
https://www.revistas.ucn.cl
https://doi.org/10.22199/issn.0717-6279-4430
https://doi.org/10.22199/issn.0717-6279
https://portal.issn.org/resource/ISSN/0717-6279
https://orcid.org/0000-0002-8695-5478
https://orcid.org/0000-0001-9569-1905
https://creativecommons.org/licenses/by/4.0/


940 T. G. Jaiyéo. lá and G. O. Effiong

1. Introduction

Let G be a non-empty set. Define a binary operation (·) on G. If x · y ∈ G
for all x, y ∈ G, then the pair (G, ·) is called a groupoid or Magma.

If each of the equations:

a · x = b and y · a = b

has unique solutions in G for x and y respectively, then (G, ·) is called a
quasigroup.

If there exists a unique element e ∈ G called the identity element such
that for all x ∈ G, x · e = e · x = x, (G, ·) is called a loop. We write xy
instead of x · y, and stipulate that · has lower priority than juxtaposition
among factors to be multiplied. For instance, x · yz stands for x(yz).

Let x be a fixed element in a groupoid (G, ·). The left and right trans-
lation maps of G, Lx and Rx respectively are defined by

yLx = x · y and yRx = y · x.

It can now be seen that a groupoid (G, ·) is a quasigroup if its left and
right translation mappings are permutations. Since the left and right trans-
lation mappings of a quasigroup are bijective, then the inverse mappings
L−1x and R−1x exist. Let

x\y = yL−1x = xMy and x/y = xR−1y = yM−1
x

and note that

x\y = z ⇔ x · z = y and x/y = z ⇔ z · y = x.

In a loop (G, ·) with identity element e, the left inverse element of x ∈ G
is the element xJλ = xλ ∈ G such that

xλ · x = e

while the right inverse element of x ∈ G is the element xJρ = xρ ∈ G such
that

x · xρ = e.

If xλ = xρ for any x ∈ G, then we simply write xλ = xρ = x−1 or
Jλ = Jρ = J . Let a, b and c be three elements of a loop G. The loop
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associator of a, b and c is the unique element (a, b, c) of G which satisfies
(ab)c = {a(bc)}(a, b, c). The loop commutator of a and b is the unique
element (a, b) of G which satisfies (ab) = (ba)(a, b).

The right nucleus of G is defined by Nρ(G, ·) = {a ∈ G | zy · a =
z · ya ∀ y, z ∈ G}. The left nucleus of G is defined by Nλ(G, ·) = {a ∈
G : ax · y = a · xy ∀ x, y ∈ G}. The middle nucleus of G is defined by
Nµ(G, ·) = {a ∈ G : ya · x = y · ax ∀ x, y ∈ G}. The nucleus of G is defined
by N(G, ·) = Nλ(G, ·) ∩ Nρ(G, ·) ∩ Nµ(G, ·). The centrum of G is defined
by C(G, ·) = {a ∈ G : ax = xa ∀ x ∈ G}. The center of G is defined
by Z(G, ·) = N(G, ·)∩C(G, ·). Nρ(G, ·),Nλ(G, ·), Nµ(G, ·),N(G, ·), Z(G, ·)
are subgroups of (G, ·).

The group of all permutations on G is called the permutation group of

G and denoted by SYM(G). The groupM(G, ·) =
¿
{Rx, Lx, : x ∈ G}

À
is called the multiplication group of (G, ·) andM(G, ·) ≤ SYM(G).

If eα = e in a loop G such that α ∈M(G), then α is called an inner
mapping and they form a group Inn(G) called the inner mapping group.
The right, left and middle inner mappings

R(x,y) = RxRyR
−1
xy , L(x,y) = LxLyL

−1
yx and Tx = RxL

−1
x

respectively generate the right inner mapping group Innρ(G), left inner
mapping group Innλ(G) and the middle inner mapping group Innµ(G).

The triple (A,B,C) of bijections of a loop (G, ·) is called an autotopism
if

xA · yB = (x · y)C ∀ x, y ∈ G.(1.1)

Such triples form a group AUT (G, ·) called the autotopism group of
(G, ·). Furthermore, if A = B = C, then A is called an automorphism of
(G, ·). Such bijections form a group AUM(G, ·) called the automorphism
group of (G, ·). If

Innλ(G) ≤ AUM(G), Innρ(G) ≤ AUM(G), and Innµ(G) ≤ AUM(G),

then G is called a left A-loop(Aλ-loop), right A-loop(Aρ-loop) and middle
A-loop(Aµ-loop) respectively. It is well known that

Inn(G, ·) =
¿
R(x,y), L(x,y), Tx | x, y ∈ G

À
, but this was later improved
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to be Inn(G, ·) =
¿
L(x,y), Tx | x, y ∈ G

À
=

¿
R(x,y), Tx | x, y ∈ G

À
in

Vojtěchovský [32].
If Inn(G, ·) ≤ AUM(G, ·), then (G, ·) is called an automorphic loop

(A-loop)

The group TM(G, ·) =
¿
{Rx, Lx,Mx : x ∈ G}

À
is called the total

multiplication group of (G, ·) and an element α ∈ TM(G, ·) such that
eα = e is called a total inner mapping of (G, ·). It has been established in
Stanovský et al. [25] that the total inner mapping group

TInn(G, ·) =
¿
R(x,y), L(x,y), Tx,M(x,y), Ux | x, y ∈ G

À
, where

M(x,y) =MyMxM
−1
y\x

and Ux =MxR
−1
x . Although, Syrbu [28] showed that

TInn(G, ·) =
¿
R(x,y), L(x,y), Tx, P(x,y), P

0
(x,y), U

−1
x , Vx | x, y ∈ G

À
, where

P(x,y) =MxMyLxR
−1
y ,

P 0(x,y) = M−1
y M−1

x RyL
−1
x and Vx = RxMx but this result was later on

improved to TInn(G, ·) =
¿
R(x,y), L(x,y), Tx, P(x,y), Vx | x, y ∈ G

À
by Syrbu

and Grecu [30]. In an inverse property loop (G, ·),
TM(G,·) =

D
{Lx, J : x ∈ G}

E
=< {Mx : x ∈ G} > and

TInn(G, ·) =
¿
Inn(G, ·), J

¯̄̄̄
x, y ∈ G

À
=
D
M(x,y)

¯̄̄
x, y ∈ G

E
.

If TInn(G, ·) ≤ AUM(G, ·), then (G, ·) is called a totally automorphic
loop (TA-loop). TA-loops are commutative. Some works in the direction
of structure of A-loops and TA-loops can be found in [6, 16, 18, 19, 20,
22, 25, 32]. According to Stanovský et al. [25], TInn(G, ·) characterizes
normal subloops.

Theorem 1.1. (Kinyon [18]) A loop is a TA-loop if and only if it is a
commutative Moufang loop.

The above fact is gotten from the result below.

Theorem 1.2. (Kinyon [18]) Let (G, ·) be a loop. The following are equiv-
alent:
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1.

*
L−1x\yMyMx, R

−1
y/xM

−1
y M−1

x |x, y ∈ G

+
≤ AUM(G, ·).

2. (G, ·) is both an A-loop and a Moufang loop.

And Theorem 1.2 led to the following Question 1.1.

Question 1.1. (Kinyon [18]) What other interesting varieties of loops can
be characterized by specifying that some group of total inner mappings acts
as automorphisms?

Question 1.2. (Stanovský et al. [25]) Are the generating sets of TInn(G)
for a loop Gminimal, i.e, can any of the five types of mappings be removed?
Is there a generating set for TM(Q) with only two types of inner mappings?

Remark 1.1. Syrbu and Grecu [30] were able to provide answers to Ques-
tion 1.2 by showing that:

1. If Q is a power associative loop, then

TInn(Q) =

¿
R(x,y), L(x,y), P(x,y), Vx | x, y ∈ Q

À
.

2. If Q is a middle Bol loop, then

TInn(Q) =

¿
R(x,y), P(x,y), Vx | x, y ∈ Q

À
.

The authors furthermore established the importance of the total inner
mapping group by showing that if Q is a middle Bol loop, then
Inn(Q)

−
TInn(Q). But this result is not necessarily true for a left or right

Bol loop (note that, every middle Bol loop corresponds to a right or left
Bol loop and vice versa). It must be recalled that Grecu and Syrbu [13],
Syrbu [27], Syrbu and Grecu [29] established isostrophy invariance in several
structural properties between middle Bol loops and their corresponding
right or left Bol loop.

For an overview of the theory of loops, readers may check [7, 8, 9, 12,
15, 21, 23, 31].

Definition 1.1. Let (G, ·) be a quasigroup. Then

1. U ∈ SYM(G) is called λ-regular if there exists (U, I, U) ∈ AUT (G, ·);
the set of all such mappings forms a group Λ(G, ·) called the group
of left regular mappings.
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2. a bijection U is called ρ-regular if there exists (I, U, U) ∈ AUT (G, ·);
the set of all such mappings forms a group P(G, ·) called the group
of right regular mappings.

Definition 1.2. A loop (G, ·) is called a cross inverse property loop(CIPL)
if it obeys the identity xy·xρ = y or x·yxρ = y or xλ·(yx) =
y or xλy · x = y
for all x, y,∈ G.

A loop (G, ·) is called an automorphic inverse property loop(AIPL) if it
obeys the identity

(xy)ρ = xρyρ or (xy)λ = xλyλ

for all x, y,∈ G.

A loop satisfying the identical relation xy·zx = (x · yz)x is called a
Moufang loop.

A loop (Q, ·) is called a Basarab loop (or K-loop), if the identities:

(x · yxρ) · xz = x · yz| {z }
BK1

, yx · (xλz · x) = yz · x| {z }
BK2

(1.2)

hold for all x, y, z ∈ Q.

Example 1.1. (Basarab [4])

Let F be a field, F 0 be the set of non-zero elements of F . Define on the
set Q = F 0 ×F the operation (·) as follows:

(a, x) · (b, y) =
³
a · b, (a−1 − 1) · (b−1 − 1) + b−1x+ y

´
.

Then, (Q, ·) is a Basarab loop.

In recent years, many works have been published with the name K-
loop(also called Bruck-loop, Bol-Bruck-loop). Kerby and Wefelscheid in-
vestigated the additive structure of a near-domain with extra axioms and
then they called the new structure a K-loop, but according to Kiechle [14],
they used the term K-loop only in talks in 1970s and the beginning of 1980s.
Ungar [26] and Kiechle [14] continued to study the K-loop introduced by
Kerby and Wefelscheid.

On the other hand, the term ‘K-loop’ was used for different purposes
by Soikis [24] in 1970, and latter but independently by Basarab [2] in 1992.
Thus, the notion of ‘K-loop’ as used by Soikis, Ungar and Basarab has
different meaning respectively, and may be confusing. For example, the
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book titled theory of k-loops written by Kiechle [14] has completely different
meaning from the paper titled K-loops published by Basarab [2].

Basarab loops (also called K-loops) are non-associative generalizations
of groups. In this paper, we shall adopt the name ‘Basarab loop’, to refer to
‘K-loop’ of Basarab, as recommended by R.Artzy in the review of Basarab
[4].

The first publications introducing the class of loop called Basarab loop
are the two prominent papers of Basarab [1, 2] in 1992. Basarab [4] used the
result published by Belousov [5] to construct an example of a Basarab loop
whose nucleus is an abelian group. After his first publications in 1992 on
Basarab loops, no other author researched on properties of Basarab loops
until in 1996 and 1997, that he, Basarab studied the relationship between
a generalized Moufang loop, Osborn loop, VD-loop, and a Basarab loop,
and a special type of a Basarab loop, known as IK-loop respectively. In
Jaiyéo. lá and Effiong [17], the authors considered the Basarab loop and
its invariance with inverse properties. Effiong et al. [10, 11] respectively
investigated the connections between Basarab loop and Buchsteiner loop,
and the holomorphy of Basarab loop. In this current study, an IK-loop is
an automorphic inverse property Basarab loop.

Here are some existing results on Basarab loop.

Theorem 1.3. (Basarab [4]) Let (Q, ·) be a Basarab loop.

1. N(Q, ·) contains the associator of any three elements of Q.

2. The quotient loop Q/Z(Q, ·) is a group.

3. If (Q, ·) is generated by one element, then it is solvable.

4. If (Q, ·) has the automorphic inverse property, then it is nilpotent.

Theorem 1.4. (Basarab [2]) Let (Q, ·) be a Basarab loop.

1. N(Q, ·) is a nontrivial normal subloop.

2. The quotient loop Q/N(Q, ·) is an abelian.

3. If N(Q, ·) has an odd order, then (Q, ·) is solvable.

Theorem 1.5. (Basarab [3])

1. Any Basarab loop (any V D-loop) is a G-loop.
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2. Any Basarab loop (V D-loop) is an Osborn loop.

3. A Basarab loop (Q, ·) is a V D-loop if x2 ∈ N(Q, ·) for any x ∈ Q.

4. A V D-loop (Q, ·) is a Basarab loop if x2 ∈ N(Q, ·) for any x ∈ Q.

In this present work, the nuclei of Basarab loops are characterized in
terms of middle inner mappings, associators in Basarab loops are expressed
in terms of total inner mappings and necessary and sufficient condition on
generator(s) of the inner mapping group is given in order for a Basarab
loop to be an A-loop. Some results on the generators of the inner mapping
and total inner mapping groups of a Basarab loop are established in order
to show that a class of total inner mappings act on a Basarab loop Q by
automorphisms if and only if Q is an A-loop and flexible.

2. Main Results

2.1. Some Algebraic properties of Basarab loop

Lemma 2.1. Let (Q, ·) be a Basarab loop, then the following hold for all
x, y, z ∈ Q:

(i) (x · yxρ)x = xy.

(ii) (x · yxρ) · xyρ = x.

(iii) (x · zλxρ) · xz = x.

(iv) (zλx)(xλz · x) = x.

(v) x(xλz · x) = zx.

(vi) yx · (xλyρ · x) = x.

(vii) T−1x = RxρLx.

(viii) Tx = LxλRx.

(ix) [LxλRx, RxρLx] = I.

(x) x · (xλy · x)xρ = y.

(xi) xλ(x · yxρ) · x = y.
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Proof. The proof of (i) to (vi) are gotten from (1.2) by making the
following substitutions: z = e, z = yρ, y = zλ in BK1 and y = zλ, y =
e, z = yρ in BK2.

(vii) follows from (i): RxρLxRx = Lx ⇔ RxρLx = LxR
−1
x ⇔ T−1x = RxρLx.

(viii) follows from (v): LxλRxLx = Rx ⇔ LxλRx = RxL
−1
x ⇔ Tx =

LxλRx. (ix) to (xi): From (i), RxρLxRx = Lx ⇒ RxρLx = LxR
−1
x =

(RxL
−1
x )

−1 = T−1x . From (v), LxλRxLx = Rx ⇒ LxλRx = RxL
−1
x =

Tx. Thus, TxT
−1
x = LxλRxRxρLx = I = T−1x Tx = RxρLxLxλRx ⇒

LxλRxRxρLx = RxρLxLxλRx. Hence, [LxλRx, RxρLx] = I and x · (xλy ·
x)xρ = y = xλ(x · yxρ) · x for all x ∈ Q. 2

Lemma 2.2. Let (Q, ·) be a loop. (Q, ·) is a Basarab loop if and only if
(RxρLx, Lx, Lx), (Rx, LxλRx, Rx) ∈ AUT (Q, ·)
if and only if (T−1x , Lx, Lx), (Rx, Tx, Rx) ∈ AUT (Q, ·).

Proof. Simply put BK1 and BK2 of (1.2) in autotopic forms. The last
part follows by (vii) and (viii) of Lemma 2.1. 2

2.2. Nuclei of a Basarab loop

Theorem 2.1. Let (Q, ·) be a Basarab loop.

1. The following are equivalent:

(a) x ∈ Nρ(Q, ·) for all x ∈ Q.

(b) x ∈ Nλ(Q, ·) for all x ∈ Q.

(c) x ∈ Nµ(Q, ·) for all x ∈ Q.

(d) (yx)(xλz) = yz for all x, y, z ∈ Q.

(e) (yxρ)(xz) = yz for all x, y, z ∈ Q.

(f) Tx ∈ AUM(Q, ·) for all x ∈ Q.

(g) Innµ(Q, ·) ≤ AUM(Q, ·).
(h) (Q, ·) is an Aµ-loop.

(i) (Q, ·) is a group.

2. N(Q, ·) = Nλ(Q, ·) = Nρ(Q, ·) = Nµ(Q, ·).

3. N(Q, ·) = {x ∈ Q | Tx ∈ AUM(Q, ·)}.
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Proof.

1. Let (Q, ·) be a Basarab loop. Then
x ∈ Nρ(Q, ·)⇔ (I, Rx, Rx) ∈ AUT (Q, ·)⇔ (I, R−1x , R−1x ) ∈ AUT (Q, ·)
⇔ (T−1x , Lx, Lx)·(I, R−1x , R−1x ) ∈ AUT (Q, ·)⇔ (T−1x , LxR

−1
x , LxR

−1
x )

∈ AUT (Q, ·)
⇒ (T−1x , T−1x , T−1x ) ∈ AUT (Q, ·)⇔ T−1x ∈ AUT (Q, ·)⇔ Tx ∈ AUM(Q, ·).
Therefore, in a Basarab loop, x ∈ Nρ(Q, ·) if and only if Tx is an
automorphism of (Q, ·).
Let (Q, ·) be a Basarab loop. Then
(L−1x , I, L−1x ) ∈ AUT (Q, ·)⇔ (Lx, I, Lx) ∈ AUT (Q, ·)⇔ x ∈ Nλ(Q, ·)

⇔ (Lx, I, Lx) ∈ AUT (Q, ·)⇔ (L−1x , I, L−1x ) ∈ AUT (Q, ·)
⇔ (Rx, Tx, Rx)·(L−1x , I, L−1x ) ∈ AUT (Q, ·)⇔ (RxL

−1
x , Tx, RxL

−1
x )

∈ AUT (Q, ·)(Tx, Tx, Tx) ∈ AUT (Q, ·)⇔ Tx ∈ AUM(Q, ·).
Thus, in a Basarab loop (Q, ·), x ∈ Nλ(Q, ·) if and only if Tx is an auto-
morphism of (Q, ·).
Let (Q, ·) be a Basarab loop. Then x ∈ Nµ(Q, ·) ⇔ (Rx, L−1x , I ) ∈
AUT (Q, ·) ⇔ (R−1x , Lx, I ) ∈ AUT (Q, ·) ⇔ (Rx, Tx, Rx)(R

−1
x , Lx, I ) ∈

AUT (Q, ·) ⇔ (RxR
−1
x , TxLx, Rx) ⇔ (I, Rx, Rx) ∈ AUT (Q, ·) ⇔ x ∈

Nρ(Q, ·). Thus, in a Basarab loop (Q, ·), x ∈ Nµ(Q, ·) if and only if
x ∈ Nρ(Q, ·). x ∈ Nλ(Q, ·)⇔ (Lx, I, Lx) ∈ AUT (Q, ·)⇔ (L−1x , I, L−1x ) ∈
AUT (Q, ·)⇔ (RxρLx, Lx, Lx)·(L−1x , I, L−1x ) ∈ AUT (Q, ·)⇔ (Rxρ , Lx, I) ∈
AUT (Q, ·)⇔ (yx)(xλz) = yz ⇔ (yxρ)(xz) = yz.

2. In a Basarab loop (Q, ·), x ∈ Nλ(Q, ·) if and only if Tx is an automorphism
of (Q, ·). Also, x ∈ Nρ(Q, ·) if and only if Tx is an automorphism of (Q, ·).
This means x ∈ Nλ(Q, ·) ⊂ Nρ(Q, ·) if and only if Tx is an automorphism
of (Q, ·). And x ∈ Nρ(Q, ·) ⊂ Nλ(Q, ·) if and only if Tx is an automorphism
of (Q, ·). Hence, Nλ(Q, ·) = Nρ(Q, ·).

x ∈ Nµ(Q, ·)⇔ (Rx, L
−1
x , I) ∈ AUT (Q, ·)⇔

(LxR
−1
x , Lx, Lx)(Rx, L

−1
x , I) ∈ AUT (Q, ·)⇔ (Lx, I, Lx) ∈ AUT (Q, ·)
⇔ x ∈ Nλ(Q, ·).

Hence, Nλ(Q, ·) = Nµ(Q, ·).

3. Use 1.

2
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2.3. Inner mappings and associators of Basarab loop

Theorem 2.2. In any loop (Q, ·), for all x, y, z ∈ Q:

1. zL(x,y) = (yx)M(y·xz).

2. (y, x, z) =

∙
yx · zL(x,y)

¸
M(yx·z).

3. zR(x,y) = (xy)M
−1
(zx·y).

4. (z, x, y) = (z · yx)M[zR(x,y)·xy].

5. yTx = xM(yx).

6. (y, x) = (xy)M(x·yTx).

Proof.

1. zL(x,y) = zLxLyL
−1
yx = (y · xz)L−1yx = (yx)M(y·xz).

2. Recall that yx · z = (y · xz)(y, x, z) ⇒ y · xz = (yx · z)/(y, x, z).
So, from 1, zL(x,y) = (y · xz)L−1yx ⇒ y · xz = yx · zL(x,y) ⇒ (yx ·
z)/(y, x, z) = yx·zL(x,y) ⇒ (y, x, z)M−1

(yx·z) = yx·zL(x,y) ⇒ (y, x, z) =∙
yx · zL(x,y)

¸
M(yx·z).

3. zR(x,y) = zRxRyR
−1
xy = (zx · y)R−1xy = (xy)M−1

(zx·y).

4. Recall that zx·y = (z·xy)(z, x, y). So, from 3, zR(x,y) = (zx·y)R−1xy ⇒
zx · y = zR(x,y) · xy ⇒ (z · xy)(z, x, y) = zR(x,y) · xy ⇒ (z, x, y) =∙
zR(x,y) · xy

¸
L−1(z·xy) ⇒ (z, x, y) = (z · yx)M[zR(x,y)·xy].

5. yTx = yRxL
−1
x = (yx)L−1x = xM(yx).

6. Recall that yx = (xy)(y, x). So, from 5, yTx = [(xy)(y, x)]L−1x ⇒
(xy)(y, x) = x · yTx ⇒ (y, x) =

h
x · yTx

i
L−1(xy) = (xy)M[x·yTx] ⇒

(y, x) = (xy)M[x·yTx].

2

Theorem 2.3. Let (Q, ·) be a loop. The following are equivalent:



950 T. G. Jaiyéo. lá and G. O. Effiong

1. (Q, ·) is a Basarab loop.

2. (x, y, z) =
h
(x·yxρ)(xz)

i
\(xy ·z) and (x, y, z) = (x·yz)\

h
(xz)(zλy ·z)

i
for all x, y, z ∈ Q

3. Inn(Q, ·) =
D
LxLx·yxρL−1xy , Tx |x, y ∈ Q

E
and

Inn(Q, ·) =
D
RxRxλz·xR

−1
zx , Tx |x, z ∈ Q

E
.

Proof.

1⇔2 This is achieved by simply using (1.2) and the fact that xy · z =
(x · yz)(x, y, z).

1⇔3 BK1 of (1.2) is true if and only if LyLx = LxLx·yxρ ⇔ LyLxL
−1
xy =

LxLx·yxρL−1xy ⇔ L(y, x) = LxLx·yxρL−1xy ⇔ Inn(Q, ·)
=
D
LxLx·yxρL−1xy , Tx |x, y ∈ Q

E
. BK2 of (1.2) is true if and only

if RzRx = RxR(xλz·x) ⇔ RzRxR
−1
zx = RxR(xλz·x)R

−1
zx ⇔ R(z, x) =

RxR(xλz·x)R
−1
zx ⇔ Inn(Q, ·) =

D
RxRxλz·xR

−1
zx , Tx |x, z ∈ Q

E
.

2

Theorem 2.4. In a Basarab loop (Q, ·), for all x, y, z ∈ Q:

1. (y, x, z) =

∙
zLyxJλ · zL(x,y)Lyx

¸
Jλ.

2. (z, x, y) = (z · yx)λ
∙
zR(x,y) · xy

¸
.

3. (x, y, z) = [yT−1x · xz]λ(xy · z).

4. (x, y, z) = (x · yz)λ · (xz)(yTz).

Proof. Note that in a Basarab loop (Q, ·), (x, y, z) ∈ N(Q, ·).

1. From the proof of 2 of Theorem 2.2, (yx · z)/(y, x, z) = yx · zL(x,y) ⇒
(yx·z)(y, x, z)−1 = yx·zL(x,y) ⇒ (y, x, z)−1 = (yx·z)λ

h
yx·zL(x,y)

i
⇒

(y, x, z) =

∙
zLyxJλ · zL(x,y)Lyx

¸
Jλ.

2. From the proof of 4 of Theorem 2.2, (z · xy)(z, x, y) = zR(x,y) · xy ⇒

(z, x, y) = (z · yx)λ
∙
zR(x,y) · xy

¸
.
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3. By 2 of Theorem 2.3, xy ·z = x(yz) · (x, y, z)⇒ xy ·z = (x ·yxρ)(xz) ·
(x, y, z)⇒ [(x · yxρ)(xz)]λ(xy · z) = (x, y, z)⇒ [yT−1x · xz]λ(xy · z) =
(x, y, z).

4. By 2 of Theorem 2.3, xy · z = x(yz) · (x, y, z) ⇒ (x · yz)(x, y, z) =
(xz)(zλy · z) ⇒ (x, y, z) = (x · yz)λ · (xz)(zλy · z) ⇒ (x, y, z) =
(x · yz)λ · (xz)(yTz).

2

Corollary 2.1. In a Basarab loop (Q, ·):

1. Inn(Q, ·) =
D
LxLyT−1x

L−1xy , Tx | x, y ∈ Q
E
.

2. Inn(Q, ·) =
D
RxRzTxR

−1
zx , Tx | x, z ∈ Q

E
.

3. R(y, x) = L(y, x) if and only if RxRyTxR
−1
yx = LxLyT−1x

L−1xy for all
x, y ∈ Q.

Proof. 1 and 2 follow by 3 of Theorem 2.3. For 3, in a Basarab loop
(Q, ·), R(z, x) = RxRzTxR

−1
zx ,∀ x, z ∈ Q and L(y, x) = LxLyT−1x

L−1xy , ∀ x, y ∈
Q. This implies, R(y, x) = RxRyTxR

−1
yx , ∀ x, y, z ∈ Q. Thus, R(y, x) =

L(y, x) ⇔ RxRyTxR
−1
yx = LxLyT−1x

L−1xy ∀ x, y ∈ Q. 2

Theorem 2.5. In a Basarab loop (Q, ·) the following are equivalent for all
x, y ∈ Q:

(i) Txy = TxTy.

(ii) L(x, y) ∈ P(Q, ·).

(iii) R(x, y) ∈ Λ(Q, ·).

Proof. Let (Q, ·) be a Basarab loop and let B1(x) = (T−1x , Lx, Lx) ∈
AUT (Q, ·),

B1(y) = (T
−1
y , Ly, Ly) ∈ AUT (Q, ·), and B1(yx)−1 = (Tyx, L−1yx , L−1yx )

∈ AUT (Q, ·)
then B1(x)B1(y)B1(yx)

−1 ∈ AUT (Q, ·)⇒ T−1x T−1y Tyx = I

⇔ Tyx = TyTx ⇔ (I, L(y, x), L(y, x) ) ∈ AUT (Q, ·)⇔ L(y, x) ∈ P(Q, ·) ,
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∀ x, y ∈ Q.

Also, let B2(x) = (Rx, Tx, Rx) ∈ AUT (Q, ·), B2(y) = (Ry, Ty, Ry) ∈ AUT (Q, ·)

and B2(xy)
−1 = (R−1xy , T

−1
xy , R

−1
xy ) ∈ AUT (Q, ·)

then B2(x)B2(y)B2(xy)
−1 ∈ AUT (Q, ·)⇒ TxTyT

−1
xy = I

⇔ Txy = TxTy ⇔ (R(x, y), I, R(x, y) ∈ AUT (Q, ·)

⇔ R(x, y) ∈ Λ(Q, ·) ∀ x, y ∈ Q.

2

2.4. Relationship between Basarab loop and automorphic loop

Theorem 2.6. Let (Q, ·) be a Basarab loop. Then:

(i) (Q, ·) is an Aλ-loop if and only if L(x, y) = T−1x T−1y Tyx for all x, y ∈ Q
if and only if Ryx = TyRxLy if and only if Innλ(Q, ·) = Innµ(Q, ·).

(ii) (Q, ·) is an Aρ-loop if and only if R(x, y) = TxTyT
−1
xy for all x, y ∈ Q if

and only if Lxy = T−1y LxRy if and only if Innρ(Q, ·) = Innµ(Q, ·).

(iii) (Q, ·) is an A-loop if and only if Inn(Q, ·) =
D
Tx : x ∈ Q

E
≤

AUM(Q, ·) ⇔ RyxL
−1
y R−1x = Ty = LxRyL

−1
xy ∈ AUM(Q, ·) for all

x, y ∈ Q if and only if Inn(Q, ·) = Innµ(Q, ·) ≤ AUM(Q, ·).

Proof.

(i) From the Basarab laws,
let B1(x) = (T−1x , Lx, Lx) ∈ AUT (Q, ·), B1(y) = (T−1y , Ly, Ly) ∈
AUT (Q, ·), and B1(yx)

−1 = (Tyx, L−1yx , L
−1
yx ) ∈ AUT (Q, ·)

It follows that, B1(x)B1(y)B1(yx)
−1 = (T−1x T−1y Tyx, L(x, y), L(x, y)) ∈

AUT (Q, ·). Then, a Basarab loop (Q, ·) is an Aλ-loop ⇔ L(x, y) =
T−1x T−1y Tyx , ∀ x, y ∈ Q. L(x, y) = T−1x T−1y Tyx ⇔ LxLyL

−1
yx

= T−1x T−1y Tyx ⇔ LxR
−1
x T−1y RyxL

−1
yx = LxLyL

−1
yx ⇔ R−1x T−1y Ryx =

Ly ⇔ TyRxLy = Ryx.

(ii) Also, from the Basarab laws, let B2(x) = (Rx, Tx, Rx) ∈ AUT (Q, ·),
B2(y) = (Ry, Ty, Ry) ∈ AUT (Q, ·), and
B2(xy)

−1 = (R−1xy , T
−1
xy , R

−1
xy ) ∈ AUT (Q, ·). Thus,

B2(x)B2(y)B2(xy)
−1
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= (R(x, y), TxTyT
−1
xy , R(x, y)) ∈ AUT (Q, ·). This implies, a Basarab

loop (Q, ·) is an Aρ-loop ⇔ R(x, y) = TxTyT
−1
xy . R(x, y) = TxTyT

−1
xy ⇔

RxRyR
−1
xy = TxTyT

−1
xy ⇔ TxTyLxyR

−1
xy = RxRyR

−1
xy ⇔ TxTyLxy =

RxRy ⇔ RxL
−1
x TyLxy = RxRy ⇔ L−1x TyLxy = Ry ⇔ Lxy = T−1y LxRy.

(iii) This follows from (i) and (ii).

2

Corollary 2.2. Let (Q, ·) be a Basarab loop. Then:

1. (Q, ·) is anAλ-loop, L(x, y) = T−1x T−1y Tyx, Ryx = TyRxLy and Innλ(Q, ·)
= Innµ(Q, ·) for all x, y ∈ Q.

2. (Q, ·) is anAρ-loop, R(x, y) = TxTyT
−1
xy , Lxy = T−1y LxRy and Innρ(Q, ·) =

Innµ(Q, ·) for all x, y ∈ Q.

3. (Q, ·) is an A-loop if and only if Inn(Q, ·) =
D
Tx : x ∈ Q

E
≤

AUM(Q, ·) ⇔ Ty = RyxL
−1
y R−1x = LxRyL

−1
xy ∈ AUM(Q, ·) if and

only if Inn(Q, ·) = Innµ(Q, ·) ≤ AUM(Q, ·) for all x, y ∈ Q.

Proof. In a Basarab loop (Q, ·), (T−1x T−1y Tyx, L(y, x), L(y, x)), (R(x, y),
TxTyT

−1
xy , R(x, y)) ∈ AUT (Q, ·). Since eL(y, x) = e = eR(x, y), then

L(y, x), R(x, y) ∈ AUM(Q, ·). Other conclusions follow from Theorem 2.6.
2

2.5. Basarab loop and generators of its total multiplication group

Theorem 2.7. Let (Q, ·) be a Basarab loop and let Ux = MxR
−1
x , Vx =

M−1
x L−1x ,Wx = RxMx for any arbitrarily fixed x ∈ Q.

1. T−1x = JρLxM
−1
x .

2. Tx = JλRxMx.

3. The following are true

1. Tx =WxVx.

2. M2
xVx = UxTx.

3. UxT
2
x = TxWx.

4. Rx = Lx ⇔M2
x = TxJ

2
ρTx.
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5. |Mx| = 2⇔ TxJλ = JρT
2
x .

6. |Tx| = 2⇔ J2ρ =WxUxTx.

7. JρUxTx =WxJρ.

8. JρRx = RxTxJρ.

9. TxJρ = JρTx ⇔ UxTx =Wx.

10. Rn
xTxJρL

n
x = Rn−1

x JρTxL
n−1
x ∀ n ∈ N.

11. JλTx = TxVx.

12. Wx = JρTx.

13. UxTx = TxJρ.

14. UxWx =M2
x .

15. WxUxRx = RxUxWx.

16. MxUxRx = UxWx.

17. Mx = UxRx and Wx = RxMx.

4. The following are equivalent:

1. Jρ = Jλ .

2. T 2x = UxTxRxMx.

3. T 2x = UxTxWx.

4. UxT
2
x = T 2xVx.

Hence, TM(Q, ·) =
¿
{Rx, Lx, Ux}|x ∈ Q

À
=

¿
{Rx, Lx, Vx}|x ∈

Q

À
=

¿
{Rx, Lx,Wx}|x ∈ Q

À
.

5. T 2x = Un
x T

2
xV

n
x and T−2x = V n

x T
−2
x Un

x for all n ∈ N. If |Tx| = 2, then
Un
x V

n
x = I for all x ∈ N.

6. The following are true for any n ∈ N:

1. Jnρ = T−1x Un
x Tx .

2. |Jρ| = n⇔ |Ux| = n.

3. Jnλ = TxV
n−1
x W−1

x .

4. |Jλ| = n⇔ TxV
n−1
x =Wx.

5. Jnρ = Jnλ ⇔ T 2xV
n
x = Un

x T
2
x .
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Proof.

1. From property (ii) of Lemma 2.1, x · yxρ = x/(xyρ) = (xyρ)M−1
x ⇒

yRxρLx = yJρLxM
−1
x ⇒ T−1x = JρLxM

−1
x .

2. From property (iv) of Lemma 2.1, xλz · x = zλx\x ⇒ zLxλ · x =
(zλx)Mx ⇒ zLxλRx = zJλRxMx ⇒ LxλRx = JλRxMx ⇒ LxJλRx =
JλRxMx ⇒ Tx = JλRxMx.

3. 1. WxVx = RxMxM
−1
x L−1x = Tx ⇒ Tx =WxVx.

2. M2
xVxT

−1
x = M2

xM
−1
x L−1x LxR

−1
x = MxR

−1
x = Ux ⇒ M2

xVx =
UxTx.

3. From 1 and 2: Jλ = TxM
−1
x R−1x and Jλ = LxM

−1
x Tx. So,

TxM
−1
x R−1x = LxM

−1
x Tx ⇒ Tx(RxMx)

−1 = LxM
−1
x Tx ⇒ TxW

−1
x =

LxMxM
−2
x Tx = V −1x M−2

x Tx ⇒ TxW
−1
x = V −1x M−2

x Tx ⇒ VxTx =
M−2

x TxWx ⇒M2
xVxTx = TxWx ⇒ UxT

2
x = TxWx.

4. From 1 and 2: Lx = JλT
−1
x Mx and Rx = JρTxM

−1
x . So, Lx =

Rx ⇔ JλT
−1
x Mx = JρTxM

−1
x ⇔ M2

x = TxJ
2
ρTx. Thus, Rx =

Lx ⇔M2
x = TxJ

2
ρTx.

5. From 1 and 2: Mx = R−1x JρTx and M−1
x = L−1x JλT

−1
x . So,

|Mx| = 2 ⇔ M−1
x = Mx ⇔ R−1x JρTx = L−1x JλT

−1
x ⇔ JρT

2
x =

TxJλ. Thus, |Mx| = 2⇔ TxJλ = JρT
2
x .

6. From 1 and 2: |Tx| = 2⇔ T−1x = Tx ⇔ JρLxM
−1
x = JλRxMx ⇔

J2ρ = RxMxMxL
−1
x =WxMxL

−1
x =WxM

2
xM

−1
x L−1x =WxM

2
xVx =

WxUxTx ⇔ J2ρ =WxUxTx. Thus, |Tx| = 2⇔ J2ρ =WxUxTx.

7. From 1 and 2: I = TxT
−1
x = JλRxMxJρLxM

−1
x ⇒ R−1x JρMx =

MxJρLx ⇒ JρMxL
−1
x = RxMxJρ ⇒ JρM

2
xM

−1
x L−1x = WxJρ ⇒

JρM
2
xVx =WxJρ ⇒ JρUxTx =WxJρ.

8. From 1 and 2: Mx = R−1x JρTx andMx = TxJρLx. So, R
−1
x JρTx =

TxJρLx ⇒ JρRx = RxTxJρ.

9. From 1 and 2: T−1x Jλ = M−1
x R−1x and JλT

−1
x = LxM

−1
x . So,

TxJρ = JρTx ⇔M−1
x R−1x = LxM

−1
x ⇔ (RxMx)

−1 = LxMxM
−2
x ⇔

W−1
x = V −1x M−2

x ⇔ UxTx =Wx. Thus, TxJρ = JρTx ⇔ UxTx =
Wx.

10. From 1 and 2: Mx = R−1x JρTx and M−1
x = L−1x JλT

−1
x . So,

I = MxM
−1
x = R−1x JρTxL

−1
x JλT

−1
x ⇒ RxTxJρ = JρTxL

−1
x ⇒

RxTxJρLx = JρTx. So, R
n
xTxJρL

n
x = Rn−1

x JρTxL
n−1
x ∀ n ∈ N.



956 T. G. Jaiyéo. lá and G. O. Effiong

11. From 2: M−1
x = T−1x JλRx. So,M

−1
x L−1x = Vx = T−1x JλRxL

−1
x =

T−1x JλTx ⇒ VxT
−1
x = T−1x Jλ ⇒ JλTx = TxVx.

12. From 2: Mx = R−1x JρTx. So, Wx = RxMx = RxR
−1
x JρTx =

JρTx ⇒Wx = JρTx.

13. From 1: Mx = TxJρLx. Now, Ux = MxR
−1
x = TxJρLxR

−1
x =

TxJρT
−1
x ⇒ UxTx = TxJρ.

14. UxWx =MxR
−1
x RxMx =M2

x ⇒ UxWx =M2
x .

15. WxUx = RxM
2
xR

−1
x ⇒WxUxRx = RxM

2
x = RxUxWx ⇒

WxUxRx = RxUxWx.

16. MxUx =M2
xR

−1
x = UxWxR

−1
x ⇒MxUxRx = UxWx.

17. Trivial.

4. We shall use 1 and 2.

(a)⇔ (b) Jλ = Jρ ⇔ TxM
−1
x R−1x = T−1x MxL

−1
x ⇒ TxM

−1
x R−1x Rx =

T−1x MxL
−1
x Rx ⇒ T 2xM

−1
x = MxL

−1
x Rx = MxR

−1
x RxL

−1
x Rx ⇒

T 2xM
−1
x = UxTxRx ⇒ T 2x = UxTxRxMx.

(a)⇔ (c) Jλ = Jρ ⇔ T 2x = UxTxRxMx ⇔ T 2x = UxTxWx.

(a)⇔ (d) Jλ = Jρ ⇔ T 2x = UxTxRxMx ⇔ Ux = T 2x (TxRxMx)
−1 ⇔

Ux = T 2xM
−1
x R−1x T−1x ⇔ Ux = T 2xM

−1
x L−1x LxR

−1
x T−1x ⇔ Ux =

T 2xVxT
−2
x ⇔ UxT

2
x = T 2xVx.

TM(Q, ·) =
¿
{Rx, Lx, Ux}|x ∈ Q

À
=

¿
{Rx, Lx, Vx}|x ∈ Q

À
=¿

{Rx, Lx,Wx}|x ∈ Q

À
follows from the fact that T 2x = UxTxRxMx ⇔

Mx =
³
UxTxRx

´−1
T 2x .

5. From 1 and 2, Jρ = T−1x MxL
−1
x and Jλ = TxM

−1
x R−1x . Hence:

T−1x MxL
−1
x TxM

−1
x R−1x = I and TxM

−1
x R−1x T−1x MxL

−1
x = I ⇒

T−1x MxR
−1
x RxL

−1
x TxM

−1
x L−1x LxR

−1
x = I and

TxM
−1
x L−1x LxR

−1
x T−1x MxR

−1
x RxL

−1
x = I ⇒

T−1x UxT
2
xVxT

−1
x = I and TxVxT

−2
x UxTx = I ⇒

UxT
2
xVx = T 2x| {z }

a

and VxT
−2
x Ux = T−2x| {z }

b

(2.1)

By multiplying (2.1)(a) and (2.1)(b), we get
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U2xT
2
xV

2
x = T 2x(2.2)

Substituting eq:bs2 in (2.1)(a), we get U3xT
2
xV

3
x = T 2x . Making this

substitution inductively, we have T 2x = Un
x T

2
xV

n
x for all N. Doing a

similar thing with eq:bs2 and (2.1)(b), we get T−2x = V n
x T

−2
x Un

x for
all N.

6. We shall use 1, 2 and some results in 3.

(a) J2ρ = T−1x MxL
−1
x T−1x MxL

−1
x = T−1x MxL

−1
x LxR

−1
x MxL

−1
x

= T−1x MxR
−1
x MxL

−1
x = T−1x UxM

2
xM

−1
x L−1x = T−1x UxM

2
xVx =

T−1x U2xTx. Hence, J
3
ρ = J2ρJρ = T−1x U2xTxT

−1
x UxTx = T−1x U3xTx.

Continuing by induction, we have Jnρ = T−1x Un
x Tx.

(b) This follows from (a).

(c) J2λ = TxM
−1
x R−1x TxM

−1
x R−1x = TxM

−1
x R−1x RxL

−1
x M−1

x R−1x =
TxM

−1
x L−1x (RxMx)

−1 ⇒ J2λ = TxVxW
−1
x . Hence, J3λ = J2λJλ =

TxVxW
−1
x TxW

−1
x = TxV

2
xW

−1
x . Continuing by induction, we

have Jnλ = TxV
n−1
x W−1

x .

(d) This follows from (c).

(e) (a) and (c) answer this.

2

Lemma 2.3. Let (Q, ·) be a Basarab loop. The following are equivalent:

1. (Q, ·) is a cross inverse property loop.

2. (Q, ·) is commutative.

3. (Q, ·) is an abelian group.

4. Lx ∈ P(Q, ·) for all x ∈ Q.

5. Rx ∈ Λ(Q, ·) for all x ∈ Q.

Proof. By Lemma 2.1, x · y = (x · yxρ) · x. If (Q, ·) has the CIP,
then x · y = (x · yxρ) · x ⇒ x · y = y · x which implies commutativity.
The converse is also true. By BK1 of (1.2), (x · yxρ)(xz) = x · yz. (Q, ·)
has CIP if and only if y · xz = x · yz ⇔ (Q, ·) is an abelian group. By
Lemma 2.2, (T−1x , Lx, Lx), (Rx, Tx, Rx) ∈ AUT (Q, ·). (T−1x , Lx, Lx) ∈
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AUT (Q, ·) ⇒ (LxR
−1
x , Lx, Lx) ∈ AUT (Q, ·). So, (Q, ·) is commutative

if and only if Lx ∈ P(Q, ·) for all x ∈ Q. (Rx, Tx, Rx) ∈ AUT (Q, ·) ⇒
(Rx, RxL

−1
x , Rx) ∈ AUT (Q, ·). So, (Q, ·) is commutative if and only if

Rx ∈ Λ(Q, ·) for all x ∈ Q. 2

Lemma 2.4. A Basarab loop is a Moufang loop if and only if it is flexible.

Proof. By Lemma 2.2, (T−1x , Lx, Lx), (Rx, Tx, Rx) ∈ AUT (Q, ·).
(T−1x , Lx, Lx)(Rx, Tx, Rx) = (T

−1
x Rx, LxTx, LxRx) = (Lx, LxRxL

−1
x , LxRx) ∈

AUT (Q, ·). So, the loop is flexible if and only if LxRx = RxLx ⇔ (Lx, Rx, LxRx) ∈
AUT (Q, ·)⇔ (xy)(zx) = (x ·yz)x if and only if the loop is a Moufang loop.
2

Theorem 2.8. A Basarab loop is a TA-loop if and only if it is a commu-
tative and flexible loop.

Proof. This follows from Lemma 2.4 and Theorem 1.1. 2

Corollary 2.3. A Basarab loop (Q, ·) is a TA-loop if and only if it is a
flexible loop and any of the following is true.

1. (Q, ·) is a cross inverse property loop.

2. (Q, ·) is commutative.

3. (Q, ·) is an abelian group.

4. Lx ∈ P(Q, ·) for all x ∈ Q.

5. Rx ∈ Λ(Q, ·) for all x ∈ Q.

Proof. This follows from Lemma 2.3 and Theorem 2.8. 2

Theorem 2.9. Let (Q, ·) be a Basarab loop. Then:
TM(Q, ·) =

¿½
Rx, Lx, R

−1
x JρTx : x ∈ Q

¾À
=

¿½
Rx, Lx, TxJρLx : x ∈ Q

¾À
and

TInn(Q, ·)

=

*(
Tx, TxTyT

−1
xy , T

−1
x T−1y Tyx, TyJρLyR

−1
x JρTxT

−1
y\xJλRy\x, TxJρT

−1
x

¯̄̄̄
¯ x, y ∈ Q

)+

=

*(
Tx, TxTyT

−1
xy , T

−1
x T−1y Tyx, TyJρLyR

−1
x JρTxL

−1
y\xJλT

−1
y\x, TxJρT

−1
x

¯̄̄̄
¯ x, y ∈ Q

)+
.
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Proof. This is proved by Corollary 2.2 and Theorem 2.7. Recall that

TM(Q, ·) =
¿
{Rx, Lx,Mx : x ∈ Q}

À
and

TInn(Q, ·) =
¿
R(x,y), L(x,y), Tx,M(x,y), Ux | x, y ∈ Q

À
where M(x,y) =

MyMxM
−1
y\x and Ux =MxR

−1
x .

Ux = TxJρT
−1
x and M(x,y) =MyMxM

−1
y\x while

M(x,y) = TyJρLyR
−1
x JρTx

³
Ty\xJρLy\x

´−1
= TyJρLyR

−1
x JρTxL

−1
y\xJλT

−1
y\x

and

M(x,y) = TyJρLyR
−1
x JρTx

³
R−1y\xJρTy\x

´−1
= TyJρLyR

−1
x JρTxT

−1
y\xJλRy\x.

2

Remark 2.1. Theorem 2.9 gives expressions for the total multiplication
group and total inner mapping group of a Basarab loop in terms of finetuned
generators. Hence, it is an ostensible solution to Question 1.2.

Theorem 2.10. 1. Let (Q, ·) be a Basarab loop. The following are
equivalent.

1.

*(
L−1x\yTyJρLyR

−1
x JρTx, R

−1
y/xT

−1
y JλRyL

−1
x JλT

−1
x

¯̄̄̄
¯ x, y ∈ Q

)+
≤

AUM(Q, ·).
2.
D
Tx : x ∈ Q

E
≤ AUM(Q, ·) and (Q, ·) is flexible.

Proof. This follows by Theorem 1.2, Theorem 2.6 and Theorem 2.7.

MyMx = TyJρLyR
−1
x JρTx andM

−1
y M−1

x = (MxMy)
−1 =

³
TxJρLxR

−1
y JρTy

´−1
= T−1y JλRyL

−1
x JλT

−1
x . 2

Remark 2.2. Theorem 2.10 shows that a class of total inner mappings
acts on a Basarab loop Q by automorphisms if and only if Q is an A-
loop and flexible. Theorem 2.8 and Theorem 2.10 give partial answers to
Question 1.1 in the case of Basarab loop.
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