Proyecciones Journal of Mathematics Vol. 41, N^o 4, pp. 879-890, August 2022. Universidad Católica del Norte Antofagasta - Chile

doi 10.22199/issn.0717-6279-4475

Minimal connected restrained monophonic sets in graphs

A. P. Santhakumaran, Hindustan Institute of Technology and Science, India P. Titus University College of Engineering Nagercoil, India and K. Ganesamoorthy * Coimbatore Institute of Technology, India Received : September 2021. Accepted : February 2022

Abstract

For a connected graph G = (V, E) of order at least two, a connected restrained monophonic set S of G is a restrained monophonic set such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected restrained monophonic set of G is the connected restrained monophonic number of G and is denoted by $m_{cr}(G)$. A connected restrained monophonic set S of G is called a minimal connected restrained monophonic set of G. The upper connected restrained monophonic set of G. The upper connected restrained monophonic set of G, denoted by $m_{cr}^+(G)$, is defined as the maximum cardinality of a minimal connected restrained monophonic set of G, denoted by $m_{cr}^+(G)$, is defined as the maximum cardinality of a minimal connected restrained monophonic set of G, we determine bounds for it and certain general properties satisfied by this parameter are studied. It is shown that, for positive integers a, b such that $4 \leq a \leq b$, there exists a connected graph G such that $m_{cr}(G) = a$ and $m_{cr}^+(G) = b$.

Key Words: restrained monophonic set, restrained monophonic number, connected restrained monophonic set, connected restrained monophonic number, minimal connected restrained monophonic set.

AMS Subject Classification: 05C12.

1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q, respectively. For basic graph theoretic terminology we refer to Harary [9]. The distance d(x, y) between two vertices x and y in a connected graph G is the length of a shortest x - y path in G. An x - y path of length d(x, y)is called an x - y geodesic [1]. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A set S of vertices of G is a monophonic set of G if each vertex v of G lies on an x - y monophonic path for some x and y in S. The minimum cardinality of a monophonic set of G is the monophonic number of G and is denoted by m(G), the monophonic number of a graph G and its related concepts have been studied by several authors [2, 3, 4, 5, 6, 7, 8, 10, 13, 16, 17]. A restrained monophonic set S of a graph G is a monophonic set such that either S = V or the subgraph induced by V - S has no isolated vertices. The minimum cardinality of a restrained monophonic set of G is the restrained monophonic number of G and is denoted by $m_r(G)$. The restrained monophonic number of a graph was introduced and studied in [14]. A connected restrained monophonic set S of G is a restrained monophonic set such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected restrained monophonic set of Gis the connected restrained monophonic number of G and is denoted by $m_{cr}(G)$. The connected restrained monophonic number of a graph was introduced and studied in [15].

For any two vertices u and v in a connected graph G, the monophonic distance $d_m(u, v)$ from u to v is defined as the length of a longest u - vmonophonic path in G. The monophonic eccentricity $e_m(v)$ of a vertex v in G is $e_m(v) = \max \{ d_m(v, u) : u \in V(G) \}$. The monophonic radius, $rad_m(G)$ of G is $rad_m(G) = \min \{ e_m(v) : v \in V(G) \}$ and the monophonic diameter, $diam_m(G)$ of G is $diam_m(G) = \max \{ e_m(v) : v \in V(G) \}$. The monophonic distance was introduced and studied in [11, 12].

The following theorems will be used in the sequel.

Theorem 1.1. [15] Each extreme vertex of a connected graph G belongs to every connected restrained monophonic set of G.

Theorem 1.2. [15] Every cut-vertex of a connected graph G belongs to every connected restrained monophonic set of G.

Theorem 1.3. [15] For any non-trivial tree T of order p, $m_{cr}(T) = p$.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Upper Connected Restrained Monophonic Number

Definition 2.1. A connected restrained monophonic set S of G is called a minimal connected restrained monophonic set if no proper subset of S is a connected restrained monophonic set of G. The upper connected restrained monophonic number of G, denoted by $m_{cr}^+(G)$, is defined as the maximum cardinality of a minimal connected restrained monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimal connected restrained monophonic sets are $S_1 = \{v_1, v_2, v_3\}, S_2 = \{v_2, v_3, v_4\}$ and $S_3 = \{v_1, v_4, v_5, v_6\}$. Hence the connected restrained monophonic number of G is 3 and the upper connected restrained monophonic number of G is 4. Thus the connected restrained monophonic number and the upper connected restrained monophonic number of a graph G are different.

Figure 2.1: G

Every minimum connected restrained monophonic set of G is a minimal connected restrained monophonic set of G, but the converse need not be true. For the graph G given in Figure 2.1, S_3 is a minimal connected restrained monophonic set but it is not a minimum connected restrained monophonic set of G.

Theorem 2.3. Each extreme vertex of a connected graph G belongs to every minimal connected restrained monophonic set of G.

Proof. This follows from Theorem 1.1.

Corollary 2.4. For the complete graph K_p , $m_{cr}^+(K_p) = p$.

Theorem 2.5. Let G be a connected graph with cut-vertices and let S be a minimal connected restrained monophonic set of G. If v is a cut-vertex of G, then every component of G - v contains an element of S.

Proof. Suppose that there is a component B of G - v such that B contains no vertex of S. Let u be any vertex in B. Since S is a minimal connected restrained monophonic set, there exists a pair of vertices x and y in S such that u lies in some x - y monophonic path $P : x = u_0, u_1, u_2, \dots, u, \dots, u_n = y$ in G with $u \neq x, y$. Since v is a cut-vertex of G, the x - u subpath P_1 of P and the u - y subpath P_2 of P both contain v, it follows that P is not a path, which is a contradiction.

Theorem 2.6. Every cut-vertex of a connected graph G belongs to every minimal connected restrained monophonic set of G.

Proof. This follows from Theorem 1.2.

Corollary 2.7. For any non-trivial tree T of order $p, m_{cr}^+(T) = p$.

Theorem 2.8. For any connected graph G of order $p \ge 2$, $2 \le m_{cr}(G) \le m_{cr}^+(G) \le p, m_{cr}(G) \ne p-1, m_{cr}^+(G) \ne p-1$.

Proof. Any connected restrained monophonic set needs at least two vertices and so $m_{cr}(G) \geq 2$. Since every minimal connected restrained monophonic set of G is also a connected restrained monophonic set of G, it follows that $m_{cr}(G) \leq m_{cr}^+(G)$. It is clear that V(G) induces a connected restrained monophonic set of G and $V(G)-\{z\}$ is not a connected restrained monophonic set of G for any vertex z in G. Hence $m_{cr}^+(G) \leq p$, $m_{cr}(G) \neq p-1$ and $m_{cr}^+(G) \neq p-1$.

The bounds in Theorem 2.8 are sharp. For the complete graph K_2 , $m_{cr}(K_2) = m_{cr}^+(K_2) = 2$ and if G is a non-trivial tree of order p, then $m_{cr}(G) = m_{cr}^+(G) = p$. All the inequalities in Theorem 2.8 are strict. For graph G given in Figure 2.1, $m_{cr}(G) = 3$, $m_{cr}^+(G) = 4$ and p = 6. Thus we have $2 < m_{cr}(G) < m_{cr}^+(G) < p$.

Now we proceed to characterize graphs G for which the lower bound in Theorem 2.8 is attained.

Theorem 2.9. Let G be a connected graph of order $p \ge 2$. Then $G = K_2$ if and only if $m_{cr}^+(G) = 2$.

Proof. If $G = K_2$, then by Corollary 2.4, we have $m_{cr}^+(G) = 2$. Conversely, let $m_{cr}^+(G) = 2$. Let $S = \{u, v\}$ be a minimal connected restrained monophonic set of G. Then uv is an edge. If $G \neq K_2$, there exists a vertex w different from u and v. Since uv is an edge, w can not lie on any u - v monophonic path and so S is not a connected restrained monophonic set, which is a contradiction. Thus $G = K_2$.

Theorem 2.10. Let G be a connected graph with every vertex of G is either a cut-vertex or an extreme vertex. Then $m_{cr}^+(G) = p$.

Proof. Let G be a connected graph with every vertex of G is either a cut-vertex or an extreme vertex. Then by Theorems 2.3 and 2.6, we have $m_{cr}^+(G) = p$.

The converse of Theorem 2.10 need not be true. For the graph G given in Figure 2.2, $m_{cr}^+(G) = 6 = p$, but the vertices v_3 and v_4 are neither cut-vertices nor extreme vertices of G.

Figure 2.2: G

Theorem 2.11. For a connected graph G, $m_{cr}^+(G) = p$ if and only if $m_{cr}(G) = p$.

Proof. Let $m_{cr}^+(G) = p$. Then S = V(G) is the unique minimal connected restrained monophonic set of G. Since no proper subset of S is a connected restrained monophonic set of G, it is clear that S is the unique minimum connected restrained monophonic set of G and so $m_{cr}(G) = p$. The converse follows from Theorem 2.8.

Theorem 2.12. Let G be a connected graph of order $p \ge 2$. If $m_{cr}(G) = p - 2$ then $m_{cr}^+(G) = p - 2$.

Proof. If $m_{cr}(G) = p - 2$, it follows from Theorem 2.8 that $m_{cr}^+(G) = p - 2$ or $m_{cr}^+(G) = p$. If $m_{cr}^+(G) = p$, then by Theorem 2.11, $m_{cr}(G) = p$, which is a contradiction. Hence $m_{cr}^+(G) = p - 2$.

The converse of Theorem 2.12 need not be true. For the graph G given in Figure 2.1, the upper connected restrained monophonic number of G is $m_{cr}^+(G) = 4 = p - 2$ and the connected restrained monophonic number of G is $m_{cr}(G) = 3 \neq p - 2$.

We leave the following problem as an open question.

Problem 2.13. Characterize graphs G for which $m_{cr}(G) = m_{cr}^+(G)$.

3. Realization results for $m_{cr}^+(G)$

In view of Theorem 2.8, we have the following realization theorem.

Theorem 3.1. For every pair a, b of positive integers with $4 \le a \le b$, there is a connected graph G with $m_{cr}(G) = a$ and $m_{cr}^+(G) = b$.

Proof. We prove this theorem by considering two cases.

Case 1. $4 \le a = b$. Let G be any tree with a vertices. Then by Theorem 1.3 and Corollary 2.7, G has the desired property.

Figure 3.1: *G*

Case 2. $4 \le a < b$. Let *H* be the graph obtained from the path P_3 : v_1, v_2, v_3 of order 3 by adding b-2 new vertices $w_1, w_2, ..., w_{b-a+1}, u_1, u_2, \cdots, u_{a-3}$ and joining $w_i(1 \le i \le b - a + 1)$ to the vertices v_1, v_2 and v_3 ; joining $u_j(1 \le j \le a - 3)$ to the vertex v_3 ; and also joining each $w_i(1 \le i \le b - a)$ with $w_j(i+1 \le j \le b-a+1)$. The graph G is obtained from H and the path $P_2: x, y$ of order 2 by joining the vertex x to the vertices v_1 and v_2 ; also joining the vertex y to the vertices v_2 and v_3 , which is shown in Figure 3.1. Let $S = \{u_1, u_2, \dots, u_{a-3}, v_3\}$ be the set of all extreme vertices and cutvertex of G. By Theorems 1.1, 1.2, 2.3 and 2.6, every connected restrained monophonic set and every minimal connected restrained monophonic set of G contain S. Clearly, S is not a connected restrained monophonic set of G. Also, for any vertex $v \in V(G) - S$, $S_1 = S \cup \{v\}$ is not a connected restrained monophonic set of G. Let $S_2 = S \cup \{v_1, v_2\}$. It is easily verified that S_2 is a connected restrained monophonic set of G and so $m_{cr}(G) = a$.

Next we show that $m_{cr}^+(G) = b$. Clearly $T = S \cup \{y, w_1, w_2, \dots, w_{b-a+1}\}$ is a connected restrained monophonic set of G. We claim that T is a minimal connected restrained monophonic set of G. Let W be any proper subset of T. Then there exists a vertex, say v, such that $v \in T$ and $v \notin W$. By Theorems 2.3 and 2.6, $v \in \{y, w_1, w_2, \dots, w_{b-a+1}\}$. It is easily verified that v is not an internal vertex of any x - y monophonic path for some $x, y \in W$, it follows that W is not a connected restrained monophonic set of G. Hence T is a minimal connected restrained monophonic set of G and so $m_{cr}^+(G) \ge b$. Suppose that $m_{cr}^+(G) > b$. Let M be a minimal connected restrained monophonic set of G with |M| > b. Then there exists at least one vertex, say, $v \in M$ such that $v \notin T$. Thus $v \in \{v_1, v_2, x\}$. If $v = v_1$, then $M_1 = S \cup \{v_1, w_1\}$ is a connected restrained monophonic set of G and also it is a proper subset of M, which is a contradiction to M a minimal connected restrained monophonic set of G. If $v = v_2$, then $M_2 = S \cup \{v_2, w_1, y\}$ is a connected restrained monophonic set of G and also it is a proper subset of M, which is a contradiction to M a minimal connected restrained monophonic set of G. If v = x, then $M_3 = S \cup \{x, y\}$ is a connected restrained monophonic set of G and also it is a proper subset of M, which is a contradiction to M a minimal connected restrained monophonic set of G. Hence $m_{cr}^+(G) = b.$

Theorem 3.2. If p, d and k are positive integers such that $2 \le d \le p-2$, $k \ge 4$, $k \ne p-1$ and $p-d-k \ge 0$, then there exists a connected graph G of order p, monophonic diameter d and $m_{cr}^+(G) = k$.

Proof. We prove this theorem by considering three cases.

Case 1. d = 2 and $k \ge 4$. Let $P_3: x, y, z$ be a path of order 3. Let G be the graph obtained by adding p-3 new vertices $v_1, v_2, \ldots, v_{p-k}, w_1, w_2, \ldots, w_{k-3}$ to P_3 and joining each $w_i(1 \le i \le k-3)$ to y; and joining each $v_i(1 \le i \le p-k-1)$ with x, y and z; and joining each $v_i(1 \le i \le p-k-1)$ with $v_j(i+1 \le j \le p-k)$. The graph G is shown in Figure 3.2. Then G has order p and monophonic diameter d = 2. Let $S = \{w_1, w_2, w_3, \ldots, w_{k-3}, x, z, y\}$ be the set of all extreme vertices and cut-vertex of G. By Theorems 2.3 and 2.6, every minimal connected restrained monophonic set of G contains S. It is easily verified that S is the unique minimal connected restrained monophonic set of G and so $m_{cr}^+(G) = k$.

Figure 3.2: G

Case 2. d = 3 and $k \ge 4$. Let $P_3: x, y, z$ be a path of order 3. Let G be the graph obtained by adding p-3 new vertices $v_1, v_2, \ldots, v_{p-k}, w_1, w_2, \ldots, w_{k-3}$ to P_3 and joining each $w_i(1 \le i \le k-3)$ to z; and joining each $v_i(1 \le i \le p-k)$ with x, y and z; and joining each $v_i(1 \le i \le p-k-1)$ with $v_j(i+1 \le j \le p-k)$. The graph G is shown in Figure 3.3. Then G has order p and monophonic diameter d = 3. Let $S = \{w_1, w_2, w_3, \ldots, w_{k-3}, x, z\}$ be the set of all extreme vertices and cut-vertex of G. By Theorems 2.3 and 2.6, every minimal connected restrained monophonic set of G contains S. Clearly, S is not a connected restrained monophonic set of G. It is easy to observe that, $S \cup \{y\}$ and $S \cup \{v_i\} (1 \le i \le p-k)$ are the minimal connected restrained monophonic set of $m_{cr}^+(G) = k$.

Figure 3.3: *G*

Case 3. $4 \leq d \leq p-2$ and $k \geq 4$. Let $C_{d+1}: v_1, v_2, ..., v_{d+1}, v_1$ be the cycle of order d+1. The required graph G is obtained from C_{d+1} by adding p-d-1 new vertices $w_1, w_2, ..., w_{k-2}, u_1, u_2, ..., u_{p-d-k+1}$ and joining each vertex $w_i(1 \leq i \leq k-2)$ to both v_1 and v_2 ; and also joining each vertex $u_j(1 \leq j \leq p-d-k+1)$ to both v_3 and v_5 . The graph G is shown in Figure 3.4. Then G has order p and monophonic diameter d. Let $S = \{w_1, w_2, ..., w_{k-2}\}$ be the set of all extreme vertices of G. Then by Theorem 2.3, S is contained in every minimal connected restrained monophonic set of G. It is clear that $S_1 = S \cup \{v_2, v_3\}$ and $S_2 = S \cup \{v_1, v_{d+1}\}$ are the only two minimal connected restrained monophonic sets of G and so $m_{cr}^+(G) = k$. \Box

Figure 3.4: *G*

Acknowledgments

*Research work was supported by Project No. NBHM/R.P.29/2015/ Fresh/157, National Board for Higher Mathematics (NBHM), Department of Atomic Energy (DAE), Government of India.

References

- [1] F. Buckley and F. Harary, *Distance in Graphs.* Redwood City, CA: Addison-Wesley, 1990.
- [2] E. R. Costa, M. C. Dourado, and R. M. Sampaio, "Inapproximability results related to monophonic convexity", *Discrete Applied Mathematics*, vol. 197, pp. 70–74, 2015. doi: 10.1016/j.dam.2014.09.012
- [3] M. C. Dourado, F. Protti, and J. L. Szwarcfiter, "Algorithmic aspects of monophonic convexity", *Electronic Notes in Discrete Mathematics*, vol. 30, pp. 177–182, 2008. doi: 10.1016/j.endm.2008.01.031
- [4] M. C. Dourado, F. Protti, and J. L. Szwarcfiter, "Complexity results related to monophonic convexity", *Discrete Applied Mathematics*, vol. 158, no. 12, pp. 1268–1274, 2010. doi: 10.1016/j.dam.2009.11.016

- [5] K. Ganesamoorthy and S. Lakshmi Priya, "The Outer Connected Monophonic Number of a Graph", *Ars Combinatoria*, vol. 153, pp. 149-160, 2020.
- [6] K. Ganesamoorthy and S. Lakshmi Priya, "Extreme Outer Connected Monophonic Graphs", *Communications in Combinatorics and Optimization*, 2021. doi: 10.22049/CCO.2021.27042.1184
- [7] K. Ganesamoorthy and S. Lakshmi Priya, "Further results on the outer connected monophonic number of a graph", *Transactions of National Academy of Sciences of Azerbaijan. Series of Physical-Technical and Mathematical Sciences*, vol. 41, no. 4, pp. 51-59, 2021. [On line]. Available: https://bit.ly/3J2aABI
- [8] K. Ganesamoorthy, M. Murugan, and A. P. N. Santhakumaran, "Extreme-support total monophonic graphs", *Bulletin of the Iranian Mathematical Society*, vol. 47, no. S1, pp. 159–170, 2021. doi: 10.1007/s41980-020-00485-4
- [9] F. Harary, *Graph Theory.* Addison-Wesley, 1969.
- [10] E. M. Paluga and S. R. Canoy, Jr, "Monophonic numbers of the join and composition of connected graphs", *Discrete Mathematics*, vol. 307, no. 9-10, pp. 1146–1154, 2007. doi: 10.1016/j.disc.2006.08.002
- [11] A. P. Santhakumaran and P. Titus, "Monophonic Distance in Graphs", *Discrete Mathematics, Algorithms and Applications,* vol. 3, no. 2, pp. 159-169, 2011. doi: 10.1142/s1793830911001176
- [12] A. P. Santhakumaran and P. Titus, A Note on "Monophonic Distance in Graphs", *Discrete Mathematics, Algorithms and Applications*, vol. 4, no. 2, 2012, doi: 10.1142/S1793830912500188
- [13] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, "On the Monophonic Number of a Graph", *Journal of applied mathematics & informatics*, vol. 32, no. 1-2, pp. 255-266, 2014. doi: 10.14317/jami.2014.255
- [14] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, "The Restrained Monophonic Number of a Graph", *TWMS journal of pure and applied mathematics (Online).* Accepted.
- [15] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, "The Connected and Forcing Connected Restrained Monophonic Numbers of a Graph", Communicated.

- [16] A. P. Santhakumaran, P. Titus, K. Ganesamoorthy, and M. Murugan, "The forcing total monophonic number of a graph", *Proyecciones* (*Antofagasta*), vol. 40, no. 2, pp. 561–571, 2021. doi: 10.22199/issn.0717-6279-2021-02-0031
- [17] A. P. Santhakumaran, T. Venkata Raghu and K. Ganesamoorthy, "Minimal Restrained Monophonic Sets in Graphs", *TWMS journal of pure and applied mathematics (Online)*, vol. 11, no. 3, pp. 762-771, 2021.

A. P. Santhakumaran

Department of Mathematics Hindustan Institute of Technology and Science Chennai-603 103, India e-mail: apskumar1953@gmail.com

P. Titus

Department of Mathematics, University College of Engineering Nagercoil Anna University, Tirunelveli Region Nagercoil-629 004, India e-mail: titusvino@yahoo.com

and

K. Ganesamoorthy

Department of Mathematics, Coimbatore Institute of Technology Coimbatore-641 014, India e-mail: kvgm 2005@yahoo.co.in Corresponding author