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Abstract

For a connected graph G = (V,E) of order at least two, a con-
nected restrained monophonic set S of G is a restrained monophonic
set such that the subgraph G[S] induced by S is connected. The min-
imum cardinality of a connected restrained monophonic set of G is
the connected restrained monophonic number of G and is denoted by
mcr(G). A connected restrained monophonic set S of G is called a
minimal connected restrained monophonic set if no proper subset of
S is a connected restrained monophonic set of G. The upper con-
nected restrained monophonic number of G, denoted by m+

cr(G), is
defined as the maximum cardinality of a minimal connected restrained
monophonic set of G. We determine bounds for it and certain general
properties satisfied by this parameter are studied. It is shown that,
for positive integers a, b such that 4 ≤ a ≤ b, there exists a connected
graph G such that mcr(G) = a and m+

cr(G) = b.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph with-
out loops or multiple edges. The order and size of G are denoted by p and
q, respectively. For basic graph theoretic terminology we refer to Harary
[9]. The distance d(x, y) between two vertices x and y in a connected graph
G is the length of a shortest x−y path in G. An x−y path of length d(x, y)
is called an x − y geodesic [1]. The neighborhood of a vertex v is the set
N(v) consisting of all vertices u which are adjacent with v. A vertex v is
an extreme vertex if the subgraph induced by its neighbors is complete.

A chord of a path P is an edge joining two non-adjacent vertices of
P . A path P is called a monophonic path if it is a chordless path. A
set S of vertices of G is a monophonic set of G if each vertex v of G
lies on an x − y monophonic path for some x and y in S. The minimum
cardinality of a monophonic set of G is the monophonic number of G and
is denoted by m(G), the monophonic number of a graph G and its related
concepts have been studied by several authors [2, 3, 4, 5, 6, 7, 8, 10, 13,
16, 17]. A restrained monophonic set S of a graph G is a monophonic
set such that either S = V or the subgraph induced by V − S has no
isolated vertices. The minimum cardinality of a restrained monophonic set
of G is the restrained monophonic number of G and is denoted by mr(G).
The restrained monophonic number of a graph was introduced and studied
in [14]. A connected restrained monophonic set S of G is a restrained
monophonic set such that the subgraph G[S] induced by S is connected.
The minimum cardinality of a connected restrained monophonic set of G
is the connected restrained monophonic number of G and is denoted by
mcr(G). The connected restrained monophonic number of a graph was
introduced and studied in [15].

For any two vertices u and v in a connected graph G, the monophonic
distance dm(u, v) from u to v is defined as the length of a longest u − v
monophonic path in G. The monophonic eccentricity em(v) of a vertex
v in G is em(v) = max {dm(v, u) : u ∈ V (G)}. The monophonic radius,
radm(G) of G is radm(G) = min {em(v) : v ∈ V (G)} and the monophonic
diameter, diamm(G) of G is diamm(G) = max {em(v) : v ∈ V (G)}. The
monophonic distance was introduced and studied in [11, 12].

The following theorems will be used in the sequel.

Theorem 1.1. [15] Each extreme vertex of a connected graph G belongs
to every connected restrained monophonic set of G.
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Theorem 1.2. [15] Every cut-vertex of a connected graph G belongs to
every connected restrained monophonic set of G.

Theorem 1.3. [15] For any non-trivial tree T of order p, mcr(T ) = p.

Throughout this paper G denotes a connected graph with at least two
vertices.

2. Upper Connected Restrained Monophonic Number

Definition 2.1. A connected restrained monophonic set S of G is called a
minimal connected restrained monophonic set if no proper subset of S is a
connected restrained monophonic set of G. The upper connected restrained
monophonic number of G, denoted by m+

cr(G), is defined as the maximum
cardinality of a minimal connected restrained monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimal connected
restrained monophonic sets are S1 = {v1, v2, v3}, S2 = {v2, v3, v4} and
S3 = {v1, v4, v5, v6}. Hence the connected restrained monophonic number
of G is 3 and the upper connected restrained monophonic number of G
is 4. Thus the connected restrained monophonic number and the upper
connected restrained monophonic number of a graph G are different.

Figure 2.1: G

Every minimum connected restrained monophonic set of G is a minimal
connected restrained monophonic set of G, but the converse need not be
true. For the graph G given in Figure 2.1, S3 is a minimal connected
restrained monophonic set but it is not a minimum connected restrained
monophonic set of G.

Theorem 2.3. Each extreme vertex of a connected graph G belongs to
every minimal connected restrained monophonic set of G.
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Proof. This follows from Theorem 1.1. 2

Corollary 2.4. For the complete graph Kp, m
+
cr(Kp) = p.

Theorem 2.5. Let G be a connected graph with cut-vertices and let S be
a minimal connected restrained monophonic set of G. If v is a cut-vertex
of G, then every component of G− v contains an element of S.

Proof. Suppose that there is a component B of G − v such that B
contains no vertex of S. Let u be any vertex in B. Since S is a mini-
mal connected restrained monophonic set, there exists a pair of vertices
x and y in S such that u lies in some x − y monophonic path P : x =
u0, u1, u2, · · · , u, · · · , un = y in G with u 6= x, y. Since v is a cut-vertex of
G, the x− u subpath P1 of P and the u− y subpath P2 of P both contain
v, it follows that P is not a path, which is a contradiction. 2

Theorem 2.6. Every cut-vertex of a connected graph G belongs to every
minimal connected restrained monophonic set of G.

Proof. This follows from Theorem 1.2. 2

Corollary 2.7. For any non-trivial tree T of order p, m+
cr(T ) = p.

Theorem 2.8. For any connected graph G of order p ≥ 2, 2 ≤ mcr(G) ≤
m+

cr(G) ≤ p,mcr(G) 6= p− 1,m+
cr(G) 6= p− 1.

Proof. Any connected restrained monophonic set needs at least two
vertices and so mcr(G) ≥ 2. Since every minimal connected restrained
monophonic set of G is also a connected restrained monophonic set of G, it
follows that mcr(G) ≤ m+

cr(G). It is clear that V (G) induces a connected
restrained monophonic set ofG and V (G)−{z} is not a connected restrained
monophonic set of G for any vertex z in G. Hence m+

cr(G) ≤ p, mcr(G) 6=
p− 1 and m+

cr(G) 6= p− 1. 2

The bounds in Theorem 2.8 are sharp. For the complete graph K2,
mcr(K2) = m+

cr(K2) = 2 and if G is a non-trivial tree of order p, then
mcr(G) = m+

cr(G) = p. All the inequalities in Theorem 2.8 are strict. For
graph G given in Figure 2.1, mcr(G) = 3, m

+
cr(G) = 4 and p = 6. Thus we

have 2 < mcr(G) < m+
cr(G) < p.

Now we proceed to characterize graphs G for which the lower bound in
Theorem 2.8 is attained.

Theorem 2.9. Let G be a connected graph of order p ≥ 2. Then G = K2

if and only if m+
cr(G) = 2.
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Proof. If G = K2, then by Corollary 2.4, we have m
+
cr(G) = 2. Con-

versely, let m+
cr(G) = 2. Let S = {u, v} be a minimal connected restrained

monophonic set of G. Then uv is an edge. If G 6= K2, there exists a vertex
w different from u and v. Since uv is an edge, w can not lie on any u− v
monophonic path and so S is not a connected restrained monophonic set,
which is a contradiction. Thus G = K2. 2

Theorem 2.10. Let G be a connected graph with every vertex of G is
either a cut-vertex or an extreme vertex. Then m+

cr(G) = p.

Proof. Let G be a connected graph with every vertex of G is either a
cut-vertex or an extreme vertex. Then by Theorems 2.3 and 2.6, we have
m+

cr(G) = p. 2

The converse of Theorem 2.10 need not be true. For the graph G given
in Figure 2.2, m+

cr(G) = 6 = p, but the vertices v3 and v4 are neither
cut-vertices nor extreme vertices of G.

Figure 2.2: G

Theorem 2.11. For a connected graph G, m+
cr(G) = p if and only if

mcr(G) = p.

Proof. Let m+
cr(G) = p. Then S = V (G) is the unique minimal con-

nected restrained monophonic set of G. Since no proper subset of S is a
connected restrained monophonic set of G, it is clear that S is the unique
minimum connected restrained monophonic set of G and so mcr(G) = p.
The converse follows from Theorem 2.8. 2

Theorem 2.12. Let G be a connected graph of order p ≥ 2. If mcr(G) =
p− 2 then m+

cr(G) = p− 2.
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Proof. If mcr(G) = p − 2, it follows from Theorem 2.8 that m+
cr(G) =

p − 2 or m+
cr(G) = p. If m+

cr(G) = p, then by Theorem 2.11, mcr(G) = p,
which is a contradiction. Hence m+

cr(G) = p− 2. 2

The converse of Theorem 2.12 need not be true. For the graph G given
in Figure 2.1, the upper connected restrained monophonic number of G is
m+

cr(G) = 4 = p − 2 and the connected restrained monophonic number of
G is mcr(G) = 3 6= p− 2.

We leave the following problem as an open question.

Problem 2.13. Characterize graphs G for which mcr(G) = m+
cr(G).

3. Realization results for m+
cr(G)

In view of Theorem 2.8, we have the following realization theorem.

Theorem 3.1. For every pair a, b of positive integers with 4 ≤ a ≤ b, there
is a connected graph G with mcr(G) = a and m+

cr(G) = b.

Proof. We prove this theorem by considering two cases.

Case 1. 4 ≤ a = b. Let G be any tree with a vertices. Then by Theorem
1.3 and Corollary 2.7, G has the desired property.

Figure 3.1: G

Case 2. 4 ≤ a < b. Let H be the graph obtained from the path P3 :
v1, v2, v3 of order 3 by adding b−2 new vertices w1, w2, ..., wb−a+1, u1, u2, · · · , ua−3
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and joining wi(1 ≤ i ≤ b − a + 1) to the vertices v1, v2 and v3; joining
uj(1 ≤ j ≤ a− 3) to the vertex v3; and also joining each wi(1 ≤ i ≤ b− a)
with wj(i+1 ≤ j ≤ b−a+1). The graph G is obtained fromH and the path
P2 : x, y of order 2 by joining the vertex x to the vertices v1 and v2; also
joining the vertex y to the vertices v2 and v3, which is shown in Figure 3.1.
Let S = {u1, u2, · · · , ua−3, v3} be the set of all extreme vertices and cut-
vertex of G. By Theorems 1.1, 1.2, 2.3 and 2.6, every connected restrained
monophonic set and every minimal connected restrained monophonic set
of G contain S. Clearly, S is not a connected restrained monophonic set
of G. Also, for any vertex v ∈ V (G)− S, S1 = S ∪ {v} is not a connected
restrained monophonic set of G. Let S2 = S ∪ {v1, v2}. It is easily verified
that S2 is a connected restrained monophonic set of G and so mcr(G) = a.

Next we show thatm+
cr(G) = b. Clearly T = S∪{y, w1, w2, . . . , wb−a+1}

is a connected restrained monophonic set of G. We claim that T is a min-
imal connected restrained monophonic set of G. Let W be any proper
subset of T . Then there exists a vertex, say v, such that v ∈ T and v /∈W .
By Theorems 2.3 and 2.6, v ∈ {y, w1, w2, . . . , wb−a+1}. It is easily verified
that v is not an internal vertex of any x − y monophonic path for some
x, y ∈ W , it follows that W is not a connected restrained monophonic set
of G. Hence T is a minimal connected restrained monophonic set of G and
so m+

cr(G) ≥ b. Suppose that m+
cr(G) > b. Let M be a minimal connected

restrained monophonic set of G with |M | > b. Then there exists at least
one vertex, say, v ∈ M such that v /∈ T . Thus v ∈ {v1, v2, x}. If v = v1,
then M1 = S ∪ {v1, w1} is a connected restrained monophonic set of G and
also it is a proper subset ofM, which is a contradiction toM a minimal con-
nected restrained monophonic set of G. If v = v2, thenM2 = S∪{v2, w1, y}
is a connected restrained monophonic set of G and also it is a proper subset
of M, which is a contradiction to M a minimal connected restrained mono-
phonic set of G. If v = x, then M3 = S ∪ {x, y} is a connected restrained
monophonic set of G and also it is a proper subset of M, which is a contra-
diction to M a minimal connected restrained monophonic set of G. Hence
m+

cr(G) = b. 2

Theorem 3.2. If p, d and k are positive integers such that 2 ≤ d ≤ p− 2,
k ≥ 4, k 6= p− 1 and p− d− k ≥ 0, then there exists a connected graph G
of order p, monophonic diameter d and m+

cr(G) = k.

Proof. We prove this theorem by considering three cases.
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Case 1. d = 2 and k ≥ 4. Let P3 : x, y, z be a path of order 3. Let G be the
graph obtained by adding p−3 new vertices v1, v2, . . . , vp−k, w1, w2, . . . , wk−3
to P3 and joining each wi(1 ≤ i ≤ k − 3) to y; and joining each vi(1 ≤
i ≤ p − k) with x, y and z; and joining each vi(1 ≤ i ≤ p − k − 1) with
vj(i+1 ≤ j ≤ p−k). The graph G is shown in Figure 3.2. Then G has order
p and monophonic diameter d = 2. Let S = {w1, w2, w3, . . . , wk−3, x, z, y}
be the set of all extreme vertices and cut-vertex of G. By Theorems 2.3
and 2.6, every minimal connected restrained monophonic set of G contains
S. It is easily verified that S is the unique minimal connected restrained
monophonic set of G and so m+

cr(G) = k.

Figure 3.2: G

Case 2. d = 3 and k ≥ 4. Let P3 : x, y, z be a path of order 3. Let G be the
graph obtained by adding p−3 new vertices v1, v2, . . . , vp−k, w1, w2, . . . , wk−3
to P3 and joining each wi(1 ≤ i ≤ k − 3) to z; and joining each vi(1 ≤ i ≤
p − k) with x, y and z; and joining each vi(1 ≤ i ≤ p − k − 1) with
vj(i + 1 ≤ j ≤ p − k). The graph G is shown in Figure 3.3. Then G has
order p and monophonic diameter d = 3. Let S = {w1, w2, w3, . . . , wk−3,
x, z} be the set of all extreme vertices and cut-vertex of G. By Theorems
2.3 and 2.6, every minimal connected restrained monophonic set of G con-
tains S. Clearly, S is not a connected restrained monophonic set of G. It is
easy to observe that, S ∪ {y} and S ∪ {vi} (1 ≤ i ≤ p− k) are the minimal
connected restrained monophonic sets of G each of cardinality k and so
m+

cr(G) = k.
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Figure 3.3: G

Case 3. 4 ≤ d ≤ p−2 and k ≥ 4. Let Cd+1 : v1, v2, ..., vd+1, v1 be the cycle
of order d + 1. The required graph G is obtained from Cd+1 by adding
p − d − 1 new vertices w1, w2, . . . , wk−2, u1, u2, . . . , up−d−k+1 and joining
each vertex wi(1 ≤ i ≤ k − 2) to both v1 and v2; and also joining each
vertex uj(1 ≤ j ≤ p− d− k + 1) to both v3 and v5. The graph G is shown
in Figure 3.4. Then G has order p and monophonic diameter d. Let S =
{w1, w2, . . . , wk−2} be the set of all extreme vertices of G. Then by Theorem
2.3, S is contained in every minimal connected restrained monophonic set of
G. It is clear that S1 = S∪{v2, v3} and S2 = S∪{v1, vd+1} are the only two
minimal connected restrained monophonic sets of G and so m+

cr(G) = k.
2
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Figure 3.4: G
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