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Abstract

For a connected graph G = (V, E) of order at least two, a con-
nected restrained monophonic set S of G is a restrained monophonic
set such that the subgraph G[S] induced by S is connected. The min-
imum cardinality of a connected restrained monophonic set of G is
the connected restrained monophonic number of G and is denoted by
mer(G). A connected restrained monophonic set S of G is called a
minimal connected restrained monophonic set if no proper subset of
S is a connected restrained monophonic set of G. The upper con-
nected restrained monophonic number of G, denoted by m}.(G), is
defined as the mazximum cardinality of a minimal connected restrained
monophonic set of G. We determine bounds for it and certain general
properties satisfied by this parameter are studied. It is shown that,
for positive integers a,b such that 4 < a < b, there exists a connected
graph G such that m..(G) = a and m},.(G) = b.

Key Words: restrained monophonic set, restrained monophonic num-
ber, connected restrained monophonic set, connected restrained mono-
phonic number, minimal connected restrained monophonic set.

AMS Subject Classification: 05C12.


Scielo

Scielo


880 A. P. Santhakumaran, P. Titus and K. Ganesamoorthy

1. Introduction

By a graph G = (V, E') we mean a finite undirected connected graph with-
out loops or multiple edges. The order and size of GG are denoted by p and
q, respectively. For basic graph theoretic terminology we refer to Harary
[9]. The distance d(x,y) between two vertices z and y in a connected graph
G is the length of a shortest z —y path in G. An x —y path of length d(x, y)
is called an x — y geodesic [1]. The neighborhood of a vertex v is the set
N (v) consisting of all vertices u which are adjacent with v. A vertex v is
an extreme vertex if the subgraph induced by its neighbors is complete.

A chord of a path P is an edge joining two non-adjacent vertices of
P. A path P is called a monophonic path if it is a chordless path. A
set S of vertices of G is a monophonic set of G if each vertex v of G
lies on an & — y monophonic path for some z and y in S. The minimum
cardinality of a monophonic set of GG is the monophonic number of G and
is denoted by m(G), the monophonic number of a graph G and its related
concepts have been studied by several authors [2, 3, 4, 5, 6, 7, 8, 10, 13,
16, 17]. A restrained monophonic set S of a graph G is a monophonic
set such that either S = V or the subgraph induced by V — S has no
isolated vertices. The minimum cardinality of a restrained monophonic set
of G is the restrained monophonic number of G and is denoted by m,(G).
The restrained monophonic number of a graph was introduced and studied
in [14]. A connected restrained monophonic set S of G is a restrained
monophonic set such that the subgraph G[S] induced by S is connected.
The minimum cardinality of a connected restrained monophonic set of G
is the connected restrained monophonic number of G and is denoted by
Mmer(G). The connected restrained monophonic number of a graph was
introduced and studied in [15].

For any two vertices u and v in a connected graph G, the monophonic
distance dy,(u,v) from u to v is defined as the length of a longest u — v
monophonic path in G. The monophonic eccentricity en,(v) of a vertex
vin G is ey, (v) = max {dn(v,u) : v € V(G)}. The monophonic radius,
radm(G) of G is rad,,(G) = min {e,,(v) : v € V(G)} and the monophonic
diameter, diampy,(G) of G is diamy,(G) = max {en(v) : v € V(G)}. The
monophonic distance was introduced and studied in [11, 12].

The following theorems will be used in the sequel.

Theorem 1.1. [15] Each extreme vertex of a connected graph G belongs
to every connected restrained monophonic set of G.
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Theorem 1.2. [15] Every cut-vertex of a connected graph G belongs to
every connected restrained monophonic set of G.

Theorem 1.3. [15] For any non-trivial tree 7" of order p, mq,(T") = p.

Throughout this paper G denotes a connected graph with at least two
vertices.

2. Upper Connected Restrained Monophonic Number

Definition 2.1. A connected restrained monophonic set S of G is called a
minimal connected restrained monophonic set if no proper subset of S is a
connected restrained monophonic set of G. The upper connected restrained
monophonic number of G, denoted by m}.(G), is defined as the maximum
cardinality of a minimal connected restrained monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimal connected
restrained monophonic sets are S; = {v1,v2,v3}, So = {va,v3,v4} and
S3 = {wv1,v4,v5,v6}. Hence the connected restrained monophonic number
of G is 3 and the upper connected restrained monophonic number of G
is 4. Thus the connected restrained monophonic number and the upper
connected restrained monophonic number of a graph G are different.

[
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Figure 2.1: G

Every minimum connected restrained monophonic set of GG is a minimal
connected restrained monophonic set of GG, but the converse need not be
true. For the graph G given in Figure 2.1, S3 is a minimal connected
restrained monophonic set but it is not a minimum connected restrained
monophonic set of G.

Theorem 2.3. Fach extreme vertex of a connected graph G belongs to
every minimal connected restrained monophonic set of G.
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Proof. This follows from Theorem 1.1. a
Corollary 2.4. For the complete graph K,, m%.(K,) = p.

Theorem 2.5. Let G be a connected graph with cut-vertices and let S be
a minimal connected restrained monophonic set of G. If v is a cut-vertex
of G, then every component of G — v contains an element of S.

Proof. Suppose that there is a component B of G — v such that B
contains no vertex of S. Let uw be any vertex in B. Since S is a mini-
mal connected restrained monophonic set, there exists a pair of vertices
z and y in S such that u lies in some z — y monophonic path P : z =

UQ, UL, U2, * Uy +++, Up = Y in G with u # x,y. Since v is a cut-vertex of
G, the x — u subpath P; of P and the u — y subpath P, of P both contain
v, it follows that P is not a path, which is a contradiction. a

Theorem 2.6. Every cut-vertex of a connected graph G belongs to every
minimal connected restrained monophonic set of G.

Proof. This follows from Theorem 1.2. a
Corollary 2.7. For any non-trivial tree T of order p, m_,.(T) = p.

Theorem 2.8. For any connected graph G of order p > 2, 2 < m¢.(G) <
mt(G) <p,me(G) #p—1,mI(G) #p—1.

Proof. Any connected restrained monophonic set needs at least two
vertices and so me(G) > 2. Since every minimal connected restrained
monophonic set of G is also a connected restrained monophonic set of G, it
follows that me-(G) < m}.(G). It is clear that V(G) induces a connected
restrained monophonic set of G and V(G)—{z} is not a connected restrained
monophonic set of G for any vertex z in G. Hence m}.(G) < p, me-(G) #
p—1and m2.(G) #p—1. O

The bounds in Theorem 2.8 are sharp. For the complete graph Ko,
mer(K2) = mb (K3) = 2 and if G is a non-trivial tree of order p, then
mer(G) = m}.(G) = p. All the inequalities in Theorem 2.8 are strict. For
graph @ given in Figure 2.1, m..(G) = 3, m}.(G) = 4 and p = 6. Thus we
have 2 < mq(G) < m1.(G) < p.

Now we proceed to characterize graphs G for which the lower bound in
Theorem 2.8 is attained.

Theorem 2.9. Let G be a connected graph of order p > 2. Then G = Ko
if and only if m}.(G) = 2.
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Proof. If G = Ky, then by Corollary 2.4, we have m/.(G) = 2. Con-
versely, let m} (G) = 2. Let S = {u,v} be a minimal connected restrained
monophonic set of G. Then uw is an edge. If G # K3, there exists a vertex
w different from u and v. Since wv is an edge, w can not lie on any v — v
monophonic path and so S is not a connected restrained monophonic set,
which is a contradiction. Thus G = K. a

Theorem 2.10. Let G be a connected graph with every vertex of G is
either a cut-vertex or an extreme vertex. Then m}.(G) = p.

Proof. Let G be a connected graph with every vertex of G is either a
cut-vertex or an extreme vertex. Then by Theorems 2.3 and 2.6, we have
m.(G) = p. O

The converse of Theorem 2.10 need not be true. For the graph G given
in Figure 2.2, m} (G) = 6 = p, but the vertices v3 and vy are neither
cut-vertices nor extreme vertices of G.

Figure 2.2: G

Theorem 2.11. For a connected graph G, m}.(G) = p if and only if
mer(G) = p.

Proof. Let m/.(G) = p. Then S = V(G) is the unique minimal con-
nected restrained monophonic set of G. Since no proper subset of S is a
connected restrained monophonic set of G, it is clear that S is the unique
minimum connected restrained monophonic set of G and so me.(G) = p.
The converse follows from Theorem 2.8. a

Theorem 2.12. Let G be a connected graph of order p > 2. If mq(G) =
p— 2 then m$(G) =p — 2.
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Proof. If m(G) = p— 2, it follows from Theorem 2.8 that m2.(G) =
p—2or m%(G) =p. If m$(G) = p, then by Theorem 2.11, m.(G) = p,
which is a contradiction. Hence m},.(G) = p — 2. O

The converse of Theorem 2.12 need not be true. For the graph G given
in Figure 2.1, the upper connected restrained monophonic number of G is
m}.(G) = 4 = p— 2 and the connected restrained monophonic number of
Gis me(G)=3#p—2.

We leave the following problem as an open question.

Problem 2.13. Characterize graphs G for which me.(G) = m}.(G).

3. Realization results for m; (G)
In view of Theorem 2.8, we have the following realization theorem.

Theorem 3.1. For every pair a, b of positive integers with 4 < a < b, there
is a connected graph G with mq,(G) = a and m7,.(G) = b.

Proof. = We prove this theorem by considering two cases.

Case 1. 4 < a =1b. Let G be any tree with a vertices. Then by Theorem
1.3 and Corollary 2.7, G has the desired property.

Figure 3.1: G

Case 2. 4 < a < b. Let H be the graph obtained from the path Ps :
v1, Vg, v3 of order 3 by adding b—2 new vertices wy, wa, ..., Wp_q 11, U1, U2, " * * , Ug—3
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and joining w;(1 < i < b —a+ 1) to the vertices vy, v2 and vs; joining
uj(1 < j <a—3) to the vertex vs; and also joining each w;(1 <i <b—a)
with w;(i+1 < j < b—a+1). The graph G is obtained from H and the path
Py : xz,y of order 2 by joining the vertex = to the vertices v; and wvs; also
joining the vertex y to the vertices vs and vs, which is shown in Figure 3.1.
Let S = {uy,ug, -, uqs—3,v3} be the set of all extreme vertices and cut-
vertex of G. By Theorems 1.1, 1.2, 2.3 and 2.6, every connected restrained
monophonic set and every minimal connected restrained monophonic set
of G contain S. Clearly, S is not a connected restrained monophonic set
of G. Also, for any vertex v € V(G) — S, S; = SU{v} is not a connected
restrained monophonic set of G. Let Sy = S U {v1,v2}. It is easily verified
that Sp is a connected restrained monophonic set of G and so mq(G) = a.

Next we show that m}.(G) = b. Clearly T = SU{y, wi, w2, ..., wp_q11}
is a connected restrained monophonic set of G. We claim that 71" is a min-
imal connected restrained monophonic set of G. Let W be any proper
subset of T'. Then there exists a vertex, say v, such that v € T and v ¢ W.
By Theorems 2.3 and 2.6, v € {y, w1, wa, ..., wp_q+1}. It is easily verified
that v is not an internal vertex of any x — y monophonic path for some
z,y € W, it follows that W is not a connected restrained monophonic set
of G. Hence T is a minimal connected restrained monophonic set of G and
so m2.(G) > b. Suppose that m.(G) > b. Let M be a minimal connected
restrained monophonic set of G with |M| > b. Then there exists at least
one vertex, say, v € M such that v ¢ T. Thus v € {vy,ve,z}. If v = vy,
then My = SU{vi, w1} is a connected restrained monophonic set of G and
also it is a proper subset of M, which is a contradiction to M a minimal con-
nected restrained monophonic set of G. If v = v, then My = SU{vy, w1, y}
is a connected restrained monophonic set of G and also it is a proper subset
of M, which is a contradiction to M a minimal connected restrained mono-
phonic set of G. If v = z, then M3 = S U {x,y} is a connected restrained
monophonic set of G and also it is a proper subset of M, which is a contra-
diction to M a minimal connected restrained monophonic set of G. Hence
mi.(G) = b. O

Theorem 3.2. If p, d and k are positive integers such that 2 < d <p— 2,
k>4, k#p—1andp—d—k >0, then there exists a connected graph G
of order p, monophonic diameter d and m7,(G) = k.

Proof.  We prove this theorem by considering three cases.
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Case 1. d=2and k > 4. Let Ps : z,y, z be a path of order 3. Let G be the
graph obtained by adding p—3 new vertices v1,va, ..., Vp_, W1, W2, . .., WE_3
to P3 and joining each w;(1 < i < k — 3) to y; and joining each v;(1 <
i < p—k) with z, y and z; and joining each v;(1 < i < p—k — 1) with
vj(i+1 < j < p—k). The graph G is shown in Figure 3.2. Then G has order
p and monophonic diameter d = 2. Let S = {w1,ws, ws, ..., wg_3,%,2,y}
be the set of all extreme vertices and cut-vertex of G. By Theorems 2.3
and 2.6, every minimal connected restrained monophonic set of G contains
S. It is easily verified that S is the unique minimal connected restrained

monophonic set of G and so m},.(G) = k.

Figure 3.2: G

Case 2. d=3and k > 4. Let Ps : x,y, 2z be a path of order 3. Let G be the
graph obtained by adding p—3 new vertices v1,va, ..., Vp_, W1, W2, . .., Wk_3
to P3 and joining each w;(1 < ¢ < k — 3) to z; and joining each v;(1 <1 <
p — k) with z, y and z and joining each v;(1 < ¢ < p — k — 1) with
vj(i+1 < j <p—k). The graph G is shown in Figure 3.3. Then G has
order p and monophonic diameter d = 3. Let S = {wi,wa, ws, ..., wk_3,
x,z} be the set of all extreme vertices and cut-vertex of G. By Theorems
2.3 and 2.6, every minimal connected restrained monophonic set of G con-
tains S. Clearly, S is not a connected restrained monophonic set of G. It is
easy to observe that, SU{y} and SU{v;} (1 <i < p— k) are the minimal
connected restrained monophonic sets of G each of cardinality £ and so
mi(G) = k.
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Figure 3.3: G

Case 3. 4 <d<p—2and k > 4. Let Cygy1 : v1,v2,...,U3+1, V1 be the cycle
of order d + 1. The required graph G is obtained from Cyy; by adding
p —d — 1 new vertices wi,wa, ..., Wg—2,U1,U2,...,Up—4—k+1 and joining
each vertex w;(1 < ¢ < k — 2) to both v; and ve; and also joining each
vertex u;(1 < j <p—d—k+1) to both v3 and vs. The graph G is shown
in Figure 3.4. Then G has order p and monophonic diameter d. Let S =
{wy,wa, ..., wk_2} be the set of all extreme vertices of G. Then by Theorem
2.3, S'is contained in every minimal connected restrained monophonic set of
G. It is clear that S; = SU{vy,v3} and Sy = SU{v1,v441} are the only two
minimal connected restrained monophonic sets of G and so m/.(G) = k.
O
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Up—d—kt1

Figure 3.4: G
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