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Abstract

A group G is called a CA−group, if all the element centralizers of
G are abelian and the commuting graph of G with respect to a subset A
of G, denoted by Γ(G,A), is a simple undirected graph with vertex set
A and two distinct vertices a and b are adjacent if and only if ab = ba.
The aim of this paper is to generalize results of a recently published
paper of F. Ali, M. Salman and S. Huang [On the commuting graph
of dihedral group, Comm. Algebra 44 (6) (2016) 2389—2401] to the
case that G is an CA−group.
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1. Basic Definitions

Throughout this paper all groups are assumed to be finite and graphs will
be simple and undirected. Suppose u and v are vertices in a graph Γ.
The distance d(u, v) and detour distance dD(u, v) are defined as the length
of a shortest and longest path in Γ, where shortest and longest paths are
paths containing minimum and maximum number of edges, respectively.
The eccentricity and detour eccentricity of u ∈ V (Γ) can be defined as
ecc(u) = max{d(u, v)|v ∈ V (Γ)} and eccD(u) = max{dD(u, v)|v ∈ V (Γ)},
respectively. The radius, detour radius, diameter and detour diameter of
Γ are defined as the minimum eccentricity rad(Γ), the minimum detour
eccentricity radD(Γ), the maximum eccentricity diam(Γ) and maximum
detour eccentricity diamD(Γ), respectively. A vertex u ∈ V (Γ) is called
central (detour central) if ecc(u) = rad(Γ) (eccD(u) = radD(Γ)). The set
of all central and detour central vertices of Γ are denoted by Cent(Γ) and
centD(Γ), respectively.

In a similar way, a vertex u in Γ is called a peripheral or detour periph-
eral if ecc(u) = diam(Γ) or eccD(u) = diamD(Γ), respectively. The detour
degree dD(u) is defined as the size of

D(u) = {v ∈ V (Γ) | eccD(u) = dD(u, v)}

and the number Dav =
1

|V (Γ)|
P|Γ|

i=1 dD(vi) is the average detour degree of
Γ. The non-increasing sequence of detour degree vertices of Γ is named the
detour degree sequence and denoted by D(Γ).

Set Di(u) = |{v ∈ V (Γ) | dD(u, v) = i}|. The sequence

(D0(v),D1(v), · · · ,Decc(v)(v))

is called the detour distance sequence of a vertex v in Γ and we use the
notation ddsD(Γ) for this sequence. It is easy to see that D0(v) = 1 and
Decc(v)(v) = dD(v).

Suppose v is a vertex in Γ. The neighborhood of v, N(v), is the set of all
vertices in Γ adjacent to v and the set N [v] = N(v)∪{v} is called the closed
neighborhood of v. The vertex v is a boundary vertex if d(u, v) ≥ d(v, t),
for each neighbors t of v. If N(v) induces a complete subgraph then the
vertex v is said to be complete. Note that the vertex v is a boundary
vertex if and only if it is complete vertex. A vertex t on a u−w path with
this property that d(u, t) = d(t, w) is an interior vertex and the subgraph
induced by all interior vertices is the interior of Γ and denoted by Int(Γ).
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It is easy to see that a vertex v is an interior vertex if and only if it is not
a boundary vertex.

Suppose W = {w1, w2, · · · , wk} is an ordered subset of vertices of Γ and
v ∈ V (Γ) is an arbitrary vertex. The k−vector
r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)) is called the representation of v
with respect to W . The set W is called a resolving set for Γ if r(v|W )
6= r(v|W ), for distinct vertices u, v ∈ V (Γ). The metric dimension β(Γ)
is the minimum cardinality of a resolving set for Γ. For example, it is
easy to see that β(Kn) = n − 1. An i−element subset of V (Γ) is also
named an i−subset. The resolving polynomial of Γ is defined as β(Γ, x) =Pn

i=β(Γ) rix
i, where R(Γ, i) is a family of resolving sets for Γ, ri is the size of

R(Γ, i) and n is the number of vertices in Γ [1]. The sequence (rβ(Γ), · · · , rn)
of coefficients of β(Γ, x) is called the resolving sequence of Γ. The distinct
vertices of u, v ∈ V (Γ) are called twins if N [u] = N [v] or N(u) = N(v)
depend on u and v are adjacent or non-adjacent. A subset U of V (Γ) is
called a twin-set in Γ if u, v are twins in Γ for every pair of distinct vertices
in U . One can easily seen that if Γ is connected and u, v are twins in Γ
then d(u, x) = d(v, x), for every vertex x ∈ V (Γ) \ {u, v}. Every resolving
set for Γ contains at least l − 1 vertices of U , where l is the size of U .

Our other notions are standard and can be taken from the books [2, 9].
Our calculations are done with the aid of GAP [15].

2. Commuting Graph

Suppose G is a finite group. The commuting graph of G with respect
to a subset A of G, denoted by C(G,A), is a simple undirected graph
whose vertices are all elements of A and two distinct vertices are adjacent
if and only if they are commute to each other. If A is a set of involutions
then Γ(G,A) is called a commuting involution graph, and if A = G then
we write C(G) as C(G,G). The commuting graphs have been studied by
mathematicians for about half of a century. With the best of our knowledge
the first appearance of these graphs is related to the pioneering work of
Fischer on 3−transposition groups when the subset A is a conjugacy class
of involutions [4].

Iranmanesh and Jafarzadeh [8, Conjecture 2.2] conjectured that there
is a natural number b such that if G is a finite non-abelian group with C(G)
connected, then diam(C(G)) ≤ b. In 2014, Giudici and Pope [6] obtained
some upper and lower bounds for diameter of the commuting graphs of some
classes of finite groups. They also have produced an infinite family of finite
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groups with trivial center and diameter six. In the same year, Giudici and
Parker [5] constructed an infinite family of groups with nilpotency class
two and unbounded diameter which disproved the mentioned conjecture
of Iranmanesh and Jafarzadeh. Morgan and Parker [10] proved that this
conjecture is true for finite groups with trivial center.

3. Commuting Graph of CA−Groups

Throughout this section all groups are assumes to be CA−group and the
radius, diameter and detour distance of commuting graphs are calculated
for these groups. As a consequence, all results of [1] are generalized to
the CA−groups. We also assume that Z(G) = {u1, u2, · · · , ut}, Cm1 , Cm2 ,
· · ·, Cms are components of C(G \ Z(G)) and m1 = |V (Cm1)| ≥ m2 =
|V (Cm2)| ≥ · · · ≥ ms = |V (Cms)|. The complete subgraph of Γ induced by
Z(G) is denoted by C0. Note that all components are complete subgraphs
of Γ and the elements of center are adjacent to all other vertices of Γ.

Lemma 3.1. Let G be a CA−group and Γ = C(G). Then the followings
are hold:

1) rad(Γ) = 1 and diam(Γ) = 2,

2) Cent(Γ) = {u ∈ V (Γ)|u ∈ Z(G)},

3) Γ = Cent(Γ) ∨ Per(Γ),

4) Γ = C0∨(Cm1 ∪Cm2 ∪ · · ·∪Cms), where Co is a complete subgraph of
Γ induced by Z(G) and Cm1 , · · · , Cms are components of C(G\Z(G)).

Proof. (1) For each u, v ∈ V (Γ) and x ∈ Z(G), there exists a path
u − x − v hence diam(Γ) = 2 and hence ecc(x) = 1. This proves that
rad(Γ) = 1. (2) and (3) are easy consequences of [1, Proposition 1.2 and
1.3]. (4) By [10, Proposition 3.1] and Case 3, the commuting graph C(G \
Z(G)) is a union of complete graphs if and only if Γ is a CA−group. 2

Lemma 3.2. If |Z(G)| ≥ s then for each u, v ∈ V (Γ), eccD(u) = eccD(v) =
|G|− 1.
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Proof. Choose u, v ∈ V (Γ) such that d(u, v) = |G| − 1. Since the ele-
ments of the center is adjacent to all other vertices, there exists a Hamilton
cycle connecting u and v, as desired. 2

The following corollary is a direct consequence of Lemmas 3.1 and 3.2:

Corollary 3.3. Let G be a CA−group and Γ = C(G) then,

eccD(u) =

⎧⎪⎨⎪⎩
|G|− 1 t ≥ sPt

i=1(mi) + t− 1 t < s, u ∈ Z(G)Pt+1
i=1(mi) + t− 1 t < s, u /∈ Z(G)

,

radD(Γ) =

⎧⎪⎨⎪⎩
|G|− 1 t > s
|G|− |(Cms)|− 1 t = sPt

i=1(mi) + t− 1 t < s
,

diamD(Γ) =

(
|G|− 1 t ≥ sPt+1

i=1(mi) + t− 1 t < s
.

Proposition 3.4. Suppose G is a CA−group and Γ = C(G) then,

dds(Γ) = {(1, |G|− 1)t, (1, t+m1 − 1, |G|− t−m1)
m1 , · · · ,

(1, t+ms − 1, |G|− t−ms)
ms}.

Proof. By Lemma 3.1, Γ = C0 ∨ (Cm1 ∪Cm2 ∪ · · · ∪Cms). If u ∈ Z(G)
then d0(u) = 1, d1(u) = |G|−1 and ecc(u) ≤ 1 and so dds(u) = (1, |G|−1).
Choose u ∈ C(G,V (Cmi)). If v ∈ C(G,Z(G)∪V (Cmi)) then d(u, v) = 1 and
hence d0(u) = 1 and d1(u) = t+mi − 1. If v ∈ C(G,G \ (Z(G) ∪ V (Cmi)))
then d(u, v) = 2, d2(u) = |G|− t−mi and so dds(u) = (1, t+mi− 1, |G|−
t−mi)

mi . Since ecc(u) ≤ 2, dds(Γ) = {(1, |G− 1|)t, (1, t+m1− 1, |G|− t−
m1)

m1 , · · · , (1, t+ms − 1, |G|− t−ms)
ms}. 2

Theorem 3.5. Suppose G is a CA−group and,

Γ = C(G) = Co ∨ (Cm1 ∪Cm2 ∪ · · · ∪ Cms),

Q = (1, 0|G|−|V (Cms)|−2, |Z(G)|− 1, 0|V (Cms )|, |G|− |Z(G)|)|Z(G)|.

Then,

ddsD(Γ) =

⎧⎪⎨⎪⎩
(1, 0|G|−2, |G|− 1)|G|−1 if t > s
Q if t = s, v ∈ Z(G)

(1, 0|G−2|, |G|− 1)|G|−|Z(G)|) if t = s, v ∈ G \ Z(G)
.

If t < s then we define βj,s =
Ps

j=t+1mj , γ1 =
Pt−1

i=1mi and γ2 =Pt
i=1mi. We have three cases as follows:
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1. If u ∈ Z(G) then

ddsD(Γ) = (1, 0
γ1+t−2, t− 1, 0mj−1, βj,s, 0

mt−mj−1, γ2)
|Z(G)|.

2. If u ∈ V (Cmi), 1 ≤ i ≤ t then

ddsD(Γ) = (1, 0
γ2+t−2, t+mi − 1, 0mj−1, 0mt+1−mj−1, γ2 −mi)

mi .

3. If u ∈ V (Cmj (Γ)), t+ 1 ≤ j ≤ s then

ddsD(Γ) = (1, 0
γ1+mj+t−2, t+mj−1, 0mq−1, βj,s−mj , 0

mt−mq−1, γ2)
mj .

Proof. We first assume that t > s and u ∈ V (Γ). Then D0(u) = 1
and by Lemma 3.2, Di(u) = 0 in which 1 ≤ i ≤ |G| − 2. Furthermore,
Decc(u)(u) = |G|− 1 and so ddsD(Γ) = (1, 0|G|−2, |G|− 1)|G|−1.

Suppose t = s and choose an arbitrary vertex u ∈ Z(G). If v ∈ Z(G)
then dD(u, v) = |G| − |V (Cms)| − 1, otherwise dD(u, v) = |G| − 1. If
1 ≤ i ≤ |G| − 2 and i 6= |G| − ms − 2 then we have Di(u) = 0. So,
ddsD(u) = (1, 0

|G|−|V (Cms )|−2, |Z(G)|−1, 0|V (Cms)|, |G|−|Z(G)|)|Z(G)|. Next
we assume that u 6∈ Z(G). For all v ∈ V (Γ), dD(u, v) = |G|− 1 and hence
ddsD(u) = (1, 0

|G|−2, |G| − 1)|G|−|Z(G)|. Consider the cases that t < s and
assume that 1 ≤ i ≤ t, t+ 1 ≤ j ≤ s.

1. If u ∈ Z(G) then

dD(u, v) =

⎧⎪⎨⎪⎩
γ1 + t− 1 v ∈ Z(G)− {u}
γ2 + t− 1 v ∈ V (Cmi)
γ +mj + t− 1 v ∈ V (Cmj )

.

Therefore,

ddsD(Γ) = (1, 0
γ1+t−2, t− 1, 0mj−1, βj, s, 0mt−mj−1, γ2)

|Z(G)|.

2. If u ∈ V (Cmi) then

dD(u, v) =

⎧⎪⎨⎪⎩
γ2 + t− 1 v ∈ Z(G) or v ∈ V (Cmi)− {u}
γ2 +mt+1 + t− 1 v ∈ ∪ti=1(V (Cmi)) \ V (Cmi)
γ2 +mj + t− 1 v ∈ V (Cmj )

.

Therefore,

ddsD(Γ) = (1, 0
γ2+t−2, t+mi − 1, 0mj−1, 0mt+1−mj−1, γ2 −mi)

mi .
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3. If u ∈ V (Cmj ) then

dD(u, v) =

⎧⎪⎨⎪⎩
γ1 +mj + t− 1 v ∈ Z(G) or v ∈ V (Cmj )− {u}
γ1 +mq + t− 1 v ∈ V (Cmq) ⊆ ∪sj=t+1(V (Cmi))

γ2 +mj + t− 1 v ∈ ∪ti=1V (Cmi)
.

Therefore,

ddsD(Γ) = (1, 0
γ1+mj+t−2, t+mj−1, 0mq−1, βj, s−mj , 0

mt−mq−1,mt)
mj .

Hence the result. 2

Theorem 3.6. Let G be a non-abelian CA−group and Γ = C(G). Then
Int(Γ) = Cent(Γ).

Proof. Suppose v ∈ V (Cm1 ∪ Cm2 ∪ · · · ∪ Cms). The subgraph of Γ
induced by N(v) is complete and therefore v is a boundary vertex. This
means that v /∈ Int(Γ) and hence Int(Γ) ⊆ Cent(Γ). We prove that
Int(Γ) ⊇ Cent(Γ). Since G is non-abelian, s > 1. Consider the elements
v ∈ cent(Γ), u ∈ V (Cmi) and w ∈ V (Cmj ), i 6= j. Thus, u,w ∈ N(v). But v
is not adjacent with u and so N(v) is not a complete subgraph of Γ. Hence
v is not a boundary vertex which implies that v ∈ Int(Γ). This proves the
result. 2

Remark 3.7. In Theorem 3.6, if G is a abelian group then Γ is a complete
graph and N [v] = V (Γ). Therefore, each vertex of Γ is a boundary vertex
and so Int(Γ) = ∅.

Fix a vertex v in a graph Γ. Each vertex u such that d(u, v) = ecc(v) is
called an eccentric vertex of v and in such a case the vertex v is said to be
an eccentric vertex of Γ. The subgraph induced by all eccentric vertices of
Γ, Ecc(Γ), is the eccentric subgraph of Γ and the graph Γ is an eccentric
graph if Γ = Ecc(Γ) [3].

Theorem 3.8. Let G be a CA−group and Γ = C(G). Then,

Ecc(Γ) =

(
Γ |Z(G)| > 1
Per(Γ) |Z(G)| = 1 .
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Proof. If C(G\Z(G) is connected then Γ is a complete graph and clearly
Ecc(Γ) = Γ, as desired. Suppose Γ has at least two components U and V .
for any u ∈ U and v ∈ V , d(u, v) = 2 and so ecc(u) = ecc(v) = 2. Therefore,
each vertex of U is an eccentric vertex for all vertices of V . Assume that
z ∈ Z(G). Our main proof will consider the following two cases:

1. If Z(G) > 1 then z is an eccentric vertex for any vertices of central
elements and therefore each vertex of Γ is an eccentric vertex for other
vertices of Γ. Hence Ecc(Γ) = Γ.

2. If Z(G) = {e} then for every vertex u ∈ Γ, d(z, u) = 1 and so e can
not be an eccentric vertex. So Ecc(Γ) = Per(Γ).

This completes our argument 2

By Theorem 3.8, we have the following immediate consequence:

Corollary 3.9. For all n > 1, the commuting graph of the groups T4n, SD8n

and Un,m are an eccentric graph.

Suppose Γ is a graph of order n. The closure Cl(Γ) is the graph con-
structed from Γ by recursively joining pairs of non-adjacent vertices whose
sum of degrees is at least n. A graph Γ is said to be a closed graph if
Cl(Γ) = Γ.

Theorem 3.10. Suppose G is a CA−group, Γ = C(G) and C1, C2, · · · , Cn

are connected components of C(G \ Z(G)). If the summation of the size of
each choice of n−2 components is greater than |Z(G)|−2 then Cl(Γ) = Γ.

Proof. Suppose u and v are vertices of distinct components Ui and Uj of
Γ. By [1, Lemma 2.15], it is sufficient to prove that d(u)+d(v) < n. By our
assumption,

Pn
k=1,k 6=i,j |Ck| > |Z(G)|− 2 and so

Pn
k=1 |Ck| > |Ci|+ |Cj |+

|Z(G)|−2 which implies thatPn
k=1 |Ck|+|Z(G)| > |Ci|+|Cj |+2|Z(G)|−2.

Hence n > d(u) + d(v), proving the result. 2

If the previous theorem we substitute n = 1 to deduce that Γ ∼= K|G|
and so Cl(Γ) = Γ.

Corollary 3.11. Suppose G is an CA-group. Then the commuting graph
of G is a closed graph.

Proof. It is clear that the summation of the size of each choice of n− 2
components is greater than |Z(G)|−2. By the Theorem 3.10 we have result.
2
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4. Metric Dimension of some Commuting Graphs

In this section, we continue the interesting work of Ali et al. [1] in com-
puting the resolving set and metric dimension of dihedral groups. Some
results of the mentioned paper will be generalized.

Lemma 4.1. Suppose Γ1 = Km1∪· · ·∪Kms and Γ = Kn∨Γ1, then β(Γ) =
|V (Γ)|− s− 1 if Γ1 has no isolated vertex and β(Γ) = |V (Γ)|− (s− k)− 2
if Γ1 has k isolated vertices.

Proof. If Γ1 has no isolated vertex then the sets V (Kn), V (Km1), · · ·,
V (Kms) are twin sets and therefore β(Γ) ≥ n−1+Ps

j=1mi−1 = |V (Γ)|−
s − 1 and the bound is sharp, since by omitting one vertex from each set
we obtain a resolving set for Γ and so β(Γ) = |V (Γ)| − s − 1. If Γ1 has k
isolated vertices then the sets V (Kn), V (Km1), · · · , V (Kms−k) and the set of

all isolated vertices are twin sets. Thus, β(Γ) ≥ n−1 +Ps−k
j=1(mi−1)+k−1

= |V (Γ)|−(s−k)−2 and similar to the last case, β(Γ) = |V (Γ)|−(s−k)−2.
2

Lemma 4.2. Let Γ = Kn ∨ (mKs ∪Kd) then,

β(Γ) =

(
|V (Γ)|−m− 2 if mKs ∪Kd has no isolated vertex
|V (Γ)|− (m− k)− 3 if mKs ∪Kd has k isolated vertices.

Proof. Apply Lemma 4.1. 2

Theorem 4.3. Suppose mKs ∪Kd has no isolated vertex and Γ = Kn ∨
(mKs ∪Kd). Then,

β(Γ, x) = ndsmx|V (Γ)|−m−2 + (nd+ (n+ d)s)sm−1x|V (Γ)|−m−1 + x|V (Γ)|

+ |V (Γ)|x|V (Γ)|−1 +
|V (Γ)|−2X

i=|V (Γ)|−m
rix

i,

where ri = s|V (Γ)|−i−2(nd
¡ m
|V (Γ)|−i−2

¢
+ s(n+ d)

¡ m
|V (Γ)|−i−1

¢
+ s2

¡ m
|V (Γ)|−i

¢
).

Proof. To compute the sequence (r|V (Γ)|−m−2, ..., r|V (Γ)|), we first notice
that
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r|V (Γ)|−m−2 =

Ã
n

n− 1

!Ã
d

d− 1

!Ã
s

s− 1

!m

,

r|V (Γ)|−m−1 =

Ã
n

n− 1

!Ã
d

d

!Ã
s

s− 1

!m

+

Ã
n

n

!Ã
d

d− 1

!Ã
s

s− 1

!m

+

Ã
n

n− 1

!Ã
d

d− 1

!Ã
m

1

!Ã
s

s− 1

!m−1

= nsm + dsm + ndmsm−1

= ((n+ d)s+ ndm)sm−1.

On the other hand,

ri =

Ã
n

n− 1

!Ã
d

d− 1

!Ã
m

|V (Γ)|− i− 2

!Ã
s

s− 1

!|V (Γ)|−i−2

+

Ã
n

n− 1

!Ã
d

d

!Ã
m

|V (Γ)|− i− 1

!Ã
s

s− 1

!|V (Γ)|−i−1

+

Ã
n

n

!Ã
d

d− 1

!Ã
m

|V (Γ)|− i− 1

!Ã
s

s− 1

!|V (Γ)|−i−1

+

Ã
n

n

!Ã
d

d

!Ã
m

|V (Γ)|− i

!Ã
s

s− 1

!|V (Γ)|−i

= s|V (Γ)|−i−2nd

Ã
m

|V (Γ)|− i− 2

!
+ s|V (Γ)|−i−1n

Ã
m

|V (Γ)|− i− 1

!

+ s|V (Γ)|−i−1d

Ã
m

|V (Γ)|− i− 1

!
+ s|V (Γ)|−i

Ã
m

|V (Γ)|− i− 2

!

= s|V (Γ)|−i−2(nd

Ã
m

|V (Γ)|− i− 2

!
+ s(n+ d)

Ã
m

|V (Γ)|− i− 1

!

+ s2
Ã

m

|V (Γ)|− i

!
),

It is easy to see that r|V (Γ)| = 1 and r|V (Γ)|−1 = |V (Γ)|. This completes the
proof. 2
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5. Applications

In this section, we apply our results given last section to calculate some
parameters of the commuting graph of the finite groups T4n, SD8n and
Un,m.

Example 5.1. Set G = T4n, n > 1 and Γ = C(G). Then by applying [14,
Lemma 2.7] and Lemmas 3.3 and 3.1, we have C0 = K2, Cm1 = K2n−2 and
Cml

= K2, where 2 ≤ l ≤ n + 1. Since n > 1, the quantity t in Theorem
3.5 will be less than s and so the following holds:

1. If z ∈ C0, v ∈ C1 and u ∈ Cl then z is adjacent with u and v but u
and v are not adjacent. Therefore, dD(z, v) = 2n+ 1 and dD(u, v) =

2n+ 3. Thus, eccD(u) =

(
2n+ 1 u ∈ C0
2n+ 3 u 6∈ C0

, radD(Γ) = 2n− 1 and

diam(Γ) = 2n+ 3.

2. The following properties are direct consequences of Theorem 3.5:

1. The detour distance degree sequence of T4n can be computed as
follows:

ddsD(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 02n−2, 1, 4n− 2)2 u ∈ C0
(1, 02n, 2n− 1, 0, 2n)2n−2 u ∈ C1
(1, 02n, 2n+ 1, 0, 2n− 2)2n−2)
or (1, 02n, 2, 0, 4n− 3)2 u ∈ Cl

;

2. D(Γ) = ((4n− 2)2, (4n− 3)2, (2n)2n−2, (2n− 2)2n−2);
3. Dav(Γ) =

4n2+2n−3
2n .

Example 5.2. Set G = SD8n, n > 3 and Γ = C(G). By [14, Lemma 2.10]
and Lemmas 3.3 and 3.1, if n is even then C0 = K2, Cm1 = K4n−2, Cml

=
K2, where 2 ≤ l ≤ 2n+1. If n is odd, then C0 = K4, Cm1 = K4n−4, Cml =
K4, where 2 ≤ l ≤ n+1. We note that in Theorem 3.5, if n > 3 then t < s.
Apply Theorem 3.5(3), then we have:

1. By Lemma 3.3 and a similar argument as Example 5.1,

1. Suppose u is a vertex in Γ. The detour eccentricity of u is
computed as follows:

eccD(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
4n+ 1 u ∈ C0
4n+ 3 u 6∈ C0

& 2 | n(
4n+ 11 u ∈ C0
4n+ 15 u 6∈ C0

& 2n

,
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2. The radius of Γ is: radD(Γ) =

(
4n− 1 2 | n
4n+ 7 2n

,

3. The diameter of Γ can be computed by the following formula:

diam(Γ) =

(
4n+ 3 2 | n
4n+ 15 2n

.

2. Apply Theorem 3.5.

1. n is odd. Then,

ddsD(u) =

⎧⎪⎨⎪⎩
(1, 04n−2, 1, 0, 8n− 2)2 u ∈ C0
(1, 04n, 4n− 1, 0, 4n)2n−2 u ∈ C1
(1, 04n, 3, 0, 4n− 4)2n, (1, 04n, 2, 8n− 3)2n u ∈ Cl

.

2. n is even. Thus,

ddsD(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 04n−6, 3, 06, 8n− 4)4 u ∈ C0
(1, 04n−10, 4n− 5, 03, 4n+ 4)4n−4 u ∈ C1
(1, 04n−10, 7, 03, 8n− 8)4,
(1, 04n−10, 4, 03, 8n− 5)4n−4 u ∈ Cl

.

3. The degree sequence of Γ is as follows:

D(Γ) =

(
((8n− 4)4, (8n− 5)4n−4, (8n− 8)4, (4n+ 4)4n−4) 2 | n
((8n− 2)2, (8n− 3)2n, (4n)2n−2, (4n− 4)2n) 2n

.

4. The average detour degree of Γ can be computed by the following
formula:

Dav(Γ) =

(
12n2+3n−11

2n 2 | n
16n2−3n−2

4n 2n
.

Example 5.3. Set G = Un,m and Γ = C(G). We first assume that m is
even. Then by considering [14, Theorem 2.3] and Lemmas 3.3 and 3.1,
we have C0 = K2n, Cm1 = K(m−2)n, Cml

= K2n in which 2 ≤ l ≤ m
2 + 1.

Suppose n is odd. Hence C0 = Kn, Cm1 = K(m−1)n, Cml
= Kn, for 2 ≤ l ≤

m+1. In Theorem 3.5, if m is even then t = 2n and s = m
2 +1 and if m is

odd then t = n and s = m+ 1. In what follows, some properties of detour
distance of the commuting graph of G = Un,m are given.

1. The following properties are immediate consequences of Theorem 3.5.
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1. If m is even, then the detour eccentricity of vertex u in Γ is as
follows:

eccD(u) =

⎧⎪⎨⎪⎩
2nm− 1 m ≤ 4n− 2
4n2 +mn− 2n− 1 m > 4n− 2, u ∈ C0
4n2 +mn− 1 m > 4n− 2, u 6∈ C0

.

2. If m is odd, then,

eccD(u) =

⎧⎪⎨⎪⎩
2nm− 1 m ≤ n− 1
n2 +mn− n− 1 m > n− 1, u ∈ C0
n2 +mn− 1 m > n− 1, u 6∈ C0

.

3. The radius of Γ is as follows:

radD(Γ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|G|− 1 m < 4n− 2
|G|− 2n− 1 m = 4n− 2, 2 | m
|G|− n− 1 m = n− 1, 2m
4n2 +mn− 4n− 1 m > 4n− 2, 2 | m
n2 +mn− 2n− 1 m > n− 1, 2m

.

4. The diameter of Γ can be computed as:

diam(Γ) =

⎧⎪⎨⎪⎩
|G|− 1 m ≤ 4n− 2
4n2 +mn− 1 m > 4n− 2, 2 | m
n2 +mn− 1 m > n− 1, 2m

.

2. To compute the distance degree sequence of an arbitrary vertex v ∈ Γ
four cases are considered as follows:

1. m ≤ 4n− 2 and 2 | m. Then,

ddsD(Γ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, 02nm−2, 2nm− 1)2nm−1 m < 4n− 2
(1, 02nm−2n−2, 2n− 1, 02n, 2nm− 2n)2n m = 4n− 2,

v ∈ C0
(1, 02nm−2, 2nm− 1)2nm−2n m = 4n− 2,

v 6∈ C0

.

2. m ≤ n− 1 and 2m. Then,

ddsD(Γ) =

⎧⎪⎨⎪⎩
(1, 02nm−2, 2nm− 1)2nm−1 m < n− 1
(1, 02nm−n−2, n− 1, 0n, 2nm− n)n m = n− 1, v ∈ C0
(1, 02nm−2, 2nm− 1)2nm−n m = n− 1, v 6∈ C0

.
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3. m > 4n− 2 and m is even. Thus,

ddsD(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 04n
2+mn−4n−2, 2n− 1, 02n− 1, 2nm− 2n)2n

u ∈ C0
(1, 04n

2+mn−2n−2,mn− 1, 02n− 1, nm)mn−2n

u ∈ C1
(1, 04n

2+mn−2n−2, 4n− 1, 02n− 1, 2nm− 4n)2n,
(1, 04n

2+mn−2n−2, 2n, 02n− 1, 2nm− 2n− 1)mn−2n

u ∈ Cl

.

4. m > n− 1 and m is odd. In this case,

ddsD(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0n
2+mn−2n−2, n− 1, 0n − 1, 2nm− n)n

u ∈ C0
(1, 0n

2+mn−n−2,mn− 1, 0n − 1, nm)mn−n

u ∈ C1
(1, 0n

2+mn−n−2, 2n− 1, 0n − 1, 2nm− 2n)n,
(1, 0n

2+mn−n−2, n, 0n − 1, 2nm− n− 1)mn−n

u ∈ Cl

.

We now apply Theorem 4.3 to compute the metric dimension of the
groups D2n, SD8n, T4n and Um,n.

Example 5.4. For all even n > 3, let Γ = C(D2n). Then, β(Γ, x) =

2
n
2
−1(4(n− 2) + n2x)x

3n
2
−2+x2n + 2nx2n−1 +

P2n−2
i= 3n

2

rix
i, where

ri = 2
2n−i−1

Ã
(n− 2)

Ã
n
2

2n− i− 2

!
+ n

Ã
n
2

2n− i− 1

!
+ 2

Ã
n
2

2n− i

!!
.

Example 5.5. Set Γ = C(T4n). Then by [14, Lemma 2.7], Γ = K2 ∨
(nK2 ∪K2n−2) and β(Γ, x) = 2n+1(2(n− 1)+n2x)x3n−2+x4n+4nx4n−1 +P4n−2
3n rix

i, where

ri = 2
4n−i

Ã
(n− 1)

Ã
n

4n− i− 2

!
+ n

Ã
n

4n− i− 1

!
+

Ã
n

4n− i

!!
.

Example 5.6. Set Γ = C(SD8n). Then, by [14, Lemma 2.10],

Γ =

(
K2 ∨ (2nK2 ∪K4n−2) 2 | n
K4 ∨ (nK4 ∪K4n−4) 2n

,
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β(Γ, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

22n+2((2n− 1) + 2n2x)x6n−2 + x8n+

8nx8n−1 +
P6n−2
6n rix

i 2 | n

4n+1(4(n− 1) + n2x)x7n−1 + x8n+

8nx8n−1 +
P7n−2
7n rix

i 2n

,

where

ri =

⎧⎪⎨⎪⎩
28n−i((2n− 1)

¡ 2n
8n−i−2

¢
+ 2n

¡ 2n
8n−i−1

¢
+
¡ 2n
8n−i

¢
) 2 | n

48n−i−1((n− 1)
¡ n
8n−i−2

¢
+ n

¡ n
8n−i−1

¢
+
¡ n
8n−i

¢
) 2n

.

Example 5.7. Consider the commuting graph Γ = C(Um,n). Then by [14,
Theorem 2.3],

Γ =

(
K2n ∨ (m2 K2n ∪K(m−2)n) 2 | m
Kn ∨ (mKn ∪K(m−1)n) 2m

,

β(Γ, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(2n)
m
2
−1(4n3(m− 2) + (mn)2x))x2nm−

m
2
−2

+x2nm + 2nmx2nm−1 +
P2nm−2
2nm−m

2
rix

i 2 | m

nm+1(n(m− 1) +m2x))x2nm−m−2

+x2nm + 2nmx2nm−1 +
P2nm−2
2nm−m rix

i 2m

,

where

ri =

⎧⎪⎪⎨⎪⎪⎩
(2n)2nm−i

³
(m2 − 1)

¡ m
2

2nm−i−2
¢
+m

¡ m
2

2nm−i−1
¢
+
¡ m

2
2nm−i

¢´
2 | m

n2nm−i
³
(m− 1)

¡ m
2nm−i−2

¢
+m

¡ m
2nm−i−1

¢
+
¡ m
2nm−i

¢´
2m

.
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