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Abstract

In this paper, we show a new generalized refinement of Young’s
inequality. As applications we give some new generalized refinements
of Young’s type inequalities for the determinants, traces and norms
of positive definite matrices.
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1. Introduction

The arithmetic-geometric mean (AM-GM) inequality states as follows:

Theorem 1.1. Let n be a positive integer. For k =1,2,...,n, let x; > 0,
and let vy, > 0 satisfy > j_q vy = 1. Then, we have

n n
(1.1) T = <> vk
k=1 k=1

The special case of the weighted AM-GM inequality (n = 2) is the well-
known Young’s inequality, for positive real numbers a,b and 0 < v < 1, we
have

(1.2) a’b' " <wva+ (1 —v)b.

The first refinements of Young inequality is the squared version proved
in [7] as follows

(1.3) (a”b' )2 + 72 (a — b)? < (va+ (1 —v)b)?,
where rg = min{y, 1 — v}.
Recently, Kittaneh and Manasrah [12] refined Young’s inequality so that
(1.4) a’b" " + ro(va — vVb)? < va+ (1 —v)b,
where 79 = min{v, 1 — v}.

Later, J. Zhao and J. Wu [13], obtained the following refinement of
inequality (1.2) as follows

B ro(ya = VB (VB = VB () + (VA = Vax (0))
<wva+ (1—v)b,
(1.5)
where g = min{v, 1 — v} and r1 = min{2rg, 1 — 2r} and x; the character-
istic function defined by

)1 difxel
XI(””)_{ 0 ifadl
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S. Furuichi [5] was refined (1.1) as follows:

n n n n
(1.6) HwZ’“ +r Z:pk—n" Hmk < Zukxk,
k=1 k=1 k=1 k=1

where r = min{vy : k = 1,...,n}. This inequality generalizes the inequality
(1.4).

For a generalized refinement of the weighted arithmetic-geometric mean
inequality see [9].

Manasrah and Kittaneh [1] gave generalized refinements of the inequal-
ities (1.3) and (1.4). as follows

Theorem 1.2. Ifa,b> 0 and 0 < v <1, then for m =1,2,3,... we have

(1.7) (a’D' )" + 1002 —b2)? < (va+ (1 —v)b)™,

where m = 1,2,3,..., and ro = min{v, 1 — v}.

Recently, Manasrah and Kittaneh [2] gave further generalizations and
refinements of (1.3) and (1.4) as follows

Theorem 1.3. Ifa,b >0 and 0 <wv <1, then form =1,2,3,..., we have

m

ri(a® —b%)" < r$(<a+b)m—2m<ab>%) < (va+(1-v)b)™ = (@b )™,

(1.8)

where 19 = min{v, 1 — v}.

For more other general refinement of inequalities (1.3) and (1.4) see [10].
One of the aims of this paper is to refine the second inequality of The-
orem 1.3 by adding the positive quantity :

m
2

. Kb(u) + (ab)

— ~ (m D@8 T ) g 41 0)+

(aC*5=25) + @)?

2 — (m+ D@ )T )y )09 |,
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in the first part. Where 7o = min{v,1 — v}, rp, = min{2™rg"; (7)) (7“6“(1 -

ro)™k — 7“6”), 0 < k < m— 1} and x7(v) the characteristic function.

As applications we give some new generalized refinements of Young’s type
inequalities for the determinants, traces and norms of positive definite ma-
trices.

2. Generalized refinements of Young’s inequality

In this section, we prove the main result of this paper. To do this, we need
the following lemma.

Lemma 2.1. Let m be a positive integer, and let v a positive number such
that 0 < v < 1. Then we have

(2.1) i <TIZ> kvF(1— )™k = my

k=1
and

m—1

(2.2) 3 (7:) (m — k)W (1 — )™ % = m(1 —v),
k=0
m—1 m m—1 m

(2.3) > <k>k—z <k>(m—kz)—m2m1,
k=1 k=0

where ('}') is the binomial coefficient.

For a proof of Lemma 2.1, one can see [3].
The main result to be proved in this paper is:

Theorem 2.1. Let a and b be two positive numbers and 0 < v < 1. Then
form=1,2,3,..., we have

(@b )™ 4+ M ((a+b)™ —2™(ab)?)

bm—am m
2

+ Tme(ﬁ) + (ab)

(=) + @) =+ (@2 T )y )|
< (va+ (1 —-v)b)™,

~ (m D@8 T )
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where ro = min{v,1 — v}, rm = min{2™rg"; (P)r§(1 — ro)™ %, 0 < k <
m — 1}, and x(v) the characteristic function.

Proof. Suppose that 0 < v < % We claim that

m
2

(@’b'™)™  + v™((a+b)™ — 2™ (ab)?)

4 () + (@)% — (m o+ 1)(am5 )T )
(2.4) < (wat(l-mh"
We have
(va+ (1 =)™ —v™((a+b)" — 2" (ab)¥)
m m m k kbm k _m m kbm ) ) %
m—1

3

= ( ) (1—v)mFr— Z/m> akFom =k 4 2my™ (ab)

7:
Z VT,

where xj, is given by: for 0 < k <m — 1,

zp = a"b"F with v, = (Z}) (WA —v)ymk—ym),

and

Tm = (ab)Z,  with vy = 2"0™.

We have
1. zx > 0 for all k € {0,1,...,m},
2. yp, >0forall k€ {0,1,...,m}, with > JL v = 1.

Hence, by inequality (1.6),
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(va+ (1 =)™ — v™((a+b)™ —2"(ab)?)
> H T+ (Z x) — (m+1) (m+D H xk)
= k=0
= q*(mpflm (Zakbm Pt (ab)? — (m+1) ( Hakbm ’“) )
b — m _m

— galm)pBom) r(b( = N 4 (ab)E — (m+ 1)(ambm+2)z<m+1>),

where r = min{vy, k = 0,...,m} = min{2"r§"; () (7”5(1 — o)™k —

r6”>, 0<k<m-—1},

a(m)

m—

T

k=

m

Ifve [%,

O

(

1],

—_

— o

—_ O

S 1—1/ —k_ym T.T”Vm
- B (feraartom g
g( ) (1—v)™ k—ymk2<k>k+2m

mv, (by Lemma 2.1)

2

| W ([

> 3

)(m B WP — ) = ym) 4 2 gmym

> 3

(
(

+omlmy

—v) (by Lemma 2.1by Lemma 2.1by Lemma 2.1by Lemma 2.1).

then 1 — v € [0, %] So by changing two elements a,b and
two weights v, 1 — v in inequality (2.4), the desired inequality is obtained.

Remark 2.1. The above theorem is a generalization of the inequality (1.5)
obtained by J. Zhao and J. Wu in [13], which correspond to the case m = 1.
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3. Applications

In this section, we give some refined Young type inequalities for traces,
determinants, and norms of positive definite matrices.

Let M,,(C) be the space of n X n complex matrices. A matrix A €
M,,(C) is called positive semi-definite, denoted as A > 0 if z* Az > 0 for
all x € C", and it is called positive definite denoted as A > 0 if x*Ax > 0
for all nonzero z € C™. The singular values of a matrix A € M, (C) are
the eigenvalues of the positive semi-definite matrix |A| = (A*A4)Y/2, denoted

by si(A) for i = 1,2,3,...,n. A norm |||.|||, on M, (C) is called unitarily
invariant if |||[UAV||| = |||A]|| for all A € M,,(C) and all unitary matrices
UV e M,(C).

The trace norm is given by ||A||1 = tr|A| = Y 1_; sk(A), where tr is the
usual trace. This norm is unitarily invariant.
A matrix Young’s inequality due to Ando [4] asserts that

s(A"B) < s;(vA + (1-1)B),

the above singular value inequality entails the following unitarily invarant
norm inequality

114" B[ < [[lvA+ (1 - v)BJ||.

A determinant version of Young’s inequalities is also known [6, p. 467]:
For positive semi-definite matrices A, B and 0 < v < 1,

(3.1) det(AYB'™") < det(vA + (1 — v)B).

To prove the result of this section, we need the following two lemmas,
the first lemma (see, e.g., [6, p. 482]) is the Minkowski inequality for
determinants. The second lemma [11] is a Heinz-Kato type inequality for
unitarily invariant norms.

Lemma 3.1. Let A, B € M,,(C) be positive definite matrices. Then we
have ) ) )
(3.2) det (A+ B)» > det(A)» + det(B)n.

Lemma 3.2. Let A, B € M,,(C) be positive semi-definite matrices. Then
we have

(3.3) I1A"X B < [llAXTIM X B



1204 Mohamed A. Ighachane and Mohamed Akkouchi

In particular
(3.4) tr|A”B1_”| < (trA)”(trB)l_”.

The first result of this section concerns the determinants of positive
definite matrices which can be reads as follows:

Theorem 3.1. Let A, B € M,,(C) be positive definite matrices and 0 <
v < 1. Then form =1,2,3,..., we have

(det(A”Bl_”))m 4o ((det(A)% +det(B)3)™m — 2nm(det(AB))%)

m

1det(B)™ — det(

+Tnm[<det(B)n T A)1 +det(AB)% — (nm + 1)(det(AmBm+%))%>
det(B)w — det(A)n
X X(o,é](y)
+(det(A %det(B) - det(A) — +det(AB)Z — (nm + 1)(det(Am+%Bm))%)}
det(B)w — det(A)n
x X(%,l](”)

< det (VA +(1- u)B) ,

where ro = min{v, 1 — v}, and rpp, = min{2""rg"™; (") <r’§(1 — o)k —

r(’}m) ,0<k<nm-—1}.

Proof. We have
m r l nm
det (VA +(1- u)B) = |det <I/A +(1- I/)B) }

1

> det(uA)% + det((1 — I/)B)n} (by Lemma 3.1)

— -ydet(A)% + (1 — V) det(B)%:|nm.

So,

:(det(A)%Y(det(B)%>1_V]nm

4 rgm((det(A)% + det(B)® )™ — 2nm(det(AB))%>

det (VA + (1 - V)B)m

v
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+Tnm Kdet(B)% det(B) i —det(A) -+ det(AB)% — (nm + 1)(det(AmBm+%))%
det(B)n — det(A)n
XX(O,%](V)
+<det(A)% det(B) - det(A) - +det(AB)? — (nm + 1)(det(Am+%Bm))%>]
det(B)n — det(A)n
XX(%,I](V)

(by Theorem 2.1)
m
— (dettaB )

4 rgm(met(A)% + det(B)x )™ — 2"M(det(AB))%)

+7m Kdet(B)% Aet(B)™ — AU | det(AB)E — (nm + 1) (det(A™ B+ ) D
det(B)n — det(A)w
XX (0,41 (%)
+<det(A)%det(B) ; - det(A) — 4 det(AB)% o (nm + 1)(det(Am+%Bm))%)]
det(B)» — det(A)n
XX(%,I](V)-

O
The second result of this section concerns the traces of positive definite
matrices which can be reads as follows:

Theorem 3.2. Let A, B € M,,(C) be positive definite matrices and 0 <
v < 1. Then form =1,2,3,..., we have

(tr(|AVBlV’>m + g ((tr(A) +tr(B))™ — 2m<tT<A)tr(B))%>

(1 i + (A (B)F = (m+ 1)((tr )" (erB)"™ ) T )

XX(0
(trB)™ — (trA)™
trB —trA

%](V)

)

+ (tr(B) + (A (B — (m+ 1)((trA)m+2(trB)m)ﬁ>
XX(%,I](V)}

< [tr(VA +(1— u)B)]m,
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where g = min{v,1 — v}, and r,, = min{2™rg"; () (7“]67(1 — o)™k —

r{)”), 0<k<m-—1}.

Proof. We have

(tT(|AVBl—V|)m + g ((tr(A) +tr(B))™ — Qm(tT(A)t’I“(B))%)

(trB)™ — (trA)™
B —tA T (tr(A)tr(B))
XX(0

](V)
(o L= Gy (B)F — G+ 1) (A0 By T

I3

. [(tr(A) —(m+ 1)((trA)m(trB)m+2)%>

1
2

XX(%,l](V):|

< {(trA)”(trB)l‘”}m +rg" <(tr(A) +tr(B))™ — 2™ (tr(A)tr( B))%)

o [(tr(A) (tr@; = iﬁl)m + (tr(A)r(B)T — (m+ 1)((trA)m(trB)m“)ﬁ>
XX(O,%](V)

+ (i) UL A (air(3)% — o+ 1) ()2 By

XX(%,l](V)}
(by inequality (3.4))
< [tr(uA +(1- V)B)] (by Theorem 2.1).
O

The third result of this section concerns the norms of positive semi-
definite matrices which can be reads as follows:

Theorem 3.3. Let A, X, B € M,,(C) be positive semi-definite matrices
and 0 < v <1. Then form=1,2,3,...,

[[A”X B [|™ + TS”L((HIAXIII +IIXBIIN™ = 2m(IIIAXIIHIIXBIII)%)
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X B — [ AX]|™ 2
| (IAX N = + (A X BIID®
(m+ D(IAX[PIXB™ )75 ) x xq,(0)
X B — [ AX]|™ s
(1Bl = + (IAXIIX B

(m + 1)(HIAXIIIm“IHXBIHm)Z(m“)) XXt )

< AXI+ (1 - V)IIIXBIII} ,

where g = min{v,1 — v}, and r,, = min{2"rg"; (7)) (rlg(l — o)™k —

r6”>, 0<k<m-1}.

Proof. We have

A" XB[|™ + T?(((IIIAXIII +IXBI[)™ - 2m(IIIAXIII|||XBIII)%>

X B — JI1AX] | 5
i | (IAX N = + (IAX X BIID®
(m+ DAXP X BT ) x xq (0)
X B — 1A s
(Bl = + (IAXIIXBID?

(m+ DAIAX[™ B T ) x x4 4 (0)
1 m
< [axyxsir-|

IA"X B[+ TS"‘((\HAXHI +IXBIID™ = 2m(|HAX||HHXB|H)%)

XB|||I"™ — [[lAX]]™
11X B[] = [[lAX]]]

m
2

+ (IJAXIIX B

s (1ax L

(m+ DAIAXIPIXBI™2) T ) x x0.4(0)
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+ (s i =+ (AXINXBIDE -
(-4 DAXI 2B T ) x4y 0)
( by inequality (3.3))
< [1/|HAXH] + (1 —v)|||X B m(by Theorem 2.1).
g
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