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Abstract

Let G be a group and S be a subset of G such that e /∈ S and S−1 ⊆
S. Then Cay(G,S) is a simple undirected Cayley graph whose vertices
are all elements of G and two vertices x and y are adjacent if and only
if xy−1 ∈ S. The size of subset S is called the valency of Cay(G,S).
In this paper, we determined the structure of all Cay(D2n, S), where
D2n is a dihedral group of order 2n, n ≥ 3 and |S| = 1, 2 or 3.
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1. Introduction

Algebraic graph theory is one of the most important branches of mathemat-
ics, playing an essential role in other mathematical fields in which algebraic
methods are applied to problems about graphs.

In recent years much attention has been paid to associate a graph with
an algebraic object. The properties of the group are employed to investi-
gate a graph invariant and vice versa. One very old and important such
example that highlights the interplay between finite groups and graph the-
ory is the notation of a Cayley graph. The definition of the Cayley graph
was first introduced by Arthur Cayley in 1878 [1]. In the last 50 years,
there has been a great deal of interest in the theory of Cayley graphs which
has played an essential role in algebraic graph theory. It is related to prob-
lems in group theory and graph theory such as classification, group and
graph isomorphisms, varieties of graph coloring, diameter problems and
enumeration problems, (see [7] and [2]). Also, many interesting application
of Cayley graph in computer science and biological science, for instance
(see [3] and [6]). There are also some important topics of graph theory
and group theory in the Cayley graphs of dihedral groups. For instance
integrality [8], distance-reqular [9], locally primitive [10], degree diameter
problem [4] and edge transitivity [5] of Cay(D2n, S). In this paper, we aim
to give the graph structure of Cay(D2n, S) for n ≥ 3 and |S| = 1, 2 or 3.

The terminology and notations used in this paper are standered. For ex-
ample for a positive integer n, we use Zn andD2n to denote the cyclic group
of order n and dihedral group of order 2n , respectively. In fact they have
the presentation Zn =< x | xn = e >= {e, x, x2, · · · , xn−1} and D2n =<
a, b | an = b2 = e, bab = a−1 >= {e, a, a2, · · · , an−1, b, ab, · · · , an−1b}. For a
graph X the set of vertices and edges are denoted by V (G) and E(G), re-
spectively. For two vertices x, y ∈ V (G), we denote x ∼ y or x − y if x and
y are adjacent. A graph with no edge is called an empty graph. The com-
plement of X, denoted by X, is a graph such that V (X) = V (X) and two
vertices are adjacent in X if and only if there are not adjacent in X. The
degree of vertex x ∈ V (G) denoted by deg(x), is the number of adjacent ver-
tices of x. We denote byKn, Pn and Cn the complete graph, the path graph
and the cycle graph with n vertices, respectively. The union of two graphs
X1 andX2 denoted byX1∪X2 is a graph with V (X1∪X2) = V (X1)∪V (X2)
and E(X1 ∪X2) = E(X1) ∪E(X2). If X1 = X2, then X1 ∪X1 will denote
by 2X1 and similarly nX1 stands for the union of n copies of X1. Moreover,
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the Cartesian product of two graphs X1 and X2 denoted by X12X2 is a
graph with vertex set V (X12X2) = {(x, y) | x ∈ V (X1), y ∈ V (X2)}. Two
vertices (x1, y1) and (x2, y2) are adjacent if and only if x1 = x2 and y1 is
adjacent to y2 in X2 or y1 = y2 and x1 adjacent to x2 in X1. For a given
group G , the Cayley graph of G with respect to a subset S of G, denoted
by Cay(G,S) is an undirect simple graph whose vertices are all elements of
G where e /∈ S and S−1 ⊆ S. Two vertices x and y are adjacent if and only
if xy−1 ∈ S. The size of subset S is called the valency of the Cayley graph.
Some of known properties of Cay(G,S) are |S|-regular, vertex transitive
(automorphism group of the Cay(G,S) acts transitively on V (G) and con-
nected whenever S is a generating set. More background information on
graph theory can be found in [12]. For the group theoretical concepts not
defined here, we refer the reader to [11].

2. Cayley Graphs of Dihedral Groups of Valencies 1 and 2.

In this section, we investigate and determine the Cayley graphs Γ = Cay(G,S)
on a dihedral group D2n of valency 1 and 2. Let us start with the case that
| S |= 1.

Theorem 2.1. Let D2n be a dihedral group of order 2n. If S ⊆ D2n such
that e /∈ S, S−1 = S and |S| = 1. Then Cay(D2n, S) = nK2.

Proof. Assume that S = {x}, then by given definition of S, we should
have x 6= e and x−1 = x. Thus, x2 = e. Now, assume that g ∈ D2n is an
arbitrary element such that g 6= x. Then we can see that xg is adjacent
to g, since,(xg)g−1 = xgg−1 = x ∈ S. Now, consider the cyclic subgroup
H =< x >= {e, x} of D2n, where |H| = 2. It tends out that [D2n : H] = n.
Therefore there are n distinct right cosets Hg1 = H,Hg2, · · · ,Hgn, where
g1 = e ∈ H and g2, g3, · · · , gn /∈ H. Moreover, we have D2n = Hg1 ∪
Hg2 · · ·∪Hgn = {e, x}∪{g2, xg2}∪{g3, xg3}∪ · · ·∪{gn, xgn}. Hence, there
are n edges e − x, g2 − xg2, · · · gn − xgn and this concludes the proof. 2

As an easy example, we can see that Cay(D8, S), where S = {a} is a
graph consisting of 4 edges a − e, a2 − a3, b − ab, a2b − a3b. In other words,
Cay(D8, S) = 4K2. Now, we consider Cay(D2n, S), such that | S |= 2.
According to conditions e /∈ S, S−1 = S, we can see that S = {x, x−1}
whenever x 6= e, x2 6= e or S = {x, y}, where x 6= e, y 6= e and x2 = y2 = e.
In the following theorem , we give the graph structure of Cay(D2n, S),
where S = {x, x−1} and x 6= x−1.
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Theorem 2.2. Let D2n be a dihedral group of order 2n. If S ⊆ D2n such
that S = {x, x−1}, where x 6= x−1 and o(x) = m, then Cay(D2n, S) =
2n
mCm.

Proof. Suppose thatD2n = {e, a, a2, a3, , · · · , an−1, b, ab, a2b, · · · , an−1b}.
Since x 6= x−1, we have o(x) 6= 2. Also, we know that o(aib) = 2,
for i = 0, 1, 2, · · · , n − 1. Therefore, x = ai, for some i, where i =
1, 2, · · · , n − 1 and when n is even i 6= n

2 . Now, assume that n is odd,
then x = ai, where i = 1, 2, · · · , n − 1. We claim that the following is a
cycle of length m e − x − x2 − x3 · · · − xm−1 − xm = e. Notice that
(xk)(xk+1)−1 = aika−ik−i = a−i = x−1 ∈ S, for k = 0, 1, 2, · · ·m. More-
over, let H =< x >= {e, x, · · · , xm−1} be a cyclic subgroup of D2n of order
m, then we have [D2n : H] =

2n
m = t. Thus there are t distinct right cosets

Hg1 = H,Hg2, · · · ,Hgt, such that g1 = e ∈ H and g2, g3, · · · , gt /∈ H. It
tends out for each right coset Hgj = {gj , xgj , x2gj , · · · , xm−1gj}, we have
a cycle gj − xgj − x2gj − · · · − xm−1gj − xmgj = gj , for j = 1, 2, · · · , t.
Therefore, we have t cycles of length m. Hence Cay(D2n, S) = tCm =
2n
mCm. When n is even, then x = a

n
2 has order 2 and does not satisfy in

our assumption. 2

In the next theorem, we deal with the second case for S. Take S = {x, y}
such that x2 = y2 = e.

Theorem 2.3. Let D2n be a dihedral group of order 2n and S ⊆ D2n such
that S = {x, y}, where x2 = y2 = e. Then Cay(D2n, S) =

n
mC2m where

m = o(xy).

Proof. Consider the case where n is odd. Since o(x) = o(y) = 2, then
x and y cannot be of the form ai, where i = 1, 2, · · · , n− 1. Thus x = aib
and y = ajb, where 1 ≤ i 6= j ≤ n − 1. Now, since [y(xy)k][(xy)k+1]−1 =
y(xy)k(xy)−k−1 = y(xy)−1 = yy−1x = x ∈ S and

[(xy)k][y(xy)k]−1 = (xy)k(xy)−ky−1= y−1 = y ∈ S, we have the follow-
ing cycle of length 2m, e − y − xy − y(xy) − (xy)2 − y(xy)2 − (xy)3 −
· · · − y(xy)m−2 − (xy)m−1 − y(xy)m−1 − (xy)m = e. We define the fol-
lowing subgroup D2m =< (xy), y | (xy)m = y2 = e, y(xy)y = (xy)−1 >=
{e, (xy), (xy)2, · · · ,
(xy)m−1, y, y(xy), · · · , y(xy)m−1}. As above, we have a cycle of length 2m
between all elements of D2m. On the other hand,

[D2n : D2m] =
2n
2m = n

m = t. Therefore, we have D2n = D2m ∪D2mg2 ∪
D2mg3 ∪ · · ·∪D2mgt, where each D2mgk consists of a cycle of length 2m as
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the following
gk − ygk − (xy)gk − y(xy)gk − (xy)2gk − · · · − y(xy)m−1gk − (xy)mgk =
gk, for each k = 2, 3, · · · , t. Hence, we have Cay(D2n, S) = tC2m =

n
mC2m

as desired. If n is even ,then we have the possibility that x = a
n
2 and

y = aib, then we can follow the same method as above and again we get
Cay(D2n, S) = tC2m =

n
mC2m. 2

3. Cayley Graphs of Dihedral Groups of Valency 3.

In this section, we investigate the graph structure of Cay(D2n, S), whenever
| S |= 3. Let us start with the following special case.

Theorem 3.1. Let D2n =< a, b | an = b2 = e, bab = a−1 > be a dihedral
group of order 2n ≥ 6 and S = {a, a−1, b}. Then Cay(D2n, S) = K22Cn.

Proof. Assume that D2n = {e, a, a2, a3, , · · · , an−1, b, ab, a2b, · · · , an−1b}.
Then, we can easily see that (aib)(ai+1b)−1 = a−1, (an−i)(an−i−1)−1 = a
and (aib)(an−i)−1 = b for all i = 0, 1, 2, · · · , n − 1. Hence, we will get the
following graph (see figure 1) which is a Cartesian product of complete
graph K2 and cycle graph Cn of length n. Thus Cay(D2n, S) = K22Cn as
desired. 2

Figure 1: Cay(D2n, S) = K22Cn

Now, we are going to consider the general case that S = {x, x−1, y} ⊆
D2n, where x 6= x−1, y2 = e. In the following theorem, we prove that
Cay(D2n, S) with the above assumption is again K22Cn as similar as the-
orem 3.1.
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Theorem 3.2. Assume that S = {x, x−1, y} ⊆ D2n, such that x 6= x−1

and y2 = e and o(x) = m. Then Cay(D2n, S) =
n

m
(K22Cm).

Proof. Let D2n = {e, a, a2, a3, , · · · , an−1, b, ab, a2b, · · · , an−1b} and
S = {x, x−1, y} is a subset ofD2n of size 3. Since ,x 6= x−1, so o(x) = m > 2
which implies that x can not be as the form aib, for all 0 ≤ i ≤ n−1. Thus
x = ai for some 0 ≤ i ≤ n − 1 and we have m = o(x) = o(ai) = n

(i,n) .

Similarly, y is as the form ajb for some 0 ≤ j ≤ n− 1 or possibly an
2 when

n is even. To prove the theorem, we need the following three steps.

Step 1: Assume that H =< x > is a cyclic subgroup of order m. Then
H = {e, x, x2, · · · , xm−1} consists a cycle graph of length m as the
following
e − x − x2 − x3 − · · · − xm−2 − xm−1 − e. The proof is obvious.

Step 2 : Let Hz be a right coset of H in D2n, where z /∈ H. Then it consists
the following cycle graph of length m: z − xz − x2z − x3z − · · · −
xm−2z − xm−1z − z. Because (xiz)(xi+1z)−1 = x−1 ∈ S for all
i = 0, 1, 2, · · · , n− 1.

Step 3: Suppose that Hz and Hw are two distinct right cosets of H in D2n.
If z is adjacent to w in Cay(D2n, S), then Hz∪Hw is produced an in-
duced subgraph of Cay(D2n, S) isomorphic to the Cartesian product
K22Cm. One can easly check the proof by the corresponding graph
as in figure 2.

Figure 2: K22Cm
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Now by the above three steps, we can continue our proof of the theorem.
Assume that [D2n : H] = t, then 2n

m = t and so t is even. We know that
Cay(D2n, S) is 3-regular and it implies that every pair of cosets (Hz,Hw)
will produce a Cartesian productK22Cm. Since, we have

t
2 disjoint pairs of

such cosets, so we will have union of n
m Cartesian product K22Cm. Hence

Cay(D2n, S) =
n
m(K22Cm) and the proof is complete. 2

Example 3.3. For Dihedral group D12 of order 12, we have D12 =< a, b |
a6 = b2 = e, bab = a−1 >= {e, a, a2, a3, a4, a5, b, ab, a2b, a3b, a4b, a5b}. If
S = {x, x−1, y} ⊂ D12, where x = a2 and y = ab. Then by Theorem
3.2, we can see that Cay(D12, S) = 2(K22C3). Because, we have o(x) =
o(a2) = 3, H =< x >= {e, a2, a4} and distinct cosets Ha = {a, a3, a5},
Hb = {b, a2b, a4b} and Hab = {ab, a3b, a5b}. For more details we refer to
figure 3.

Figure 3: Cay(D12, S) = 2(K22C3)

The following example is another possibility for S ⊆ D2n with |S| = 3.
In fact, S = {x, y, z}, where x2 = y2 = z2 = e.

Example 3.4. Let D8 be a dihedral group of order 8. Then we have
D8 =< a, b | a4 = e = b2, bab = a−1 >= {e, a, a2, a3, b, ab, a2b, a3b}. If
S = {b, ab, a2b}, then Cay(D8, S) is the Cartesian product K22C4 as the
following:

pc
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Figure 4: K22C4

Now by extending Theorem 2.3 and the method used in Theorem 3.2, we
can state the following theorem consisting the last case of S with | S |= 3.
We omit the proof.

Theorem 3.5. Let S = {x, y, z} be a subset of D2n, where n ≥ 3, |S| = 3
and x2 = y2 = z2 = e. Then Cay(D2n, S) = K22Cn.
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