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Abstract

We prove the existence of a solution for the strongly nonlinear
parabolic initial boundary value problem associated to the equation

ut − div a(x, t,∇u) + g(x, t, u,∇u) = f,

where the vector field a(x, t, ξ) exhibits non-standard growth condi-
tions.
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1. Introduction

Let Ω be a bounded domain in RN , N ≥ 2, with a Lipschitz boundary
denoted by ∂Ω. Fixing a final time T > 0, we denote by Q the cylinder
Ω×]0, T [ and Γ = ∂Ω×]0, T [ its lateral surface. We consider the following
strongly nonlinear parabolic initial-boundary problem :⎧⎪⎪⎨⎪⎪⎩

∂u

∂t
− div a(x, t,∇u) + g(x, t, u,∇u) = f in Q,

u(x, t) = 0 in Γ,
u(x, 0) = u0(x) in Ω,

(1.1)

The function a satisfying the Leray-Lions-like conditions with respect to
the variable exponent p(·) : Ω→ [1,+∞[ which is a Log-Hölder continuous
function only dependent on the space variable x (see definitions below).
The nonlinear term g(x, t, s, ξ) satisfies the more general natural growth
condition with respect to ∇u

|g(x, t, u,∇u)| ≤ b(|u|)(θ(x, t) + |∇u|p(x)),
for some continuous function b : R+ → R+ and the sign condition

g(x, t, u,∇u)u ≥ 0.
u0 lies in L

2(Ω) and the right-hand side f is assumed to belong to X 0 where
the space X, as introduced and discussed in [3] (see also [19]), is given by

X :=

½
u ∈ Lp−(0, T ;W

1,p(·)
0 (Ω)) : |∇u| ∈ Lp(·)(Q)

¾
,

Given the assumptions we have made, we think that this space is a reason-
able framework to discuss our problem.

The specific attention accorded to problems with variable exponent is
due to their applications in mathematical physics. Precisely, such equations
are used to model phenomenon which arise in electrorheological fluids (see
[15]) as well as in some model of image processing (see [5]) and elasticity
([21]).

For the problem (1.1) with g ≡ 0 having p(x, t)- structure, the authors
proved in [6] and independently in [18] the existence of a least a weak
solution. Besides, Fu and Pan in [9] have proved an existence result of
weak solutions for the problem⎧⎪⎪⎨⎪⎪⎩

∂u

∂t
− div a(x, t, u,∇u) + a0(x, t, u,∇u) = f in Q = Ω×]0, T [,

u(x, t) = 0 in Γ = ∂Ω×]0, T [,
u(x, 0) = u0(x) in Ω,
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where u0 ∈ L2(Ω) and f ∈W−1,xLp0(x)(Q) under some p(x)-growth condi-
tions.

In this work, we prove the existence of solutions for nonlinear parabolic
initial boundary value problems associated to equations whose prototype
is:

∂u

∂t
− div (|∇u|p(x)−2∇u) + u|∇u|p(x) = f in Q := Ω×]0, T [.

We are mainly concerned with the existence of weak solutions for the
strongly nonlinear problem (1.1) in the variational framework where p(·)
is only dependent on the space variable, − div a(x, t,∇u) is a Leray-Lions
type operator which growths like |∇u|p(x)−1 not depending on u and where
the perturbation g has a critical growth with respect to ∇u. For this, we
will use a Galerkin approximation to construct solutions. Then we want to
conclude from a energy estimate and by using the sign condition on g that
the approximated solution is uniformly bounded in X. We apply the time-
regularizing convolution operator to prove the all everywhere convergence
of the gradient of approximate solution to the gradient of the limit, which
is important in the limiting process. Finally, we will see that the solutions
of the approximate solution converge to the solution of the model problem
in C([0, T ], L2(Ω)) which gives meaning to the initial condition.

2. Preliminaries

Let
p− := ess inf

x∈Ω
p(x) and p+ := ess sup

x∈Ω
p(x).

We will make use of the following assumption

1 < p− ≤ p(x) ≤ p+ < +∞.(2.1)

An interesting feature of generalized variable exponent Sobolev space is
that smooth functions are not dense in it without additional assumptions
on the exponent p(·). However, when the exponent satisfies the following
so-called log-Hölder condition

∃C > 0 : |p(x)− p(y)| log
µ
e+

1

|x− y|

¶
≤ C, for all x, y ∈ Ω,(2.2)

then C∞0 (Ω) is dense in Lp(·)(Ω) (see [8, 16, 20]) and we have the Poincaré
inequality (see [7, Theorem 8.2.4], [8, Theorem 2.7] and [10, Theorem 4.3]):
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Lemma 2.1. Let Ω be a bounded domain in RN . If p ∈ C(Ω) satisfy (2.1)
and (2.2), then there exists a constant C > 0 depending only on Ω and the
function p such that

kukLp(·)(Ω) ≤ Ck∇ukLp(·)(Ω) for all u ∈W
1,p(·)
0 (Ω).

In particular, the space W
1,p(·)
0 (Ω) has a norm k · k

W
1,p(·)
0 (Ω)

given by

kuk
W

1,p(·)
0 (Ω)

= k∇ukLp(·)(Ω) for all u ∈W
1,p(·)
0 (Ω),

which equivalent to k · kW 1,p(·)(Ω). Moreover, the embedding

W
1,p(·)
0 (Ω) → Lp(·)(Ω) is compact (see [11]).

As in [13] (lemma 1.3. p.12) we can prove the following lemma

Lemma 2.2. Suppose that 1 ≤ p(x) < ∞. Let {vn}n be bounded in
Lp(·)(Ω). If vn → v a.e. in Ω, then vn v weakly in Lp(·)(Ω).

We extend a variable exponent function p : Ω → [1,+∞[ to Q →
[1,+∞[ by setting p(x, t) = p(x) for all (x, t) ∈ Q.

3. The space X

As in [3], we consider the following functional space

X :=

½
u ∈ Lp−(0, T ;W

1,p(·)
0 (Ω)) : |∇u| ∈ Lp(·)(Q)

¾
,

which is a separable and reflexive Banach space endowed with the norm

|u|X := kukLp− (0,T ;W1,p(·)
0 (Ω))

+ k∇ukLp(·)(Q)

or the equivalent norm

kukX := k∇ukLp(·)(Q).

Lemma 3.1. Assume that (2.1) and (2.2) are fulfilled. If 0 < |Ω| < +∞,
the Banach space X is continuously embedded in L1(Q). Moreover, there
is a constant c0 > 0 such that for every u ∈ X, one has kukL1(Q) ≤ c0|u|X .
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Proof. Let u ∈ X. Using the Hölder inequality one hasZ
Ω
|u(t)|dx ≤

Ã
1 +

1

p−
− 1

p+

!
max(|Ω|

1

p0− , |Ω|
1

p0+ )ku(t)kLp(·)(Ω).

By Lemma 2.1, there is a constant C > 0 such thatZ
Ω
|u(t)|dx ≤ C

Ã
1 +

1

p−
− 1

p+

!
max(|Ω|

1

p0− , |Ω|
1

p0+ )k∇u(t)kLp(·)(Ω).

Integrating between 0 and T and using the Hölder inequality, we get

Z
Q
|u(t)|dx ≤ C

Ã
1+

1

p−
− 1

p+

!
max(|Ω|

1

p0− , |Ω|
1

p0+ )T
1− 1

p−
µZ T

0
k∇u(t)kp

−

Lp(·)(Ω)

¶ 1
p−
,

which yieldsZ
Q
|u(t)|dx ≤ C

Ã
1 +

1

p−
− 1

p+

!
max(|Ω|

1

p0− , |Ω|
1

p0+ )T
1− 1

p− |u|X .

2

Remark 3.2. [3, Lemma 3.1] C∞0 (Q) is dense in X. Moreover we have the
following continuous dense embedding

Lp+(0, T ;W
1,p(·)
0 (Ω)) →d X →d L

p−(0, T ;W
1,p(·)
0 (Ω)).

For the corresponding dual spaces, we have

L(p
−)0(0, T ;W−1,p0(·)(Ω)) → X 0 → L(p

+)0(0, T ;W
−1,p0(·)
0 (Ω)).

Lemma 3.3. Let Y be a Banach space such that the embedding L1(Ω) →
Y is continuous. If F is bounded inX and relatively compact in L1(0, T ;Y )
then F is relatively compact in L1(Q).

Proof. Let > 0. Since the embedding W
1,p(·)
0 (Ω) → L1(Ω) is compact,

by [17, Lemma 8] there exists a finite constant N > 0 such that for every

v ∈W
1,p(·)
0 (Ω) one has

kvkL1(Q) ≤
Z T

0
kvk

W
1,p(·)
0 (Ω)

dt+NkvkL1(0,T ;Y ).
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Being F relatively compact, for , there is a finite sequence u1, u2, . . . , um
in F satisfying

∀u ∈ F , ∃un, 1 ≤ n ≤ m, such that kun − ukL1(0,T ;Y ) ≤ .

Hence, we get

kun − ukL1(Q) ≤
Z T

0
kun − uk

W
1,p(·)
0 (Ω)

dt+Nkun − ukL1(0,T ;Y ).

By the fact that

Z T

0
kun − uk

W
1,p(·)
0 (Ω)

dt is bounded, as a consequence of

the continuous embedding X → L1(0, T ;W
1,p(·)
0 (Ω)), we conclude that F

is relatively compact in L1(Q). 2

Lemma 3.4. Let (un) be a sequence of elements of X such that

un uweakly in X

and
∂un
∂t

= hn + kn inD0(Q),

where (hn) is a bounded sequence in X
0 and (kn) is a bounded sequence in

L1(Q). Then

u ∈ C(0, T ;W−1,1(Ω)) and un → u strongly in L1(Q).

Proof. Observe that the sequence (un) is bounded in X and in
L1(0, T ;W−1,1(Ω)) as well, since the embedding L1(Ω) → W−1,1(Ω) is
continuous, by Remark 3.2 we conclude that the following embedding are
continuous

X → L1(0, T ;W
1,p(·)
0 (Ω)) → L1(0, T ;L1(Ω)) → L1(0, T ;W−1,1(Ω)).

On the other hand, ∂un∂t is bounded inX
0+L1(Q) and in L1(0, T ;W−1,1(Ω))

too, since

X 0+L1(Q) → L1(0, T ;W−1,1(Ω))+L1(0, T ;L1(Ω)) → L1(0, T ;W−1,1(Ω))

with continuous imbedding. Thus, by [17, Lemma 4] one has

un ∈ C(0, T ;W−1,1(Ω)) and kτhun − unkL1(0,T−h;W−1,1(Ω)) → 0 as h→ 0,
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for all n ∈ N. Let 0 < t1 < t2 < T. By the Jensen inequality, there exists a
constant cT which depends on T and p− such that°°°° Z t2

t1
un(t)dt

°°°°p−
W

1,p(·)
0 (Ω)

≤ cT

Z t2

t1
kun(t)kp

−

W
1,p(·)
0 (Ω)

dt ≤ cT |un|p
−

X .

By virtue of the compact embeddingW
1,p(·)
0 (Ω) →→ L1(Ω), we deduce

that (
R t2
t1
un(t) dt)n is relatively compact in L1(Ω) and also in W−1,1(Ω).

Applying [17, Theorem 1], we conclude that (un) is relatively compact in
L1(0, T ;W−1,1(Ω)). Since the imbedding L1(Ω) →W−1,1(Ω) is continuous,
by Lemma 3.3, we get (un) is relatively compact in L1(Q). Therefore, up
to a subsequence,

un → u strongly in L1(Q) and a.e. in Q.

Moreover, u ∈ C(0, T ;W−1,1(Ω)). 2

As in [18] we can proof the following lemma

Lemma 3.5. Assume that (2.2) holds true. If u ∈ X ∩ L2(Q) with
∂u

∂t
∈ X 0 + L1(Q), then there exists a sequence {ui} in C∞0 (Q) such that

ui → u strongly in X ∩ L2(Q) and
∂ui
∂t

→ ∂u

∂t
in X 0 + L1(Q).

We will use the following results which can be proved as in [2].

Lemma 3.6. (Integration by parts.) Assume that p(·) satisfies (2.2). Let
u, v ∈ X such that ut, vt ∈ X 0. Then, for almost every t1, t2 ∈ [0, T ] one
has Z t2

t1

Z
Ω
uvtdxdt+

Z t2

t1

Z
Ω
utvdxdt =

∙ Z
Ω
u(t)v(t)dx

¸t2
t1

.

4. Basic assumptions and the main result

We assume that a(x, t, ξ) : Q×RN → RN is a Carathéodory function (i.e.
continuous with respect to ξ ∈ RN for a.e. (x, t) ∈ Q and measurable with
respect to (x, t) ∈ Q for all ξ ∈ RN ) which satisfies, for a.e. (x, t) ∈ Q, for
every ξ, ξ0 ∈ RN with ξ 6= ξ0, and some C(x, t) ∈ Lp0(·)(Q) the following
assumptions:
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|a(x, t, ξ)| ≤
µ
C(x, t) + |ξ|p(x)−1

¶
,(4.1)

µ
a(x, t, ξ)− a(x, t, ξ0)

¶
·
µ
ξ − ξ0

¶
> 0,(4.2)

a(x, t, ξ) · ξ ≥ |ξ|p(x).(4.3)

g : Q×R×RN → R is a Carathéodory function such that for a.e.(x, t) ∈ Q
and all (s, ξ) ∈ R × RN with θ ∈ L1(Q) and some continuous function
b : R+ → R+:

|g(x, t, s, ξ)| ≤ b(|s|)
µ
θ(x, t) + |ξ|p(x)

¶
,(4.4)

g(x, t, s, ξ)s ≥ 0,(4.5)

In what follows Tk (k > 0) denotes the truncation function defined onR
by Tk(s) = max(−k,min(k, s)). Our main result is the following existence
theorem:

Theorem 4.1. Let f ∈ X 0 and u0 ∈ L2(Ω). Assume that (4.1)-(4.5) hold
true. Then there exists at least one weak solution u of problem (1.1) in the
following sense: g(., ., u,∇u) ∈ L1(Q), g(., ., u,∇u)u ∈ L1(Q) and

−
Z
Q
uϕtdxdt+

Z
Q
a(x, t,∇u)∇ϕdxdt+

Z
Q
g(x, t, u,∇u)ϕdxdt

= hf, ϕi+
Z
Ω
u0(x)ϕ(x, 0)dx,

for all ϕ ∈ X∩L∞(Q)∩C1([0, T ];L2(Ω)) with ϕ(·, t) = 0 in a neighborhood
of T.

5. Proof of the main result

STEP I. Galerkin solutions.

We choose a sequence of functions {ωi}∞i=1 ⊂ C∞0 (Ω) orthonormal with
respect to the Hilbert space L2(Ω) such that

S∞
k=1 Vk, where we denote

Vk = span{ω1, . . . , ωk}, is dense in Hs
0(Ω) with s large enough such as
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s > N
2 + 1 so that H

s
0(Ω) is continuously embedded in C1(Ω), (see [14]).

Let

Xk =

½
v(x, t) : v =

kX
i=1

di(t)ωi(x), di(t) ∈ C1([0, T ])
¾
.

It’s easy to see that C∞0 (Q) ⊂
S∞
k=1Xk with respect to the norm

kvkC1,00 (Q) = sup
(x,t)∈Q

{|v(x, t)|, |∇v(x, t)|}.

Since C∞0 (Q) is dense in Lp+(0, T ;W
1,p(·)
0 (Ω)), one has

S∞
k=1Xk is dense in

the space Lp+(0, T ;W
1,p(·)
0 (Ω)). Then, according to Remark 3.2 we get thatS∞

k=1Xk is dense in X.
For every f ∈ X 0, there is a sequence {fn}n ⊂

S∞
k=1Xk such that fn → f

strongly in X 0. Indeed, let ε > 0 be arbitrary. f can be represented as
f = − div F, where F = (f1, f2, . . . , fN ) ∈ (Lp0(·)(Q))N . Since C∞0 (Q) is
dense in Lp0(·)(Q), for every i ∈ {1, 2, . . . , N} there is θi ∈ C∞0 (Q) such that
kfi − θikLp0(·)(Q) ≤

ε
2N . Setting θ = − div Θ with Θ = (θ1, θ2, . . . , θN ), one

has θ ∈ C∞0 (Q). By the fact that C∞0 (Q) ⊂
S∞
n=1Xn, there exists

h ∈ S∞n=1Xn such that kθ− hk∞,Q ≤ ε
2c0

, c0 being the constant in Lemma
3.1. Therefore,

kf − hkX0 = sup
v∈X,|v|X≤1

|hf − h, vi|

≤
NX
i=1

kfi − θikLp0(x)(Q) + kθ − hk∞,Q sup
v∈X,|v|X≤1

kvkL1(Q) ≤ ε.

We also note that there exists a sequence u0n ⊂
S∞
i=1 Vn such that u0n → u0

in L2(Ω).

Definition 5.1. A function un ∈ Xn is called Galerkin solution of (1.1) if
and only if

Z
Ω

∂un
∂t

vdx+

Z
Ω
a(x, t,∇un) ·∇vdx+

Z
Ω
g(x, t, u,∇un)vdx =

Z
Ω
fn(t)vdx,(5.1)

for all v ∈ Vn and all t ∈ [0, T ] with un(x, 0) = u0n(x).

Setting un(x, t) =
nX
i=1

di(t)ωi(x), we then try to look for the coefficients

di. To do this, we define a vector valued function yn(t, d) : [0, T ]×Rn → Rn
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for d = (d1, . . . , dn) by

(yn(t, d))i =

Z
Ω
a

µ
x, t,

nX
i=1

dni(t)∇ωi(x)
¶
·∇ωi(x)dx

+

Z
Ω
g

µ
x, t,

nX
i=1

dni(t)ωi(x),
nX
i=1

dni(t)∇ωi(x)
¶
ωi(x)dx,

for i = 1, . . . , n.

Note that the function yn(t, d) is continuous because a and g are
Carathéodory functions. We obtain the following system of ordinary dif-
ferential equations (

d 0 + yn(t, d) = Fn,
d(0) = vn,

(5.2)

where (Fn(t))i =

Z
Ω
fn(t)ωi dx and (vn)i =

Z
Ω
u0nωi dx, i = 1, . . . , n. Mul-

tiplying the first equation of (5.2) by d(t) and using (4.3) and (4.5) one has
Fn(t, d)d ≥ 0, we apply the Young inequality to obtain

1

2

∂

∂t
|d(t)|2 ≤ |Fn(t)||d(t)| ≤

1

2
|Fn(t)|2 +

1

2
|d(t)|2.

By virtue of Gronwall’s lemma one has

|d(t)| ≤ Cn(T ).

Thus, we get |d(t)− d(0)| ≤ 2Cn(T ). Let Mn = maxt∈[0,T ] |Fn − yn(t, d(t))|
and q = min{T, 2Cn(T )Mn

}. By the Cauchy-Peano theorem (see for instance
[1]) we obtain a local solution in [0, q]. Starting with the initial value q,
we obtain a local solution in [q, 2q] and so on we get a local solution
dn in C1([0, T ]). By construction, we know that the function un(x, t) =
nX
i=1

dn,i(t)ωi(x) which belongs to Xn is a Galerkin solution for (1.1) which

satisfiesZ τ

0

Z
Ω

∂un
∂t

vdx+

Z
Qτ

a(x, t,∇un) ·∇v dx dt+
Z
Qτ

g(x, t, u,∇un)v dx dt

=

Z
Qτ

fnv dx dt,(5.3)
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for all v ∈ Xn and all τ ∈ [0, T ] with un(x, 0) = u0n(x).

We multiply the equation (5.1) by the coefficients dn,i(t), i = 1, 2, · · · , n
and we integrate the equation over [0, τ ] for an arbitrarily τ ∈ [0, T ]

1
2

R
Ω

h
(un(t))

2
iT
0
dx+

R
Qτ

a(x, t,∇un) ·∇undxdt+
R
Qτ

g(x, t, un,∇un)undxdt

=
R
Qτ

fundxdt

(5.4)
By (4.3) and (4.5) we can write

1

2
kun(τ)k2L2(Ω) +

Z
Qτ

|∇un|p(x)dxdt ≤
Z
Qτ

fundxdt+
1

2
ku0k2L2(Ω).(5.5)

Then we getZ
Qτ

|∇un|p(x)dxdt ≤ kfkX0
τ
|un|Xτ +

1

2
ku0k2L2(Ω).(5.6)

We distinguish two cases. If k∇unkLp(·)(Ω) > 1, we get

k∇unkp
−

Lp(·)(Ω)
≤
Z
Ω
|∇un|p(x)dx.

Thus, we obtain

kunkLp−(0,T ;W1,p(·)
0 (Ω))

≤
µZ

Qτ

|∇un|p(x)dxdt
¶ 1

p−
,

which together with (5.6) implyZ
Qτ

|∇un|p(x)dxdt

≤ kfnkX0
τ

µZ
Qτ

|∇un|p(x)dxdt
¶ 1

p−
+ kfnkX0

τ
k∇unkLp(·)(Qτ )

+
1

2
ku0k2L2(Ω)

By the Young inequality we arrive atZ
Qτ

|∇un|p(x)dxdt

≤ 2p
− − 1
p−

µ
p−

2

¶− 1
p−−1 kfnk

p−
p−−1
X0
τ

+ 2kfnkX0
τ
k∇unkLp(·)(Qτ ) + ku0k

2
L2(Ω)
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Since

Z
Qτ

|∇un|p(x)dxdt is greater than either k∇unkp
+

Lp(·)(Qτ )
or k∇unkp

−

Lp(·)(Qτ )

according to whether the norm k∇unkLp(·)(Qτ )
is greater or less than the

unity, one can use again the Young inequality in the right-hand side of the
above inequality with either the exponent p+ or p− to see that k∇unkLp(·)(Qτ )

is bounded uniformly in n.

While if k∇unkLp(·)(Ω) ≤ 1, thenZ
Ω
|∇un|p(x)dx ≤ 1.

Thus, we get

k∇unkLp(·)(Qτ )
≤ 1 + T.

Therefore, in both cases having in mind that kfnkX0
τ
is uniformly bounded

in n, we conclude that there is a constant c > 0, not depending on n, such
that

|un|X ≤ c.(5.7)

From now on, we denote by c various positive real numbers, not de-
pending on n, which may vary from line to line. Thanks to (5.5), we get

kunkL∞(0,T ;L2(Ω)) ≤ c.

Going back to (5.4), one hasZ
Qτ

a(x, t,∇un) ·∇un dx dt ≤ c(5.8)

and

0 ≤
Z
Qτ

g(x, t, un,∇un)un dx dt ≤ c.(5.9)

Using (4.4) and (4.5) we can writeZ
Qτ

|g(x, t, un,∇un)|dxdt

≤
Z
Qτ∩{|un|≤1}

|g(x, t, un,∇un)|dxdt+
Z
Qτ

g(x, t, un,∇un)undxdt

≤ b(1)

µ
kθkL1(Qτ ) +

Z
Qτ

|∇un|p(x)dxdt
¶
+ c ≤ c.
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Hence, the sequence {g(·, ·, un,∇un)}n remains bounded in L1(Q).
Let us define the operator A : X → X 0 by

Au = −diva(x, t,∇u)

then,

hAu,ψi =
Z
Q
a(x, t,∇u)∇ψ dxdt,

for all u, ψ in X.
By (4.1) and (5.7) we haveZ

Qτ

|a(x, t,∇un)|p
0(x) dx dt

≤ 2(p0)+−1
Z
Q

µ
C(x, t)p

0(x) + |∇un|p(x)
¶
dxdt,

thus, it follows that

ka(x, t,∇un)k(Lp0(·)(Q))N ≤ c,

which allows us to assert that {Aun} is bounded in X 0 since for all ψ ∈ X
–hAun, ψi| ≤

R
Q |a(x, t,∇un) ·∇ψ|

≤ ka(x, t,∇un)k(Lp0(·)(Q))Nk∇ψk(Lp(·)(Q))N
≤ c|ψ|X .

Therefore,

∂un
∂t

= f −Aun − g(x, t, un,∇un) is bounded in X 0 + L1(Q).

By virtue of Lemma 3.4, we conclude that there exists a subsequence of
(un), still indexed by n, a function u ∈ X∩C(0, T ;W−1,1(Ω)) and a function
a ∈ (Lp0(·)(Q))N such that

∇un ∇u weakly in (Lp(·)(Q))N ,
un → u strongly in L1(Q) and a.e. in Q,
un ∗ u weakly− ∗ in L∞(0, T ;L2(Ω)),

a(x, t,∇un) a weakly in (Lp0(x)(Q))N .

(5.10)

STEP II. Almost everywhere convergence of ∇un
Our aim is to prove that

∇un −→ ∇u a.e. in Q.

For that, we need apply the following lemma ( see [4] for a similar
result):
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Lemma 5.2. Assume that (4.1),(4.2) and (4.3) are satisfied and let (un)
be a sequence in X such that un −→ u weakly in X and

n −→∞ lim
Z
Q
[a(x, t,∇un)− a(x, t,∇u)].∇(un − u) dx dt = 0.

Then un −→ u strongly in X.

We shall prove that for all k > 0,

∇Tk(un)→∇Tk(u) strongly in (Lp(·)(Q))N .(5.11)

For k > 0, we define Sk(t) =

Z t

0
Tk(s)ds, for every s ∈ R. It’s easy to

see that 0 ≤ Sk(r) ≤ k|r|. Note that Tk(un) ∈ X → L1(0, T ;W 1,1
0 (Ω))

and hence ∇Tk(un) = ∇unχ{|un|<k}, a.e. in Q. Choosing Tk(un) as test
function in the equation (5.3) and then using (4.5), we obtainZ
Ω
Sk(un(T ))− Sk(un(0))dx+

Z
Q
a(x, t,∇un)∇Tk(un)dxdt ≤ hf, Tk(un)i,

Using (4.3) and (5.8) we getZ
Q
|∇Tk(un)|p(x) ≤

Z
Q
a(x, t,∇un) ·∇Tk(un)dxdt

=

Z
{|un|≤k}

a(x, t,∇un) ·∇undxdt

≤ c,

the sequence {∇Tk(un)}n is uniformly bounded in (Lp(·)(Q))N so that
∇Tk(un) vk weakly in (L

p(·)(Q))N . Moreover, an application of
Lebesgue’s dominated convergence theorem gives Tk(un)→ Tk(u) strongly
in Lp(·)(Q).
Let Φ = (φ1, φ2, . . . , φN) with φi ∈ C∞0 (Q) for every i = 1, 2, . . . ,N.
Setting φ = − div Φ one has Φ ∈ X 0. On one hand

hφ, Tk(un)iX0,X =

Z
Q
Φ ·∇Tk(un)dxdt→

Z
Q
Φ · vkdxdt.

On the other hand

hφ, Tk(un)iX0,X = −
NX
i=1

Z
Q

∂φ

∂xi
Tk(un)dxdt

→ −
NX
i=1

Z
Q

∂φ

∂xi
Tk(u)dxdt =

Z
Q
Φ ·∇Tk(u)dxdt = hφ, Tk(u)iX0,X
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Therefore, we get vk = ∇Tk(u) a.e. in Q and for all k > 0

∇Tk(un) ∇Tk(u) weakly in (Lp(·)(Q))N ,
Tk(un) Tk(u) weakly in X.

By virtue of (5.10) and Lebesgue’s dominated convergence theorem we
have

Tk(un)→ Tk(u) strongly in Lp(·)(Q)a.e. in Q, ∀k > 0.

Fix k > 0 and let ϕ(s) = seδs
2
, (δ > 0). It’s easy to check that if

δ ≥
µ
b(k)
2

¶2
, one has

ϕ0(s)− b(k)|ϕ(s)| ≥ 1
2
, ∀s ∈ R.

We define the mollification with respect to time of Tk(u) given by

Tk(u)µ(x, t) = µ

Z t

−∞
Tk(u)(x, s)e

µ(s−t)ds,

extending Tk(u) by zero for s < 0. Observe that Tk(u)µ ∈ X ∩ L∞(Q)
verifying

|Tk(u)µ(x, t)| ≤ k(1 − e−µt) and ∂Tk(u)µ
∂t = µ(Tk(u) − Tk(u)µ(x, t)) a.e. in

Q.
Let (ψi) ⊂ C∞0 (Ω) such that ψi → u0 in L2(Ω). Set ωiµ = Tk(u)µ +
e−µtTk(ψi). Note that ωiµ is a smooth function having the following prop-
erties (see [12])

∂

∂t
(ωiµ) = µ(Tk(u)− ωiµ), ωiµ(0) = Tk(ψi), |ωiµ| ≤ k.

Moreover, we can easily check that

ωiµ → Tk(u) a.e. in Q,weak-∗ in L∞(Q) and strongly in X, asµ→∞.

Using zµ,in = ϕ(Tk(un) − ωiµ) which belong to X ∩ L∞(Q) as test function
in (5.3) we get

hu0n, zµ,in i+
Z
Q
a(x, t,∇un)(∇Tk(un)−∇ωiµ)ϕ0(Tk(un)− ωiµ)dxdt

+

Z
Q
g(x, t, un,∇un)ϕ(Tk(un)− ωiµ) dx dt = hf, zµ,in i,
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which implies by the fact g(x, t, un,∇un)ϕ(Tk(un)− ωiµ) ≥ 0 on
{(x, t) ∈ Q : |un(x, t)| > k}

hu0n, zµ,in i +
R
Q a(x, t,∇un)(∇Tk(un)−∇ωiµ)ϕ0(Tk(un)− ωiµ) dx dt

+
R
{|un|>k} g(x, t, un,∇un)ϕ(Tk(un)− ωiµ) dx dt ≤ hf, zµ,in i.

(5.12)

Since f ∈ X 0, Tk(un)− ωiµ Tk(u)− ωiµ weakly in X as n→∞
and Tk(u)µ + e−µtTk(ψi) −→ Tk(u) in X as µ −→∞, we have

hf, zµ,in i = ε(n, µ).(5.13)

By setting Gk(s) = s− Tk(s), we have:

hu0n, zµ,in i =
R
Q u0nϕ(Tk(un)− ωiµ) dx dt

=
R
Q

Ã
(Tk(un))

0 + (Gk(un))
0
!
ϕ(Tk(un)− ωiµ) dx dt

=
R
Q(Tk(un)− ωiµ)

0ϕ(Tk(un)− ωiµ) dx dt

+
R
Q(ω

i
µ)
0ϕ(Tk(un)− ωiµ) dx dt

+
R
Q(Gk(un)

0ϕ(Tk(un)− ωiµ) dx dt

= J1 + J2 + J3.

Let Φ(s) =

Z s

0
ϕ(r) dr, remarking that Φ (s) ≥ 0, one has

J1 =

" Z
Ω
Φ(Tk(un)−ωiµ)(t) dx

#T
0

≥ −
Z
Ω
Φ(Tk(un)(0)−Tk(ψi)) dxi→∞ −→ 0,

then J1 ≥ ε(i). On other hand, since (ωiµ)
0 = µ(Tk(un)−ωiµ) and ϕ(s)s ≥ 0,

we have

J2 ≥ µ

Z
Q
(Tk(u)− Tk(un)ϕ(Tk(un)− ωiµ) dx dtn→∞ −→ 0,

hence J2 ≥ ε(n). For what concerns J3, one has by integrating by parts

J3 = −
R
QGk(un)ϕ

0(Tk(un)− ωiµ)(Tk(un)− ωiµ)
0 dx dt

+

" R
ΩGk(un)ϕ(Tk(un)− ωiµ)

#T
0

,
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if we take in consideration that (Tk(un))
0 = 0 on {|un| > k} and Gk(un) = 0

on {|un| ≤ k}, we have" Z
Ω
Gk(un)ϕ(Tk(un)− Tk(un))

#T
0

≥ −
Z
Ω
Gk(u0)ϕ(Tk(u0)− Tk(ψi)) dx,

thus
J3 ≥ −

R
QGk(un)ϕ

0(Tk(un)− ωiµ)(Tk(un)− ωiµ)
0 dx dt

+
R
ΩGk(u0)ϕ(Tk(u0)− Tk(ψi)) dx

= µ−
R
QGk(un)ϕ

0(Tk(un)− ωiµ)(ω
i
µ)
0 dx dt

+
R
ΩGk(u0)ϕ(Tk(u0)− Tk(ψi)) dx

n→∞ −→ µ−
R
QGk(un)ϕ

0(Tk(u)− ωiµ)(ω
i
µ)
0 dx dt

+
R
ΩGk(u0)ϕ(Tk(u0)− Tk(ψi)) dx

≥ −
R
ΩGk(u0)ϕ(Tk(u0)− Tk(ψi)) dxi→∞ −→ 0.

by consequent J3 ≥ ε(n, i). Combining all these estimates, we get

h∂un
∂t

, ϕ(Tk(un)− ωiµ)i ≥ ε(n, i).(5.14)

Let s > 0 and set Qs := {(x, t) ∈ Q; |∇Tk(u(x, t))| ≤ s}. Denoting by
χs the characteristic function of Q

s, the second term of the left-hand side
of (5.12) reads asR

Q[a(x, t,∇Tk(un))− a(x, t,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]
ϕ0(Tk(un)− ωiµ) dx dt+

R
Q a(x, t,∇Tk(u))(∇Tk(un)−∇Tk(u)χs)

ϕ0(Tk(un)− ωiµ) dx dt+
R
Q a(x, t,∇Tk(un))∇Tk(u)χs

ϕ0(Tk(un)− ωiµ) dx dt−
R
Q a(x, t,∇un)∇ωiµχsϕ0(Tk(un)− ωiµ) dx dt

= I1 + I2 + I3 + I4.

We have

a(x, t, Tk(un),∇Tk(u))ϕ0(Tk(un)− ωiµ)n→∞→ a(x, t, Tk(u),∇Tk(u))

ϕ0(Tk(u)− ωiµ)

strongly in Lp0(·)(Q).

By the fact that
∂Tk(un)

∂xi
n→∞ −→ ∂Tk(u)

∂xi
weakly in Lp(·)(Q) and

that ϕ0(Tk(u) − Tk(u)µ − e−µtTk(ψi)) → 1 a.e. in Q and is uniformly
bounded by ϕ0(2k) and by using Lebesgue’s theorem, we can write
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J2 =
R
Q a(x, t,∇Tk(u))(∇Tk(u)−∇Tk(u)χs)ϕ0(Tk(u)− ωiµ) dx dt+ ε(n)

=
R
Q\Qs a(x, t, 0)∇Tk(u) dx dt+ ε(n, µ),

by letting s→∞, we conclude that J2 = ε(n, µ, s). About j3, we have
J3 =

R
{|un|≤k} a(x, t,∇un)∇Tk(u)χsϕ

0(Tk(un)− ωiµ) dx dt

+
R
{|un|>k} a(x, t, 0)∇Tk(u)χsϕ

0(Tk(un)− ωiµ) dx dt,

by letting n→∞ and due to the weak convergence of a(x, t,∇un) to a in
(Lp0(·)(Q))N , we have

J3 =
R
{|u|≤k} a∇Tk(u)χsϕ0(Tk(u)− ωiµ) dx dt

+
R
{|u|>k} a(x, t, 0)∇Tk(u).χsϕ0(Tk(u)− ωiµ) dx dt+ ε(n),

in which we can let µ → ∞ to obtain J3 =
R
Q a∇Tk(u)ξs dx dt + ε(n, µ),

consequently, by letting s→∞,

J3 =

Z
Q
a∇Tk(u)ξs dx dt+ ε(n, µ, s).

For j4, we have as above, by letting first n then µ go to infinity
J4 =

R
Q a∇ωiµϕ0(Tk(u)− ωiµ) dx dt+ ε(n)

= −
R
Q a∇Tk(u) dx dt+ ε(n, µ).

Thus

R
Q a(x, t,∇un)[∇Tk(un)−∇ωiµ]ϕ0(Tk(un)− ωiµ) dx dt

=
R
Q[a(x, t,∇Tk(un))− a(x, t,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]
ϕ0(Tk(un)− ωiµ) dx dt+ ε(n, µ, s).

(5.15)

The third term of the left-hand of (5.12) can be estimated as¯̄̄̄
¯
Z
{|u|≤k}

g(x, t, un,∇un)ϕ(Tk(un)− ωiµ)dxdt

¯̄̄̄
¯

≤ b(k)

Z
Q

³
θ(x, t) + |∇un|p(x)

´
|ϕ(Tk(un)− ωiµ)|dxdt

+b(k)

Z
Q
a(x, t,∇Tk(un))∇Tk(u)|ϕ(Tk(un)− ωiµ)|dxdt

(5.16)

since θ(x, t) ∈ L1(Q) and by estimation of (5.7), we have

b(k)

Z
Q

³
θ(x, t) + |∇un|p(x)

´
|ϕ(Tk(un)− ωiµ)| dx dt = ε(n, µ).
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The second term of (5.16) reads as

b(k)
R
Q

³
θ(x, t) + |∇un|p(x)

´
|ϕ(Tk(un)− ωiµ)| dx dt

= b(k)
R
Q[a(x, t,∇Tk(un))− a(x, t,∇Tk(u)χs)][∇Tk(un)−∇Tk(u).χs]

|ϕ(Tk(un)− ωiµ)| dx dt+ (k)
R
Q a(x, t,∇Tk(u)χs)]

[∇Tk(un)−∇Tk(u)χs]|ϕ(Tk(un)− ωiµ)| dx dt
+b(k)

R
Q a(x, t,∇Tk(un))∇Tk(u)χs|ϕ(Tk(un)− ωiµ)| dx dt

As above, we can write¯̄̄̄
¯ R{|u|≤k} g(x, t, un,∇un)ϕ(Tk(un)− ωiµ) dx dt

¯̄̄̄
¯

≤ b(k)
R
Q[a(x, t,∇Tk(un))− a(x, t,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]

|ϕ(Tk(un)− ωiµ)| dx dt+ ε(n, µ).

Combining (5.12), (5.13), (5.14) and (5.15) we get

R
Q

"
a(x, t,∇Tk(un))− a(x, t,∇Tk(u)χs)

#"
∇Tk(un)−∇Tk(u)χs

#
"
ϕ0(Tk(un)− ωiµ)− b(k)|ϕ(Tk(un)− ωiµ)|

#
dx dt ≤ ε(n, µ, i, s),

by fact that ϕ0(s)− b(k)|ϕ(s)| ≥ 1
2
∀s ∈ R, we have

Z
Q

"
a(x, t,∇Tk(un))− a(x, t,∇Tk(u)χs)

#"
∇Tk(un)−∇Tk(u)χs

#

dx dt ≤ 2ε(n, µ, i, s).
On other hand, we have with (4.2) for r ≤ s

0 ≤
R
Qr

h
a(x, t,∇Tk(un))− a(x, t,∇Tk(u))

ih
∇Tk(un)−∇Tk(u)

i
dx dt

≤
R
Qs

h
a(x, t,∇Tk(un))− a(x, t,∇Tk(u)χs)

ih
∇Tk(un)−∇Tk(u)χs

i
dx dt

≤ ε(n, µ, i, s).

which implies by passing to the limit sup over n that

0 ≤ n→∞ lim sup
R
Q

"
a(x, t,∇Tk(un))− a(x, t,∇Tk(u)χs)

#
"
∇Tk(un)−∇Tk(u)χs

#
dx dt

≤ 2n→∞ lim ε(n, µ, , i, s),
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in which we let successively µ→∞, i→∞ and s→∞ to obtainR
Qr

"
a(x, t,∇Tk(un))− a(x, t,∇Tk(u))

#"
∇Tk(un)−∇Tk(u)

#
,

dx dt −→ 0, as n→∞.
Hence by lemma 5.2 we have

Tk(un) −→ Tk(u) strongly in Xr ∀k > 0.

We also deduce that for a subsequence denoted (un)

Tk(un) −→ Tk(u) a.e. in Qr ∀k > 0.

Since r and k are arbitrary, there exists a diagonal subsequence of (un)
also denoted (un) in r and k such that

∇un −→ ∇u a.e. in Q.

Since a(x, t, .) and g(x, t, ., .) are continuous, then

a(x, t,∇un) −→ a(x, t,∇u) a.e. in Q.

If we take in consideration that a(x, t,∇un) is bounded in
³
Lp0(·)(Q)

´N
,

then by lemma 2.2

a(x, t,∇un) −→ a(x, t,∇u) weakly in
³
Lp0(·)(Q)

´N
.

STEP III. Equi-integrability of g(x, t, un,∇un) on Q

Let k > 0 and let E a measurable subset of Q and ε > 0 be fixed. Since
g verifies the sign condition, then by using (5.9), we haveR

E |g(x, t, un,∇un)| dx dt
=
R
E∩{|un|≤k} g(x, t, un,∇un) dx dt+

R
E∩{|un|>k} g(x, t, un,∇un) dx dt

≤
R
E∩{|un|≤k} g(x, t, un,∇un) dx dt+

1

k

R
E g(x, t, un,∇un)un dx dt

≤
R
E∩{|un|≤k} g(x, t, Tk(un),∇Tk(un)) dx dt+

1

k
c

≤ b(k)
R
E θ(x, t) dx dt+ b(k)

R
E |∇Tk(un)|p(x) dx dt+

c

k
.

The strong convergence in (5.11) implies that there exists δ > 0 such

that meas(E) < δ =⇒
R
E |∇Tk(un)|p(x) dx dt ≤

ε

3
. Since θ ∈ L1(Q), then
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b(k)

Z
E
θ(x, t) dx dt ≤ ε

3
and choosing k large nought such that

c

k
≤ ε

3
.

Hence, there exists δ > 0 such that meas(E) < δ =⇒
Z
E
|g(x, t, un,∇un)| dx dt ≤ ε

∀n ∈N. Thus |g(x, t, un,∇un)| is uniformly equi-integrable on Q.
Recall that un −→ u a.e. in Q and ∇un −→ ∇u a.e. in Q, therefore be-
cause g(x, t, ., .) is continuous

g(x, t, un,∇un) −→ g(x, t, u,∇u) a.e. in Q.

By Vitali’s theorem, we obtain

g(x, t, un,∇un) −→ g(x, t, u,∇u) strongly in L1(Q).

Since g is continuous in the two last arguments, we have

g(x, t, un,∇un)un → g(x, t, u,∇u)u a.e. in Q,

Moreover, we have g(x, t, un,∇un)un ≥ 0 a.e. it follows by (5.9) and Fatou’s
lemma that

g(x, t, u,∇u)u ∈ L1(Q).

STEP IV. Passage to the limit

Recall that u ∈ X ∩C(0, T ;W−1,1(Ω)) and in particular
u ∈ X ∩ L2(Q) ∩ C([0, T ], L2(Ω)). In addition ∂u

∂t ∈ X 0 + L1(Q). Let τ ∈
(0, T ]. For all ϕ ∈ C1([0, τ ]; C∞0 (Ω)) with ϕ(·, t) = 0 in a neighborhood of
T, we can writeZ

Qτ

∂un
∂t

ϕdx =

Z
Ω
(un(x, τ)ϕ(x, τ)− un(x, 0)ϕ(x, 0))dx−

Z
Qτ

un
∂ϕ

∂t
dx.

Since un u in L2(Ω) and un u in L2(Q), we obtain

lim
n→+∞

Z
Qτ

∂un
∂t

ϕdx =

∙ Z
Ω
uϕdx

¸τ
0
−
Z
Qτ

u
∂ϕ

∂t
dx

Therefore, passing to the limit in (5.3) we get

−
Z
Qτ

u
∂ϕ

∂t
dx+

∙ Z
Ω
uϕdx

¸τ
0

Z
Qτ

a(x, t,∇u) ·∇ϕdxdt

+

Z
Qτ

g(x, t, u,∇u)ϕdxdt = hf, ϕiX0,X .(5.17)
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Let now v ∈ X ∩ L2(Q) with ∂v

∂t
∈ X 0. By Lemma 3.5, there exists a

sequence {v } in C∞0 ([0, T ], C
∞
0 (Ω)) such that

v → v strongly in X ∩ L2(Q) and
∂v

∂t
→ ∂v

∂t
in X 0 + L1(Q).

Let τ ∈ (0, T ]. Inserting φ = v χ(0,τ) ∈ C1([0, T ]; C∞0 (Ω)) as test function
in (5.17) we get

−
Z
Qτ

u
∂v

∂t
dx+

∙ Z
Ω
uv dx

¸τ
0
+

Z
Qτ

a(x, t,∇u) ·∇v dxdt

+

Z
Qτ

g(x, t, u,∇u)v dxdt = hf, v iX0,X .

Letting → 0, we obtain

−h∂v
∂t

, uiX0,X +

∙ Z
Ω
uvdx

¸τ
0
+

Z
Qτ

a(x, t,∇u) ·∇v dx dt

+

Z
Qτ

g(x, t, u,∇u)v dx dt = hf, viX0,X .

The proof of Theorem 4.1 is completed.
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