Minimal connected restrained monophonic sets in graphs

A. P. Santhakumaran,
Hindustan Institute of Technology and Science, India
P. Titus
University College of Engineering Nagercoil, India
and
K. Ganesamoorthy *
Coimbatore Institute of Technology, India
Received: September 2021. Accepted: February 2022

Abstract

For a connected graph $G=(V, E)$ of order at least two, a connected restrained monophonic set S of G is a restrained monophonic set such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected restrained monophonic set of G is the connected restrained monophonic number of G and is denoted by $m_{c r}(G)$. A connected restrained monophonic set S of G is called a minimal connected restrained monophonic set if no proper subset of S is a connected restrained monophonic set of G. The upper connected restrained monophonic number of G, denoted by $m_{c r}^{+}(G)$, is defined as the maximum cardinality of a minimal connected restrained monophonic set of G. We determine bounds for it and certain general properties satisfied by this parameter are studied. It is shown that, for positive integers a, b such that $4 \leq a \leq b$, there exists a connected graph G such that $m_{c r}(G)=a$ and $m_{c r}^{+}(G)=b$.

Key Words: restrained monophonic set, restrained monophonic number, connected restrained monophonic set, connected restrained monophonic number, minimal connected restrained monophonic set.

AMS Subject Classification: 05C12.

1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q, respectively. For basic graph theoretic terminology we refer to Harary [9]. The distance $d(x, y)$ between two vertices x and y in a connected graph G is the length of a shortest $x-y$ path in G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic [1]. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A set S of vertices of G is a monophonic set of G if each vertex v of G lies on an $x-y$ monophonic path for some x and y in S. The minimum cardinality of a monophonic set of G is the monophonic number of G and is denoted by $m(G)$, the monophonic number of a graph G and its related concepts have been studied by several authors $[2,3,4,5,6,7,8,10,13$, 16, 17]. A restrained monophonic set S of a graph G is a monophonic set such that either $S=V$ or the subgraph induced by $V-S$ has no isolated vertices. The minimum cardinality of a restrained monophonic set of G is the restrained monophonic number of G and is denoted by $m_{r}(G)$. The restrained monophonic number of a graph was introduced and studied in [14]. A connected restrained monophonic set S of G is a restrained monophonic set such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected restrained monophonic set of G is the connected restrained monophonic number of G and is denoted by $m_{c r}(G)$. The connected restrained monophonic number of a graph was introduced and studied in [15].

For any two vertices u and v in a connected graph G, the monophonic distance $d_{m}(u, v)$ from u to v is defined as the length of a longest $u-v$ monophonic path in G. The monophonic eccentricity $e_{m}(v)$ of a vertex v in G is $e_{m}(v)=\max \left\{d_{m}(v, u): u \in V(G)\right\}$. The monophonic radius, $\operatorname{rad}_{m}(G)$ of G is $\operatorname{rad}_{m}(G)=\min \left\{e_{m}(v): v \in V(G)\right\}$ and the monophonic diameter, $\operatorname{diam}_{m}(G)$ of G is $\operatorname{diam}_{m}(G)=\max \left\{e_{m}(v): v \in V(G)\right\}$. The monophonic distance was introduced and studied in [11, 12].

The following theorems will be used in the sequel.
Theorem 1.1. [15] Each extreme vertex of a connected graph G belongs to every connected restrained monophonic set of G.

Theorem 1.2. [15] Every cut-vertex of a connected graph G belongs to every connected restrained monophonic set of G.

Theorem 1.3. [15] For any non-trivial tree T of order $p, m_{c r}(T)=p$.
Throughout this paper G denotes a connected graph with at least two vertices.

2. Upper Connected Restrained Monophonic Number

Definition 2.1. A connected restrained monophonic set S of G is called a minimal connected restrained monophonic set if no proper subset of S is a connected restrained monophonic set of G. The upper connected restrained monophonic number of G, denoted by $m_{c r}^{+}(G)$, is defined as the maximum cardinality of a minimal connected restrained monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimal connected restrained monophonic sets are $S_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, S_{2}=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $S_{3}=\left\{v_{1}, v_{4}, v_{5}, v_{6}\right\}$. Hence the connected restrained monophonic number of G is 3 and the upper connected restrained monophonic number of G is 4. Thus the connected restrained monophonic number and the upper connected restrained monophonic number of a graph G are different.

Figure 2.1: G
Every minimum connected restrained monophonic set of G is a minimal connected restrained monophonic set of G, but the converse need not be true. For the graph G given in Figure 2.1, S_{3} is a minimal connected restrained monophonic set but it is not a minimum connected restrained monophonic set of G.

Theorem 2.3. Each extreme vertex of a connected graph G belongs to every minimal connected restrained monophonic set of G.

Proof. This follows from Theorem 1.1.
Corollary 2.4. For the complete graph $K_{p}, m_{c r}^{+}\left(K_{p}\right)=p$.
Theorem 2.5. Let G be a connected graph with cut-vertices and let S be a minimal connected restrained monophonic set of G. If v is a cut-vertex of G, then every component of $G-v$ contains an element of S.

Proof. Suppose that there is a component B of $G-v$ such that B contains no vertex of S. Let u be any vertex in B. Since S is a minimal connected restrained monophonic set, there exists a pair of vertices x and y in S such that u lies in some $x-y$ monophonic path $P: x=$ $u_{0}, u_{1}, u_{2}, \cdots, u, \cdots, u_{n}=y$ in G with $u \neq x, y$. Since v is a cut-vertex of G, the $x-u$ subpath P_{1} of P and the $u-y$ subpath P_{2} of P both contain v, it follows that P is not a path, which is a contradiction.

Theorem 2.6. Every cut-vertex of a connected graph G belongs to every minimal connected restrained monophonic set of G.

Proof. This follows from Theorem 1.2.
Corollary 2.7. For any non-trivial tree T of order $p, m_{c r}^{+}(T)=p$.
Theorem 2.8. For any connected graph G of order $p \geq 2,2 \leq m_{c r}(G) \leq$ $m_{c r}^{+}(G) \leq p, m_{c r}(G) \neq p-1, m_{c r}^{+}(G) \neq p-1$.

Proof. Any connected restrained monophonic set needs at least two vertices and so $m_{c r}(G) \geq 2$. Since every minimal connected restrained monophonic set of G is also a connected restrained monophonic set of G, it follows that $m_{c r}(G) \leq m_{c r}^{+}(G)$. It is clear that $V(G)$ induces a connected restrained monophonic set of G and $V(G)-\{z\}$ is not a connected restrained monophonic set of G for any vertex z in G. Hence $m_{c r}^{+}(G) \leq p, m_{c r}(G) \neq$ $p-1$ and $m_{c r}^{+}(G) \neq p-1$.

The bounds in Theorem 2.8 are sharp. For the complete graph K_{2}, $m_{c r}\left(K_{2}\right)=m_{c r}^{+}\left(K_{2}\right)=2$ and if G is a non-trivial tree of order p, then $m_{c r}(G)=m_{c r}^{+}(G)=p$. All the inequalities in Theorem 2.8 are strict. For graph G given in Figure 2.1, $m_{c r}(G)=3, m_{c r}^{+}(G)=4$ and $p=6$. Thus we have $2<m_{c r}(G)<m_{c r}^{+}(G)<p$.

Now we proceed to characterize graphs G for which the lower bound in Theorem 2.8 is attained.

Theorem 2.9. Let G be a connected graph of order $p \geq 2$. Then $G=K_{2}$ if and only if $m_{c r}^{+}(G)=2$.

Proof. If $G=K_{2}$, then by Corollary 2.4, we have $m_{c r}^{+}(G)=2$. Conversely, let $m_{c r}^{+}(G)=2$. Let $S=\{u, v\}$ be a minimal connected restrained monophonic set of G. Then $u v$ is an edge. If $G \neq K_{2}$, there exists a vertex w different from u and v. Since $u v$ is an edge, w can not lie on any $u-v$ monophonic path and so S is not a connected restrained monophonic set, which is a contradiction. Thus $G=K_{2}$.

Theorem 2.10. Let G be a connected graph with every vertex of G is either a cut-vertex or an extreme vertex. Then $m_{c r}^{+}(G)=p$.

Proof. Let G be a connected graph with every vertex of G is either a cut-vertex or an extreme vertex. Then by Theorems 2.3 and 2.6 , we have $m_{c r}^{+}(G)=p$.

The converse of Theorem 2.10 need not be true. For the graph G given in Figure 2.2, $m_{c r}^{+}(G)=6=p$, but the vertices v_{3} and v_{4} are neither cut-vertices nor extreme vertices of G.

Figure 2.2: G
Theorem 2.11. For a connected graph $G, m_{c r}^{+}(G)=p$ if and only if $m_{c r}(G)=p$.

Proof. Let $m_{c r}^{+}(G)=p$. Then $S=V(G)$ is the unique minimal connected restrained monophonic set of G. Since no proper subset of S is a connected restrained monophonic set of G, it is clear that S is the unique minimum connected restrained monophonic set of G and so $m_{c r}(G)=p$. The converse follows from Theorem 2.8.

Theorem 2.12. Let G be a connected graph of order $p \geq 2$. If $m_{c r}(G)=$ $p-2$ then $m_{c r}^{+}(G)=p-2$.

Proof. If $m_{c r}(G)=p-2$, it follows from Theorem 2.8 that $m_{c r}^{+}(G)=$ $p-2$ or $m_{c r}^{+}(G)=p$. If $m_{c r}^{+}(G)=p$, then by Theorem $2.11, m_{c r}(G)=p$, which is a contradiction. Hence $m_{c r}^{+}(G)=p-2$.

The converse of Theorem 2.12 need not be true. For the graph G given in Figure 2.1, the upper connected restrained monophonic number of G is $m_{c r}^{+}(G)=4=p-2$ and the connected restrained monophonic number of G is $m_{c r}(G)=3 \neq p-2$.

We leave the following problem as an open question.
Problem 2.13. Characterize graphs G for which $m_{c r}(G)=m_{c r}^{+}(G)$.

3. Realization results for $m_{c r}^{+}(G)$

In view of Theorem 2.8, we have the following realization theorem.
Theorem 3.1. For every pair a, b of positive integers with $4 \leq a \leq b$, there is a connected graph G with $m_{c r}(G)=a$ and $m_{c r}^{+}(G)=b$.

Proof. We prove this theorem by considering two cases.
Case 1. $4 \leq a=b$. Let G be any tree with a vertices. Then by Theorem 1.3 and Corollary 2.7, G has the desired property.

Figure 3.1: G

Case 2. $4 \leq a<b$. Let H be the graph obtained from the path P_{3} : v_{1}, v_{2}, v_{3} of order 3 by adding $b-2$ new vertices $w_{1}, w_{2}, \ldots, w_{b-a+1}, u_{1}, u_{2}, \cdots, u_{a-3}$
and joining $w_{i}(1 \leq i \leq b-a+1)$ to the vertices v_{1}, v_{2} and v_{3}; joining $u_{j}(1 \leq j \leq a-3)$ to the vertex v_{3}; and also joining each $w_{i}(1 \leq i \leq b-a)$ with $w_{j}(i+1 \leq j \leq b-a+1)$. The graph G is obtained from H and the path $P_{2}: x, y$ of order 2 by joining the vertex x to the vertices v_{1} and v_{2}; also joining the vertex y to the vertices v_{2} and v_{3}, which is shown in Figure 3.1. Let $S=\left\{u_{1}, u_{2}, \cdots, u_{a-3}, v_{3}\right\}$ be the set of all extreme vertices and cutvertex of G. By Theorems 1.1, 1.2, 2.3 and 2.6 , every connected restrained monophonic set and every minimal connected restrained monophonic set of G contain S. Clearly, S is not a connected restrained monophonic set of G. Also, for any vertex $v \in V(G)-S, S_{1}=S \cup\{v\}$ is not a connected restrained monophonic set of G. Let $S_{2}=S \cup\left\{v_{1}, v_{2}\right\}$. It is easily verified that S_{2} is a connected restrained monophonic set of G and so $m_{c r}(G)=a$.

Next we show that $m_{c r}^{+}(G)=b$. Clearly $T=S \cup\left\{y, w_{1}, w_{2}, \ldots, w_{b-a+1}\right\}$ is a connected restrained monophonic set of G. We claim that T is a minimal connected restrained monophonic set of G. Let W be any proper subset of T. Then there exists a vertex, say v, such that $v \in T$ and $v \notin W$. By Theorems 2.3 and $2.6, v \in\left\{y, w_{1}, w_{2}, \ldots, w_{b-a+1}\right\}$. It is easily verified that v is not an internal vertex of any $x-y$ monophonic path for some $x, y \in W$, it follows that W is not a connected restrained monophonic set of G. Hence T is a minimal connected restrained monophonic set of G and so $m_{c r}^{+}(G) \geq b$. Suppose that $m_{c r}^{+}(G)>b$. Let M be a minimal connected restrained monophonic set of G with $|M|>b$. Then there exists at least one vertex, say, $v \in M$ such that $v \notin T$. Thus $v \in\left\{v_{1}, v_{2}, x\right\}$. If $v=v_{1}$, then $M_{1}=S \cup\left\{v_{1}, w_{1}\right\}$ is a connected restrained monophonic set of G and also it is a proper subset of M, which is a contradiction to M a minimal connected restrained monophonic set of G. If $v=v_{2}$, then $M_{2}=S \cup\left\{v_{2}, w_{1}, y\right\}$ is a connected restrained monophonic set of G and also it is a proper subset of M, which is a contradiction to M a minimal connected restrained monophonic set of G. If $v=x$, then $M_{3}=S \cup\{x, y\}$ is a connected restrained monophonic set of G and also it is a proper subset of M, which is a contradiction to M a minimal connected restrained monophonic set of G. Hence $m_{c r}^{+}(G)=b$.

Theorem 3.2. If p, d and k are positive integers such that $2 \leq d \leq p-2$, $k \geq 4, k \neq p-1$ and $p-d-k \geq 0$, then there exists a connected graph G of order p, monophonic diameter d and $m_{c r}^{+}(G)=k$.

Proof. We prove this theorem by considering three cases.

Case 1. $d=2$ and $k \geq 4$. Let $P_{3}: x, y, z$ be a path of order 3 . Let G be the graph obtained by adding $p-3$ new vertices $v_{1}, v_{2}, \ldots, v_{p-k}, w_{1}, w_{2}, \ldots, w_{k-3}$ to P_{3} and joining each $w_{i}(1 \leq i \leq k-3)$ to y; and joining each $v_{i}(1 \leq$ $i \leq p-k)$ with x, y and z; and joining each $v_{i}(1 \leq i \leq p-k-1)$ with $v_{j}(i+1 \leq j \leq p-k)$. The graph G is shown in Figure 3.2. Then G has order p and monophonic diameter $d=2$. Let $S=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{k-3}, x, z, y\right\}$ be the set of all extreme vertices and cut-vertex of G. By Theorems 2.3 and 2.6 , every minimal connected restrained monophonic set of G contains S. It is easily verified that S is the unique minimal connected restrained monophonic set of G and so $m_{c r}^{+}(G)=k$.

Figure 3.2: G

Case 2. $d=3$ and $k \geq 4$. Let $P_{3}: x, y, z$ be a path of order 3 . Let G be the graph obtained by adding $p-3$ new vertices $v_{1}, v_{2}, \ldots, v_{p-k}, w_{1}, w_{2}, \ldots, w_{k-3}$ to P_{3} and joining each $w_{i}(1 \leq i \leq k-3)$ to z; and joining each $v_{i}(1 \leq i \leq$ $p-k)$ with x, y and z; and joining each $v_{i}(1 \leq i \leq p-k-1)$ with $v_{j}(i+1 \leq j \leq p-k)$. The graph G is shown in Figure 3.3. Then G has order p and monophonic diameter $d=3$. Let $S=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{k-3}\right.$, $x, z\}$ be the set of all extreme vertices and cut-vertex of G. By Theorems 2.3 and 2.6 , every minimal connected restrained monophonic set of G contains S. Clearly, S is not a connected restrained monophonic set of G. It is easy to observe that, $S \cup\{y\}$ and $S \cup\left\{v_{i}\right\}(1 \leq i \leq p-k)$ are the minimal connected restrained monophonic sets of G each of cardinality k and so $m_{c r}^{+}(G)=k$.

Figure 3.3: G

Case 3. $4 \leq d \leq p-2$ and $k \geq 4$. Let $C_{d+1}: v_{1}, v_{2}, \ldots, v_{d+1}, v_{1}$ be the cycle of order $d+1$. The required graph G is obtained from C_{d+1} by adding $p-d-1$ new vertices $w_{1}, w_{2}, \ldots, w_{k-2}, u_{1}, u_{2}, \ldots, u_{p-d-k+1}$ and joining each vertex $w_{i}(1 \leq i \leq k-2)$ to both v_{1} and v_{2}; and also joining each vertex $u_{j}(1 \leq j \leq p-d-k+1)$ to both v_{3} and v_{5}. The graph G is shown in Figure 3.4. Then G has order p and monophonic diameter d. Let $S=$ $\left\{w_{1}, w_{2}, \ldots, w_{k-2}\right\}$ be the set of all extreme vertices of G. Then by Theorem 2.3, S is contained in every minimal connected restrained monophonic set of G. It is clear that $S_{1}=S \cup\left\{v_{2}, v_{3}\right\}$ and $S_{2}=S \cup\left\{v_{1}, v_{d+1}\right\}$ are the only two minimal connected restrained monophonic sets of G and so $m_{c r}^{+}(G)=k$.

Figure 3.4: G

A cknow ledgments

*Research work was supported by Project No. NBHM/R.P.29/ 2015/ F resh/ 157, N ational Board for Higher M athematics (N BH M), D epartment of A tomic E nergy (D A E), G overnment of India.

References

[1] F. Buckley and F. Harary, Distance in Graphs. Redwood City, CA: A ddison-W esley, 1990.
[2] E. R. Costa, M. C. D ourado, and R. M. Sampaio, "Inapproximability results related to monophonic convexity", Discrete Applied M athematics, vol. 197, pp. 70-74, 2015. doi: 10.1016/ j.dam.2014.09.012
[3] M . C. D ourado, F. Protti, and J. L. Szwarcfiter, "A Igorithmic aspects of monophonic convexity", Electronic Notes in Discrete M athematics, vol. 30, pp. 177-182, 2008. doi: 10.1016/ j.endm.2008.01.031
[4] M. C. Dourado, F. Protti, and J. L. Szwarcfiter, "Complexity results related to monophonic convexity", Discrete Applied Mathematics, vol. 158, no. 12, pp. 1268-1274, 2010. doi: 10.1016/ j.dam.2009.11.016
[5] K. Ganesamoorthy and S. Lakshmi Priya, "The Outer Connected Monophonic Number of a Graph", Ars Combinatoria, vol. 153, pp. 149-160, 2020.
[6] K. Ganesamoorthy and S. Lakshmi Priya, "Extreme Outer Connected M onophonic G raphs", Communications in Combinatorics and Optimization, 2021. doi: 10.22049/ CCO.2021.27042.1184
[7] K. Ganesamoorthy and S. Lakshmi Priya, "F urther results on the outer connected monophonic number of a graph", Transactions of National Academy of Sciences of Azerbaijan. Series of Physical-T echnical and M athematical Sciences, vol. 41, no. 4, pp. 51-59, 2021. [On line]. A vailable: https:/ / bit.ly/ 3J 2aA BI
[8] K. Ganesamoorthy, M. M urugan, and A. P. N. Santhakumaran, "Extreme-support total monophonic graphs", Bulletin of the Iranian Mathematical Society, vol. 47, no. S1, pp. 159-170, 2021. doi: 10.1007/ s41980-020-00485-4
[9] F. H arary, Graph Theory. A ddison-W esley, 1969.
[10] E. M. Paluga and S. R. Canoy, Jr, "M onophonic numbers of the join and composition of connected graphs", Discrete M athematics, vol. 307, no. 9-10, pp. 1146-1154, 2007. doi: 10.1016/ j.disc.2006.08.002
[11] A. P. Santhakumaran and P. Titus, "M onophonic Distance in Graphs", Discrete Mathematics, Algorithms and Applications, vol. 3, no. 2, pp. 159-169, 2011. doi: 10.1142/ s1793830911001176
[12] A. P. Santhakumaran and P. Titus, A N ote on "M onophonic Distance in G raphs", Discrete M athematics, Algorithms and Applications, vol. 4, no. 2, 2012, doi: 10.1142/ S1793830912500188
[13] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, "On the Monophonic Number of a Graph", Journal of applied mathematics \& informatics, vol. 32, no. 1-2, pp. 255-266, 2014. doi: 10.14317/ jami. 2014.255
[14] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, "The Restrained M onophonic Number of a Graph", TWMS journal of pure and applied mathematics (Online). A ccepted.
[15] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, "The Connected and Forcing Connected Restrained M onophonic Numbers of a Graph", Communicated.
[16] A. P. Santhakumaran, P. Titus, K. Ganesamoorthy, and M. M urugan, "The forcing total monophonic number of a graph", Proyecciones (Antofagasta), vol. 40, no. 2, pp. 561-571, 2021. doi: 10.22199/ issn.0717-6279-2021-02-0031
[17] A. P. Santhakumaran, T. Venkata Raghu and K. Ganesamoorthy, "M inimal Restrained M onophonic Sets in Graphs", TW M S journal of pure and applied mathematics (Online), vol. 11, no. 3, pp. 762-771, 2021.

A. P. Santhakumaran

Department of Mathematics
Hindustan Institute of Technology and Science
Chennai-603 103,
India
e-mail: apskumar1953@gmail.com

P. Titus

Department of Mathematics, University College of Engineering Nagercoil
Anna University,
Tirunelveli Region
Nagercoil-629 004,
India
e-mail: titusvino@yahoo.com
and

K. Ganesamoorthy

Department of Mathematics,
Coimbatore Institute of Technology
Coimbatore-641 014,
India
e-mail: kvgm 2005@yahoo.co.in
Corresponding author

