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Abstract

Let G be a group and S be a subset of G such thate ¢ S and S™* C
S. Then Cay(G, S) is a simple undirected Cayley graph whose vertices
are all elements of G and two vertices x and y are adjacent if and only
if vy~ € S. The size of subset S is called the valency of Cay(G, S).
In this paper, we determined the structure of all Cay(Day,S), where
Doy, is a dihedral group of order 2n, n > 3 and |S| = 1,2 or 3.
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1. Introduction

Algebraic graph theory is one of the most important branches of mathemat-
ics, playing an essential role in other mathematical fields in which algebraic
methods are applied to problems about graphs.

In recent years much attention has been paid to associate a graph with
an algebraic object. The properties of the group are employed to investi-
gate a graph invariant and vice versa. One very old and important such
example that highlights the interplay between finite groups and graph the-
ory is the notation of a Cayley graph. The definition of the Cayley graph
was first introduced by Arthur Cayley in 1878 [1]. In the last 50 years,
there has been a great deal of interest in the theory of Cayley graphs which
has played an essential role in algebraic graph theory. It is related to prob-
lems in group theory and graph theory such as classification, group and
graph isomorphisms, varieties of graph coloring, diameter problems and
enumeration problems, (see [7] and [2]). Also, many interesting application
of Cayley graph in computer science and biological science, for instance
(see [3] and [6]). There are also some important topics of graph theory
and group theory in the Cayley graphs of dihedral groups. For instance
integrality [8], distance-reqular [9], locally primitive [10], degree diameter
problem [4] and edge transitivity [5] of Cay(Day,,S). In this paper, we aim
to give the graph structure of Cay(Day,, S) for n > 3 and |S| = 1,2 or 3.

The terminology and notations used in this paper are standered. For ex-
ample for a positive integer n, we use Z,, and Da, to denote the cyclic group
of order n and dihedral group of order 2n , respectively. In fact they have
the presentation Z, =< z | 2" = e >= {e,z,22,---,2" "'} and D, =<
a,b|a® =b%=ebab=a"! >={e,a,a® ---,a" 1, b,ab,---,a" " 'b}. For a
graph X the set of vertices and edges are denoted by V(G) and E(G), re-
spectively. For two vertices z,y € V(G), we denote x ~ y or z — y if x and
y are adjacent. A graph with no edge is called an empty graph. The com-
plement of X, denoted by X, is a graph such that V(X) = V(X) and two
vertices are adjacent in X if and only if there are not adjacent in X. The
degree of vertex z € V(G) denoted by deg(z), is the number of adjacent ver-
tices of x. We denote by K,,, P, and C,, the complete graph, the path graph
and the cycle graph with n vertices, respectively. The union of two graphs
X1 and X3 denoted by X1UX5 is a graph with V(X1UX2) = V(X7)UV (X32)
and E(X; U Xy) = E(X7)U E(Xs9). If X7 = X5, then X; U X; will denote
by 2X; and similarly nX; stands for the union of n copies of X;. Moreover,
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the Cartesian product of two graphs X; and Xs denoted by X10X5 is a
graph with vertex set V(X;0Xs) = {(z,y) | x € V(X1),y € V(X2)}. Two
vertices (x1,y1) and (z2,y2) are adjacent if and only if x; = x9 and y; is
adjacent to y2 in X2 or y; = y2 and x; adjacent to x5 in X;. For a given
group G , the Cayley graph of G with respect to a subset S of GG, denoted
by Cay(G, S) is an undirect simple graph whose vertices are all elements of
G where e ¢ S and S™! C S. Two vertices z and y are adjacent if and only
if zy~! € S. The size of subset S is called the valency of the Cayley graph.
Some of known properties of Cay(G,S) are |S|-regular, vertex transitive
(automorphism group of the Cay(G, S) acts transitively on V(G) and con-
nected whenever S is a generating set. More background information on
graph theory can be found in [12]. For the group theoretical concepts not
defined here, we refer the reader to [11].

2. Cayley Graphs of Dihedral Groups of Valencies 1 and 2.

In this section, we investigate and determine the Cayley graphs I' = Cay(G, S)
on a dihedral group Ds,, of valency 1 and 2. Let us start with the case that
| S|=1.

Theorem 2.1. Let Ds, be a dihedral group of order 2n. If S C Dy, such
thate ¢ S, S~' = S and |S| = 1. Then Cay(Day, S) = nKs.

Proof.  Assume that S = {z}, then by given definition of S, we should
have z # e and =! = 2. Thus, 22 = e. Now, assume that g € Dy, is an
arbitrary element such that g #% z. Then we can see that xg is adjacent
to g, since,(zg)g~! = rgg~! = x € S. Now, consider the cyclic subgroup
H =<z >={e,z} of Dy, where |H| = 2. It tends out that [Dg, : H|] = n.
Therefore there are n distinct right cosets Hgy = H, Hgo, - - -, Hgn, where
g1 = e € H and go2,93,--,9n ¢ H. Moreover, we have Dy, = Hg; U
Hgy---UHg, = {e,z}U{g2, 292} U{g3, x93} U- - -U{gn, zgn}. Hence, there
are n edges € — x,go — xg2, - gn — TG, and this concludes the proof. O

As an easy example, we can see that Cay(Dg, S), where S = {a} is a
graph consisting of 4 edges a — e, a®> — a3, b — ab, a®b — a3b. In other words,
Cay(Ds,S) = 4K3. Now, we consider Cay(Dz2y,S), such that | S |= 2.
According to conditions e ¢ S, S7! = S, we can see that S = {x, 27!}
whenever z # e,2? # e or S = {z,y}, where x # e,y # e and 2? = y% = e.
In the following theorem , we give the graph structure of Cay(Day,S),
where S = {z,x71} and z # 27 1.
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Theorem 2.2. Let Ds, be a dihedral group of order 2n. If S C Dy, such
that S = {z,27 '}, where x # ™! and o(z) = m, then Cay(Da,,S) =
2n

22Cm-

Proof.  Suppose that Ds, = {e,a,a? a3,,---,a" 1 b ab,a?b,---,a" 1b}.
Since  # 27!, we have o(z) # 2. Also, we know that o(a'b) = 2,
for i = 0,1,2,---,n — 1. Therefore, x = a’, for some i, where i =
1,2,---,n — 1 and when n is even ¢ # §. Now, assume that n is odd,
then x = o', where ¢ = 1,2,---,n — 1. We claim that the following is a
cycle of lengthme — 2 — 22 — 23... — 2™ 1 — 2™ = e. Notice that
(F) (2Pt = aka Rt = =71 € S, for k = 0,1,2,---m. More-
over, let H =< x >= {e,z,---,2™ '} be a cyclic subgroup of Dy, of order

m, then we have [Da, : H] = 22 = t. Thus there are ¢ distinct right cosets
Hgy = H Hgs,---,Hg, such that g1 = e € H and ¢2,93, -, gt ¢ H. It
tends out for each right coset Hg; = {gj,xgj,x2gj, e ,:L‘m_lgj}, we have
a cycle g; — xg; — a:zgj - = a:mflgj —a™gj = g;, for j =1,2,--- 1.
Therefore, we have ¢ cycles of length m. Hence Cay(Day,,S) = tC,, =
%”C’m. When n is even, then = a2 has order 2 and does not satisfy in
our assumption. O

In the next theorem, we deal with the second case for S. Take S = {z, y}

such that 22 = 3% = e.

Theorem 2.3. Let Doy, be a dihedral group of order 2n and S C Do, such
that S = {x,y}, where 2? = y* = e. Then Cay(Day,,S) = 2Cy, where
m = o(xy).

Proof.  Consider the case where n is odd. Since o(x) = o(y) = 2, then
x and y cannot be of the form a’, where i = 1,2,---,n — 1. Thus z = a'b
and y = a’b, where 1 < i # j < n — 1. Now, since [y(zy)¥][(zy)* 17! =
y(zy)k(zy) * 7 =y(zy) " =yylz =z € S and

[(zy)¥][y(zy)*] 7 = (xy)*(xy) Fy 1=y~ =y € S, we have the follow-
ing cycle of length 2m, e — y — a2y — y(zy) — (zy)? — y(zy)? — (zy)® —
v — y(zy)™? — (py)™ ! — ylay)™ !t — (zy)™ = e. We define the fol-
lowing subgroup Doy =< (zy),y | (zy)™ = v* = e,y(zy)y = (zy) ™" >=
{6, (:vy), (xy)2, )
(xy)"™ Ly, y(xy), -, y(zy)™ '}. As above, we have a cycle of length 2m
between all elements of Ds,,. On the other hand,

[Day, : Do) = n _ - =t. Therefore, we have Doy, = D2y U Dojpgo U

— 2m
Dopgs U+ - U Doy, gy, where each Doy, g consists of a cycle of length 2m as
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the following

gk — ygk — (@y)ge — y(@y)gr — (@y)’g — - — y(ay)" gr — (xy)"gr =
gk, for each k = 2,3,---,¢. Hence, we have Cay(D2y, S) = tCom = =Cop
as desired. If n is even ,then we have the possibility that x = a? and
y = a'b, then we can follow the same method as above and again we get
C’ay(Dgn, S) = tCyyy, = %C}m. O

3. Cayley Graphs of Dihedral Groups of Valency 3.

In this section, we investigate the graph structure of Cay(Day,, S), whenever
| S |= 3. Let us start with the following special case.

Theorem 3.1. Let Dy, =< a,b | a® = b> = e,bab = a~' > be a dihedral
group of order 2n > 6 and S = {a,a!,b}. Then Cay(Day,,S) = K2OC,.

Proof. Assume that Dy, = {e,a,a?,a3,,---,a",b,ab,ab,---,a""'b}.
Then, we can easily see that (a’d)(a’*b)™! = a7!, (a" (@) =a
and (a'b)(a""")~! = b for all i = 0,1,2,---,n — 1. Hence, we will get the
following graph (see figure 1) which is a Cartesian product of complete
graph K3 and cycle graph C), of length n. Thus Cay(D2,,S) = K2OC, as

desired. O
-1
5 3 a“~'h
b ah a-bh ah b
o . = - - ® -
g L L 5 = ] L a ?
a?’—l a.l%—z aﬂ—j

Figure 1: Cay(Da,, S) = K2O0C,

Now, we are going to consider the general case that S = {x, 27! y} C
Dsy,, where © # 27!, y?> = e. In the following theorem, we prove that
Cay(Day,, S) with the above assumption is again KoOC), as similar as the-
orem 3.1.
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Theorem 3.2. Assume that S = {x,27 !y} C Dy,, such that x # x~*

and y? = e and o(x) = m. Then Cay(Da,,S) = E(KQDC’m).
m
Proof. Let Dy, = {e,a,a?,a®,,---,a"%,b,ab,a?b,---,a""'b} and

S = {x, 271 y} is a subset of Dy, of size 3. Since ,z # x71, s0 o(z) =m > 2
which implies that = can not be as the form a'b, for all 0 <7 < n—1. Thus
x = a' for some 0 < i < @—1 and we have m = o(z) = o(a') = (GOR
Similarly, y is as the form a7b for some 0 < 7 < n — 1 or possibly a2 when
n is even. To prove the theorem, we need the following three steps.

Step 1: Assume that H =< z > is a cyclic subgroup of order m. Then

H = {e,x,2% ---, 2™ '} consists a cycle graph of length m as the
following
e—x—ax?—a3—... —az™ 2 — g™l _ ¢ The proof is obvious.

Step 2 : Let Hz be a right coset of H in Ds,, where z ¢ H. Then it consists
the following cycle graph of length m: z — xz — 222 — 232 — .-+ —
22z — 2™z — 2. Because (2'z)(z't12)7! = 27! € S for all

i=0,1,2,-,n— 1.

Step 3: Suppose that Hz and Hw are two distinct right cosets of H in Da,.
If 2z is adjacent to w in Cay(Day,, S), then HzU Hw is produced an in-
duced subgraph of Cay(D2,,S) isomorphic to the Cartesian product
K50OC),. One can easly check the proof by the corresponding graph
as in figure 2.

-0 m—1
g™ 1 z
Tz a2z .
a & 3 - - t & &
o — - - - - @ T
2 2 T e
1y ™2y

Figure 2: K.OC),
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Now by the above three steps, we can continue our proof of the theorem.
Assume that [Day, : H] = ¢, then %" =t and so t is even. We know that
Cay(Day, S) is 3-regular and it implies that every pair of cosets (Hz, Hw)
will produce a Cartesian product KoOC,,. Since, we have % disjoint pairs of
such cosets, so we will have union of 7+ Cartesian product K20OC;,. Hence
Cay(D2n, S) = = (K20C),) and the proof is complete. O

Example 3.3. For Dihedral group D15 of order 12, we have Dis =< a,b |
a® = b? = e,bab = a! >= {e,a,a?,a3,a?, a’b,ab,a’b,a’b,a’b,a®b}. If
S = {z,27 Yy} C D12, where x = a® and y = ab. Then by Theorem
3.2, we can see that Cay(Di2,S) = 2(K20Cs3). Because, we have o(x) =
o(a?) = 3, H =< z >= {e,a?,a*} and distinct cosets Ha = {a,a>,a’},
Hb = {b,a?b,a*b} and Hab = {ab,a®b,a’b}. For more details we refer to
figure 3.

(=]
[
[%=]
o

e i lul e fr] 7] i i
a " & a a i3 "- L]
o & @ o g - @ 3
ab aSh ah ab alh ah

Figure 3: Cay(Di2,S) = 2(K,0Cs)

The following example is another possibility for S C Ds, with |S| = 3.
2

In fact, S = {z,y, 2}, where 22 = 3> = 22 = e.

Example 3.4. Let Dg be a dihedral group of order 8. Then we have
Dg =< a,b | a* = ¢ = b, bab = a~! >= {e,a,a? a3 b,ab,a’b,a®b}. If
S = {b,ab,a’b}, then Cay(Ds, S) is the Cartesian product KoOCy as the
following:
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"
:
"
2

Figure 4: K.0OCy

Now by extending Theorem 2.3 and the method used in Theorem 3.2, we
can state the following theorem consisting the last case of S with | S |= 3.
We omit the proof.

Theorem 3.5. Let S = {z,y,z} be a subset of Da,, where n > 3, |S| =3
and 2% = y? = 22 = e. Then Cay(Day, S) = K20C,,.
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