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1. Introduction

The Uniform Boundedness Principle (UBP) is one of the fundamental prin-
ciples in functional analysis. The locally convex topological vector spaces
for which the equicontinuity version of the UBP holds are known as bar-
relled spaces. See [5] for the basic results on these spaces.

To show a particular space is barrelled, a method of proof known as
a gliding or sliding hump argument is frequently used. In this paper, we
present a fairly general gliding hump condition on a normed linear space X
that implies barrelledness. We give some examples of spaces that have this
condition. Ultimately, it would be highly desirable to have a gliding hump
characterization of barrelled spaces.

2. Main Results

Definition 1. Let X be a normed linear space. A bounding sequence in
X for an unbounded (y,) C X* is a sequence (x,,) such that |y, (z,)| — oo
as n — oo.

It is not difficult to show that any unbounded sequence (y,) C X*
has a bounding sequence (x,,) C X. It should be noted that each bound-
ing sequence (x,) is specific to a given unbounded sequence (y,). In the
following, w (y,) denotes the weak topology on X induced by a sequence
(yn) C X*. We can prove the following result.

Theorem 2. X is barrelled if for every subsequence (z, ) of a bounding
sequence (x,,) there is a further subsequence :L‘nkl> such that 3572 &, =

x, where the convergence of the series is with respect to the w (yy,) topology
on X.

Proof: To show barrelledness, we need to show that every pointwise
bounded sequence (y,) C X* is uniformly bounded on bounded sets. We
do this by showing the contrapositive. We assume that (y;,) is not uni-
formly bounded and show that (y,) is not pointwise bounded. Let (z,,) be
a bounding sequence for (y;,).

Inductively, we can find a subsequence (x,, ) of (z,) such that
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where

M, = max max {‘ (a: )‘}
Bk 125 <k Yni \Tn;

and

<27k

AL

The last condition is possible since (x,, ) must go to zero with respect
to w (yy) , by the assumptions in the theorem.
Note that My 1 oo as k — oo since (x,) is a bounding sequence.

We can now find a subsequence (a:nkl) such that 3% an, =z € X,

where the convergence is with respect to the w (y,) topology.
Then

‘ynkl (x)) = ynkl gzé_—ll wnk) + ynkl (x”kl> + ynkl (Z]Q.;Prl xnk])‘
Y, mnkl)’ o [y”kl (22;11 x”’ﬂg)’ ~ Yy, (ZJQO:Z'H :Enkj)’ )

Using the conditions above we get

v

Yo, (@) = 28 (M, +1) = 1My, = 22,27
> (20— 1) My 28— 05, 27,

which goes to oo as | — oo. This shows that (y,,) is not pointwise bounded.

Sequences that have the property used in the previous proof for (x,)
are frequently called K — sequences in the literature. This name comes
from the Katowice branch of the Polish Academy of Sciences, where such
sequences were used to prove many classical results in functional analysis.
See [1] for much more information on this subject.

As a corollary, we can give a fairly general condition for dense barrelled
subspaces of [!. In the following, (e;) is the sequence of canonical unit
vectors in [' and ® denotes span {e; :i € N}. It is easy to see that (e;)
(or a subsequence thereof) forms a bounding sequence for an unbounded
(yi) C 1%

Corollary 3. Let E denote a subspace of I* that contains ® and let (t) €
I' be a fixed sequence with positive terms. Note that for any unbounded
(yr) C I there is a sequence (tiey, ) for which supy |yi (tken, )| = co. E
is barrelled if for every sequence (ny) there is a subsequence (ny,) with
Yotk Eny,, € E, where convergence is pointwise or coordinatewise.
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From this it is easy to show that many dense subspaces of ! are bar-
relled, including scarce copies (copies that satisfy a sparseness condition)
of 1% = No<p<1!P. This was first shown in ([2], Theorem 8). The definition
of a scarce copy can be found in ([2], Section 5).

We next show that a general condition that implies the Nikodym Prop-
erty (NP) for rings of subsets of a given set can be shown to be a corollary
of Theorem 2. The original Nikodym Boundedness Theorem was proved
for countably additive set functions defined on o-algebras of sets. It has
been generalized to finitely additive functions defined on rings of sets that
satisfy various completeness conditions. The result referred to in this paper
was originally proved in [4]. To show that it is a corollary to Theorem 2 we
need to note that the union of a sequence (E,) of disjoint sets in a ring R
can be viewed as the summation of the characteristic functions of E,, € R,
denoted Kg,. Let S(R) = span{Kpg : E € R} . For a given (y,) C S (R)",
the topological dual of S (R), it can be shown that any subsequence (E,)
has a subsequence (Ey,) for which >772; K, converges with respect to
w (yn), the weak topology on S (R) induced by (y,) (See [5] Section 9.2
for details). Recall that the elements of S (R)* are the bounded, finitely
additive measures on R, denoted ba (R) . This can be seen as a consequence
of the result in ([3], IV.5.1, pp. 258-259). This result shows that the dual
of S(X) = span{Kg: E € ¥}, where ¥ is an algebra of sets, is ba (X).
An inspection of the proof reveals that only the ring properties of X are
used, so the same conclusion can be be reached for S (R). The Nikodym
Property of R is that every pointwise bounded (y,) C ba (R) is uniformly
bounded. So it is equivalent to S (R) being barrelled.

Definition 4. The ring R is said to have the bounded subsequential com-
pleteness property (BSCP) if for every unbounded (y,) C ba (R) there is
a bounding sequence (E,) C R for which every subsequence (E, ) has a

further subsequence (Enkl) with Ui Eyp, € R.

The following result appeared in ([4], Theorem 7). It should be noted
that a modification of a theorem of Drewnowski is used in the proof. The
result states that for a sequence (y,,) C ba (R) and a pairwise disjoint se-
quence of sets (E,,) from R, there is a subsequence (E,,, ) such that each (y;)
is countably additive on the ring generated by (Ey, ). (See [4], Corollary
5).
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Theorem 5. If R has BSCP then R has NP.

A converse of the previous theorem can be proved in the case that R
is an ideal. Recall that an ideal is a ring of sets such that if A € R and
B C A then B € R.

Theorem 6. If R is an ideal then R has NP <= R has BSCP.

Proof: The sufficiency of BSCP in showing NP is stated in the previous
result. Now assume that R fails BSCP. Then there exists an unbounded
(yn) € S(R)* such that for any bounding sequence (F,) there is a sub-
sequence (E,, ) for which no subsequence satisfies UZ1En,, € R. We can
define (z,) C S(R)" as

yn (A) for A C E,
0 otherwise

zn (A) = {

Then z, is unbounded on R but for no A € R is supy, |z, (4)| = oo.
This is because if there were such an A then U2, B, =U2, (ANE,,) €
R since R is an ideal. But this means that (B,,) would be a bounding
sequence for (zy, ) and thus for (y,, ) which would contradict the assumption
that R fails BSCP.

Examples

It is shown in ([4], Proposition 10) that the ring of null sets of a strongly
nonatomic submeasure 7 has the BSCP. A submeasure n on a set S is
strongly nonatomic if for any € > 0 there is a finite partition of S, (E;),
such that 7 (E;) < € for all i.

The standard density on the natural numbers N is defined to be

1
d(A) =lim SUPn—oco” |AN{L,2,....,n}|

and the uniform density on N is

1
dy (A) = lim supp—oeosupm— [AN{m,m+1,....m+n—1}|.
n

It is not hard to show that these measures are strongly nonatomic on
N. Simply note that if we partition N into the sets (F;), 0 < i < k — 1,
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1
of numbers that are equal mod k, then d (E;) = dy (E;) = z for each i. So

the rings of null sets of these measures are examples of rings that have the
BSCP.
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