oe) <

R
/v p=1, alaP2|2glf [P
§p<zzu:17...7lg aij i |1 oz; U 0|92 S K2R+
1 p—1 ., =1=2p=2 9 - 9
4 <Zi’j:1"“’l gl Bz; W 356i§>K2R ’

Theorem 2. Let do, 03 be positive constants such that
mes {x € Kg, |u(z)| < max |i(z)| — 02 0sc{u, KQR}} > (1 — 63) mesKp,
2R

then there is a positive constant 01 that depends only on the ellipticity,
smoothness of coefficients, the dimension of space, and constants ds, I3
such that

osc{u, Kr} < max lu(z)| < (1 —01)osc{u, Kor} + R'"w
R
for all m > 1, where u = ||
Comment. From Relliha — Kondrashov theorem for Sobolev space and
statement that all elements belonging Sobolev space W? (R, d'z), 1 <p<
oo belong to the Holder continuous functional space of a = p-t degree we

can conclude it is enough to consider only a case when p <.

Proof. For a positive number d9, let us consider the function

w(z) = (@) (z) = —In (080{% Kar} — |i(z)| + 5)

52 OSC{U, KQR}
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and let us assume that in the ball K the estimation

osc{u, Kop} — |tu(z)| +¢
In ( 9y 0sc{u, Kor} ) <L

holds then we have the estimation
da0sc{u, Kop}exp(—L) < osc{u, Kar} — |u(z)| + ¢
or
|i(z)| < osc{u, Kap}—0dz0sc{u, Kor}exp(—L)+e = (1 — daexp(—L)) osc{u, Kog}+e
put §; = dpexp(—L), we obtain
osc{u, K} < max |i(z)] < (1 —d1)o0sc{u, Kar} + Rk#,

where ¢ = R'%. Theorem 2 has been proven.

Assuming 7 = @ ||’ ? in
S 9 . 0 >
)\ <'LL,’U> + < Z (Iija—xj’u,, 8—%’U> + <b,'l}> = O

ij=1,...,1

=2 -
| 2~ Vi, we are obtaining

£y

denoting @ = @|i| 2 and Vii = & |

Al + 2220 (v (a3 ) o a0 v (@fi)2) ) < (£ +1) e (8) + 54 " +
+ (& 4+ 5+13)(V (@)@ T ) oao v (@a@T ) + 2 ]
Let assume
osc{u, Kop} — |u(z)| +& P’

where the 5 countable smooth cutoff in the ball Ky and notice that can

be written .
Vu

osc{u, Ko} — |u| + ¢’

Vi =

then we have
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and

<5 %>< /LlIWIer!'ulﬂis,H = .
since £ is countable smooth
m |Vl J?:[> + <+/L2 |al J;> + <:u37 Jg

cutoff in the ball Ksgr by integrating over the ballKsr, we have

(5.8) < IV + ol + s,
Ksr

Ky
S s £
(w8 (el ) ()
Kaor Kaor Ksor

by Holder estimation

<mw H> - (m

) < 1V [ ]

Kor'
and Young inequality
19y 1 8], < IV + i €]
from form-boundary, we are obtaining
i 8, < (1) <sladl,, +eovel,,

a similar consideration gives us

<u jal H>K2R < ||l g

Since pu3 € PK3(A) we are applying form-boundary and obtaining

W <o oot
P Ksr
Kop
If we assume that p; € L>°(K3g) we have an estimation

Mzg

<

H2F

Kop

@7l

KzR

1
2

< e lurai max (,u2 ‘ED (mesKap)? ,

Ksr
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the assumption p; € L*°(Kspr) imposes too strong conditions on the coef-
ficients.

After reducing, we are obtaining that the function

DI ¢
osc{u, Ko} — |u(z)|+e P

is bounded. Theorem 1 has been proved.
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