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Abstract

Let G = (V,E) be a graph of order p and size q having no iso-
lated vertices. A bijection f : E → {1, 2, 3, ..., q} is called a local
antimagic labeling if for all uv ∈ E we have w(u) 6= w(v), the weight
w(u) =

P
e∈E(u) f(e), where E(u) is the set of edges incident to u.

A graph G is local antimagic if G has a local antimagic labeling. The
local antimagic chromatic number χla(G) is defined to be the mini-
mum number of colors taken over all colorings of G induced by local
antimagic labelings of G. In this paper, we determine the local an-
timagic chromatic number for some wheel related graphs.
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1. Introduction

The graph G = (V,E) we mean a finite, undirected graph with neither
loops nor multiple edges. The order and size of G are denoted by |V | = p
and |E| = q respectively. For graph-theoretic terminology, we refer to
Chartrand and Lesniak [4].

Hartsfield and Ringel [7] was first introduced an antimagic labeling,
which is defined as a bijection f : E → {1, 2, ..., |E|}. For each vertex
u ∈ V (G), the weight w(u) =

P
e∈E(u) f(e), where E(u) is the set of edges

incident to u. If w(u) 6= w(v) for any two distinct vertices u and v ∈ V (G),
then f is called an antimagic labeling of G. A graph G is called antimagic if
G has antimagic labeling. Hartsfield and Ringel’s [7] conjectured that every
connected graph with at least three vertices admits antimagic labeling.
They also made a weak conjecture that every tree with at least three vertices
admits an antimagic labeling. These two conjectures were partially shown
to be true by several authors, but they are still unsolved. For the best and
most interesting results were obtained so far, one can see [10] for trees and
[5] for general graphs. Also, for a detailed and interesting review on these
conjectures, one can see chapter 6 of [6].

Arumugam et al.[1] posed a new definition as a relaxation of the no-
tion of antimagic labeling. They called a bijection f : E → {1, 2, ..., |E|}
is a local antimagic labeling of G if for any two adjacent vertices u and v
in V (G), the condition w(u) 6= w(v) holds. They conjectured that every
connected graph with at least three vertices admits a local antimagic label-
ing. This conjecture was solved partially in [3]. Finally, Haslegrave proved
this conjecture by means of probabilistic tools [8]. In 2017, Bensmail, Sen-
haji, and Szabo Lyngsie [3] obtained the results on trees answers positively
to Conjecture 2.3 raised by Arumugam et al.[1] using another aspect of
neighbour-sum-distinguishing.

Based on the notion of local antimagic labeling, Arumugam et al.[1]
introduced a new graph coloring parameter. We call local antimagic chro-
matic number χla(G), which is defined as the minimum number of colors
taken over all colorings of G induced by local antimagic labelings of G.

In [1], they proved the local chromatic number of cycle on n vertices
is 3 and they observed that, if the connected graph G contains a triangle
C3, then χla(G) ≥ 3. Also, they proved that the local chromatic number of
complete graph on p vertices is p colors and the local chromatic number of
wheel graph Wn is 4, where n is odd. For n is even case they proved that
χla(Wn) = 3, where n ≡ 2(mod 4). Then they obtained lower and upper
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bounds 3 ≤ χla(Wn) ≤ 5 for n ≡ 0(mod 4). Recently, in [11], the authors
obtained exact value for χla(Wn) = 4 for n ≡ 0(mod 4).

Frucht and Harary [15] introduced the corona product of two graphs,
which is defined as: The corona product of two graphs G andH is the graph
G¯H obtained by taking one copy of G along with |V (G)| copies of H, and
putting extra edges making the i-th vertex of G adjacent to every vertex
of the i-th copy of H, where 1 ≤ i ≤ |V (G)|. In [2] Arumugam, Lee, Pre-
malatha and Wang completely determined the local antimagic chromatic
number χla(G ¯ Km) for the corona product of a graph G with the null
graph Km on m ≥ 1 vertices (or complement graph of Km), when G is path
Pn, cycle Cn, and complete graph Kn.

Arumugam et al.[1], Shaebani [9] and Lau et al.[11, 14] studied in-
dependently, the local antimagic chromatic number for the join graphs,
which is defined as: Let G1 and G2 be two vertex disjoint graphs. The
join graph of G1 and G2, denoted by G1 ∨ G2, is the graph whose vertex
set is V (G1) ∪ V (G2) and its edge set equals E(G1) ∪ E(G2) ∪ {ab : a ∈
V (G1) and b ∈ V (G2)}.

Arumugam et al.[1] obtained lower and upper bounds for the join graph
G1 ∨G2. Recently, the author Shaebani [9] obtained counterexamples to a
Theorem 2.16 [1] which asserts that if a graph G has at least four vertices,
then χla(G) + 1 ≤ χla(G ∨ K2), where K2 is the complement graph of a
complete graph with two vertices. In this regard, the author Shaebani [9]
proved that if n is odd and n+1 is not divisible by 3, then χla(K1,n∨K2) =
3. Moreover, Lau et al.[11, 14] also studied the local antimagic chromatic
number for join graphs independently.

In this paper, we investigate the local antimagic chromatic number for
wheel related graphs.

2. Local Chromatic Number of Helm graph

In [12], Ayel and Favaron introduced a Helm graph, which is defined as:
The helm graph is the graph obtained from a wheel graph Wn on n + 1
vertices by adjoining a pendant edge at each node of the cycle and Hn

denotes it.

Krishnaa [13] studied some helm related graphs that admit antimagic
labeling. In this section, we study the local antimagic vertex coloring of
the same graph Hn.
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Theorem 2.1. For the graph Hn, 3 ≤ n ≤ 5, we have

χla(Hn) =

(
6, n = 3, 4
8, n = 5.

Proof. Let G ∼= Hn be the helm graph and let V (G) = {c ∪ vi ∪ ui, 1 ≤
i ≤ n} and E(G) = {cvi ∪ viui, 1 ≤ i ≤ n} ∪ {vnv1 ∪ vivi+1, 1 ≤ i ≤ n− 1}.
Then |V (G)| = p = 2n+ 1 and |E(G)| = q = 3n.

Case 1: n = 3
SupposeH3 admits a local antimagic labeling f . Since every pendant vertex
received a new color, it follows that the pendant vertices u1, u2 and u3 have
received the colors w1, w2 and w3. Since 1 ≤ w(ui) ≤ 9 and the minimum
possible vertex weight of vi is 10, we get w(ui) 6= w(vi), i = 1, 2, 3 and
hence the vertex v1, v2 and v3 are received new colors w4, w5 and w6. Thus
χla(H3) ≥ 6. So, for proving χla(H3) = 6, it suffices to provide a local
antimagic labeling ofH3 that induces a local antimagic vertex coloring using
exactly six colors. Now, we define bijection f : E(H3)→ {1, 2, 3, . . . , 9} by

f(cvi) = i, i = 1, 2, 3
f(viui) = 7− i, i = 1, 2, 3
f(v1v2) = 8, f(v2v3) = 7, f(v1v3) = 9.
In this case, we have w(c) = w(u1) = 6, w(u2) = 5, w(u3) = 4, w(v1) =

24, w(v2) = 22, w(v3) = 23. Therefore, f is a local antimagic labeling of H3

that induces a local antimagic vertex coloring using exactly six colors.

Case 2: n = 4
Suppose H4 admits a local antimagic labeling f. Since every pendant vertex
received a new color, it follows that the pendant vertices u1, u2, u3 and u4
are received the colors w1, w2, w3 and w4. Let e = cv1 or e = v1u1 or v1v2
in E(H4). For any of v1, v2, v3, v4, c to receive a color less than or equal
to 12, the four incident edges must include labels 1 and 2. This means
that at most one of them can receive such a color, and therefore there are
some two adjacent vertices which receive new colors w5, w6 greater than 12.
Thus χla(H4) ≥ 6. So, for proving χla(H4) = 6, it suffices to provide a local
antimagic labeling ofH4 that induces a local antimagic vertex coloring using
exactly six colors. Now, we define bijection f : E(H4) → {1, 2, 3, . . . , 12}
by

f(cv1) = 1, f(cv2) = 3, f(cv3) = 2, f(cv4) = 4,
f(v1u1) = 9, f(v2u2) = 12, f(v3u3) = 10, f(v4u4) = 11,
f(v1v2) = 6, f(v2v3) = 7, f(v3v4) = 5, f(v1v4) = 8.
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In this case, we havew(c) = w(u3) = 10, w(u1) = 9, w(u2) = 12, w(u4) =
11, w(v1) = w(v3) = 24, w(v2) = w(v4) = 28. Therefore, f is a local an-
timagic labeling of H4 that induces a local antimagic vertex coloring using
exactly six colors.

Case 3: n = 5
Suppose H5 admits a local antimagic labeling f. Since every pendant vertex
received a new color, it follows that the pendant vertices u1, u2, u3, u4 and
u5 are received the colors w1, w2, w3, w4 and w5. Let e = cv1 or v1u1 or v1v2
in E(H5). If f(e) = 15 then the incident vertex v1 received a new color w6.

If f(e = cv1) = 15 then the vertex c received a color w(c) = w(ui)
or a new color w7. If w(c) = w(ui) for any i, then w(c) = 15 because
the minimum possible vertex weight of c is 15 and q = 15. If additionally
w(v2) = w(ui) ∈ {10, 11, 12, 13, 14} − w(u2), then f(v2u2) ∈ {6, 7, 8, 9}. If
f(v2u2) ∈ {6, 7, 8, 9} then the vertex v2 weight is w(v2) 6= q and hence the
vertex v2 received a new color w7. Suppose w(v3) = w6 and w(v4) = w7.
Then the vertex v5 must receive a new color w8. If w(c) = w7 then the
adjacent vertex of v1 is v2 received a new color w8.

If f(e = v1u1) = 15 then the vertex c received a color w(u1) = 15
and hence w(c) = w(u1) = 15. Therefore, the edges {cvi, 1 ≤ i ≤ 5} are
received the labels from {1, 2, 3, 4, 5}. Then the vertex v2 adjacent vertices
are received the minimum possible labels are {1, 6, 7, 8}, this sum gives the
minimum possible weight of a vertex v2. Therefore, the vertex v2 received
a new color w7. Suppose w(v3) = w6 and w(v4) = w7. Then the vertex v5
must receive a new color w8.

If f(e = v1v2) = 15 then the vertex v2 received a new color w7. Suppose
w(v3) = w6 or w(ui), i 6= 3 and w(v4) = w7 or w(ui), i 6= 4. Then the vertex
v5 must receive a new color w8. Hence χla(H5) ≥ 8.

So, for proving χla(H5) = 8, it suffices to provide a local antimagic
labeling of H5 that induces a local antimagic vertex coloring using exactly
eight colors. Now, we define bijection f : E(H5)→ {1, 2, 3, . . . , 15} by

f(cv1) = 1, f(cv2) = 4, f(cv3) = 2, f(cv4) = 5, f(cv5) = 3,
f(v1u1) = 11, f(v2u2) = 13, f(v3u3) = 12, f(v4u4) = 14, f(v5u5) = 15,
f(v1v2) = 7, f(v2v3) = 9, f(v3v4) = 6, f(v4v5) = 8, f(v1v5) = 10.
In this case, we havew(c) = w(u5) = 15, w(u1) = 11, w(u2) = 13, w(u3) =

12, w(u4) = 14, w(v1) = w(v3) = 29, w(v2) = w(v4) = 33, w(v5) = 36.
Therefore, f is a local antimagic labeling of H5 that induces a local an-
timagic vertex coloring using exactly eight colors. 2
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Theorem 2.2. Let Hn, n ≥ 6 be a helm graph. Then χla(Hn) = n+ 3.

Proof. Let Hn, n ≥ 6 be a helm graph and let
V (Hn) = {c ∪ vi ∪ ui, 1 ≤ i ≤ n} and E(Hn) = {cvi ∪ viui, 1 ≤ i ≤
n} ∪ {vnv1} ∪ {vivi+1, 1 ≤ i ≤ n − 1}. Then |V (Hn)| = p = 2n + 1 and
|E(Hn)| = q = 3n.

Suppose Hn admits a local antimagic labeling f. Since every pendant
vertex received a new color, it follows that the pendant vertices ui, 1 ≤ i ≤ n
are received the colors wi, 1 ≤ i ≤ n. Clearly, the minimum possible weight
of a vertex c is w(c) ≥ n(n+1)

2 > q. Therefore, the vertex c received a new
color wn+1. Let e = cv1 or v1u1 or v1v2 in E(Hn). If f(e = v1u1) = q
or f(e = cv1) = q then the vertex v1 received a new color wn+2. Let
e0 = v1v2 ∈ E(Hn). Then the vertex v2 weight w(v2) ∈W orW 0 =W−{q}
and w(v2) 6∈ W or W 0 = W − {q}, where W = {10, 11, 12, . . . , q − 1, q}.
If the vertex v2 weight w(v2) 6∈ W or W 0 = W − {q} then the vertex v2
received a new color wn+3 and hence χla(Hn) ≥ n+ 3.

Let S be the set of vi that have weight wn+2, and T be the remainder.
Since no two vertices in S are adjacent, T contains (n + k)/2 vertices for
some k ≥ 0, and covers all the edges of the main cycle together with at
least n+ k other edges. So the sum of weights of vertices in T is at least

1 + 2 + 3 + . . .+ 2n+ k =
(2n+ k)(2n+ k + 1)

2
≥ (n+ k)(2n+ 1).

However, the maximum possible sum of weights of vertices in T if all
these are inW orW 0 is 3n(n+k)/2. Therefore at least one of these vertices
has a new weight wn+3. Thus χla(Hn) ≥ n+ 3.

So, for proving χla(Hn) = n+ 3 it suffices to provide a local antimagic
labeling of Hn that induces a local antimagic vertex coloring using exactly
n+ 3 colors.

For n ≥ 6, define f1 : E(Hn)→ {1, 2, 3, . . . , q} by

f1(cvi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+3
2 , i = 1, n is odd

n+2
2 , i = 1, n is even
3(2n+1)−i

2 , i is odd, 3 ≤ i ≤ n
2(n+2)+i

2 , i is even, 2 ≤ i ≤ n

f1(vivi+1) =

(
i+1
2 , i is odd, 1 ≤ i ≤ n− 1
2(n+3)−i

2 , i is even, 2 ≤ i ≤ n− 1
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f1(vnv1) =

(
n+1
2 , n is odd

n+6
2 , n is even

f1(viui) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+5
2 , i = 1, n is odd

n+4
2 , i = 1, n is even
4n+i+1

2 , i is odd, n is odd, 3 ≤ i ≤ n
4(n+1)−i

2 , i is even, n is odd, 2 ≤ i ≤ n− 1
4n+i+3

2 , i is odd, n is even, 3 ≤ i ≤ n− 1
2(2n+3)−i

2 , i is even, n is even, 2 ≤ i ≤ n

Then the weights of vertices are,

w1(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3n+11
2 , i = 1, n is odd

3n+14
2 , i = 1, n is even

6(n+ 1), i is odd, n is odd, 3 ≤ i ≤ n
4n+ 7, i is even, n is odd, 2 ≤ i ≤ n− 1
6n+ 7, i is odd, n is even, 3 ≤ i ≤ n− 1
4(n+ 2), i is even, n is even, 2 ≤ i ≤ n

w1(c) =

(
2n2, n is odd
n(4n−1)

2 , n is even

w1(ui) = f1(viui), 1 ≤ i ≤ n

Hence, χla(Hn) ≤ n + 3. Therefore, f1 is a local antimagic labeling of
Hn that induces a local antimagic vertex coloring using exactly n+3 colors.
2

From Theorem 2.1 and Theorem 2.2, we obtain the following theorem.

Theorem 2.3. Let Hn, n ≥ 3 be a helm graph. Then

χla(Hn) =

(
n+ 2, n = 4
n+ 3, n 6= 4.

3. Local Chromatic Number for Some Wheel Related Graphs

In this section, we determine the local vertex antimagic chromatic number
for wheel related graphs Wm

n , where m is a fixed positive integer.

Definition 3.1. LetWn be a wheel graph on n+1 vertices. A graphW
m
n is

obtained from Wn by attaching m pendant vertices to any arbitrary vertex
v 6= c of Wn, where c is the central vertex of Wn.
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Now, we consider the graph Wm
n , with two different m values m1 =

t+ n(n−3)
2 , t ≥ 0 and less than m1,that is,

n(n−3)
2 − t, t ≥ 1. The following

theorem gives the exact local chromatic number of Wm
n ,m = m1 is m1 +

1,for n ≥ 7 and for every t ≥ 0.

Theorem 3.2. LetWm1
n be a graph with n ≥ 7, t ≥ 0 andm1 = t+ n(n−3)

2 .
Then χla(W

m1
n ) = m1 + 1.

Proof. Let Wm1
n be a graph with n ≥ 7 and m1 = t + n(n−3)

2 . Let
V (Wm1

n ) = {c ∪ vi ∪ uk, 1 ≤ i ≤ n, 1 ≤ k ≤ m1} and E(Wm1
n ) = {cvi ∪

vnuk, 1 ≤ i ≤ n, 1 ≤ k ≤ m1}∪ {vivi+1 ∪ vnv1, 1 ≤ i ≤ n− 1} be the vertex
set and edge set of Wm1

n . Then |V (Wm1
n )| = m1 + n+ 1 and |E(Wm1

n )| =
q = m1 + 2n.

Since every pendant vertex receives a different color, and vn receives a
higher color than any of them. We get χla(W

m1
n ) ≥ m1+1. So, for proving

χla(W
m1
n ) = m1+1 it suffices to provide a local antimagic labeling of W

m1
n

that induces a local antimagic vertex coloring using exactly m1 + 1 colors.
Now, we define f2 : E(W

m1
n )→ {1, 2, 3, ...,m1 + 2n} by

f2(cvi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n+ 1− i, n is even, i is odd, 1 ≤ i ≤ n− 1
n− 1− i, n is even, i is even, 2 ≤ i ≤ n− 2
n− 1, n is even, i = n
n− 1− i, n is odd, i is odd, 1 ≤ i ≤ n− 2
n, n is odd, i = n
n+ 1− i, n is odd, i is even, 1 ≤ i ≤ n− 1

f2(vnv1) = n+ 1
f2(vnuk) = 2n+ k, 1 ≤ k ≤ m1

f2(vivi+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3n+i+1

2 , n is even, i is odd, 1 ≤ i ≤ n− 1
2n+2+i

2 , n is even, i is even, 2 ≤ i ≤ n− 2
3n+2+i

2 , n is odd, i is odd, 1 ≤ i ≤ n− 2
2n+2+i

2 , n is odd, i is even, 1 ≤ i ≤ n− 1.

Then the vertex weights are
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w2(c) = w2

µ
un(n−3)

2

¶
= n(n+1)

2

w2(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

7n+4
2 , n is even, i is odd, 1 ≤ i ≤ n− 1

7n
2 , n is even, i is even, 2 ≤ i ≤ n− 2
7n+1
2 , n is odd, i is odd, 1 ≤ i ≤ n− 2

7n+5
2 , n is odd, i is even, 2 ≤ i ≤ n− 1

8n+4nm1+m1(m1+1)
2 , n is even, i = n

7n+3+4nm1+m1(m1+1)
2 , n is odd, i = n

w2(uk) = 2n+ k, 1 ≤ k ≤ m1.

Hence, χla(W
m1
n ) ≤ m1 + 1. Therefore, f2 is a local antimagic labeling

of Wm1
n that induces a local antimagic vertex coloring using exactly m1+1

colors. 2

From Theorem 3.2, we observe the local chromatic number for the graph
Wm

n , with m < m1 is greater than m+ 1. We consider m = n(n−3)
2 − t <

m1, t ≥ 1. Since all the pendant vertices of Wm
n received new color say

wi, 1 ≤ i ≤ m, and these pendant vertices adjacent to a vertex v also
received a new color wm+1. Clearly, the minimum possible central vertex

weight is w(c) = n(n+1)
2 > q = m + 2n, n ≥ 4. Therefore, the central

vertex c received a new color wm+2. Hence χla(W
m
n ) ≥ m+2 and gives the

following remark.

Remark 3.3. LetWm
n , n ≥ 4 be a graph with m = n(n−3)

2 −t, t ≥ 1. Then
χla(W

m
n ) ≥ m+ 2.

Definition 3.4. Let Wm
n , n ≥ 5 be a wheel graph on n + 1 vertices. A

graph dWm2
n is obtained fromWn by attachingm2 = dn−42 e, pendant vertices

in every vertex v 6= c of Wn.

Theorem 3.5. Let dWm2
n be a graph, where n ≥ 5 and m2 = dn−42 e. Then

χla(
dWm2
n ) = m2n+ 3.

Proof. Let dWm2
n be the graph and let V ( dWm2

n ) = {c ∪ vi ∪ uki , 1 ≤ i ≤
n, 1 ≤ k ≤ m2} and E( dWm2

n ) = {cvi ∪ vivi+1 ∪ vnv1 ∪ viuki , 1 ≤ i ≤ n, 1 ≤
k ≤ m2}. Then |V ( dWm2

n )| = n(m2 + 1) + 1 and |E( dWm2
n )| = n(m2 + 2).

Since every pendant vertex received a new color it follows that, the
vertices uki are received the colors wt, 1 ≤ t ≤ m2n. If n is even, then

the minimum possible weight of the central vertex c is w(c) = n(n+1)
2 > q

and hence the vertex c received a new color wm2n+1. Let e ∈ E( dWm2
n ). If
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f(e = v1v2) = q then its incident vertex v1 received a new color wm2n+2

and hence the vertex v2 received a new color wm2n+3. A similar argument
applies for the case of f(e = v1u1) = q or f(e = cv1) = q in Theorem 2.2
with substituting u1 by u

k
1 and q = n(m2n+2). Thus the vertex v2 received

a new color wm2n+3.
If n is odd, the minimum possible weight of the central vertex is q. If it

receives a higher weight, we proceed as above. If it receives weight q then we
necessarily have f(cv1), . . . , f(cvn) being 1, 2, . . . , n in some order. It follows
that w(vi) > (d(vi) − 1)(n + 1) + 1 > q, so all colors used on {v1, . . . , vn}
are new. Since it is an odd cycle, there are at least three new colors used.

Thus, where d(vi) is degree of the vertex vi. χla(
dWm2
n ) ≥ m2n+ 3.

So, for proving χla(
dWm2
n ) = m2n + 3 it suffices to provide a local an-

timagic labeling of dWm2
n that induces a local antimagic vertex coloring using

exactly m2n + 3 colors. If m2 = 1 then n = 5 and 6. Clearly, the graphdW 1
5
∼= H5 and

dW 1
6
∼= H6 and by Theorem 2.3, we get χla(

dWm2
n ) = n + 3,

where n = 5, 6.

If m2 = 2 then we get n = 7 and 8. For n = 7, we define f : E(
dW 2
7 )→

{1, 2, 3, ..., 28} by
f(cvi) = i, 1 ≤ i ≤ 7
f(vivi+1) = 15− i, 1 ≤ i ≤ 6
f(v7v1) = 8, f(v1u

1
1) = 27, f(v1u

2
1) = 28,

f(viu
k
i ) =

(
14 + i

2 , i = 2, 4, 6 and k = 1
17 + i

2 , i = 2, 4, 6 and k = 2

f(viu
k
i ) =

(
20 + i−1

2 , i = 3, 5, 7 and k = 1
23 + i−1

2 , i = 3, 5, 7 and k = 2.

In this case, we have w(c) = w(u21) = 28, w(uki ) = f(viu
k
i ), w(v1) =

78, w(v3) = w(v5) = w(v7) = 73, w(v2) = w(v4) = w(v6) = 62. Therefore,

f is a local antimagic labeling of dW 2
7 that induces a local antimagic vertex

coloring using exactly 17 colors.

For n = 8, we define f : E(dW 2
8 )→ {1, 2, 3, ..., 32} by

f(cvi) = i, 1 ≤ i ≤ 8
f(vivi+1) = 17− i, 1 ≤ i ≤ 7
f(v8v1) = 9 f(v1u

1
1) = 20, f(v1u

2
1) = 24

f(viu
k
i ) =

(
25 + i−2

2 , i = 2, 4, 6, 8 and k = 1
29 + i−2

2 , i = 2, 4, 6, 8 and k = 2

f(viu
k
i ) =

(
16 + i−1

2 , i = 3, 5, 7 and k = 1
20 + i−1

2 , i = 3, 5, 7 and k = 2.
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In this case, we have w(c) = 36, w(uki ) = f(viu
k
i ), w(v1) = w(v3) =

w(v5) = w(v7) = 70, w(v2) = w(v4) = w(v6) = w(v8) = 87. Therefore, f

is a local antimagic labeling of dW 2
8 that induces a local antimagic vertex

coloring using exactly 19 colors.

For n ≥ 9, we define a labeling f3 : E( dWm2
n )→ {1, 2, 3, . . . , nm2 + 2n}

as follows:

Case 1: m2 ≥ 3 is odd

f3(cvi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i+1
2 , n is odd, i is odd, 1 ≤ i ≤ n− 2
2n−i
2 , n is odd, i is even, 2 ≤ i ≤ n− 1

n, n is odd, i = n
i+1
2 , n is even, i is odd, 1 ≤ i ≤ n− 1
2n+2−i

2 , n is even, i is even, 2 ≤ i ≤ n

f3(vivi+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3n+i
2 , n is odd, i is odd, 1 ≤ i ≤ n− 2

3n+1−i
2 , n is odd, i is even, 2 ≤ i ≤ n− 1

2n+1+i
2 , n is even, i is odd, 1 ≤ i ≤ n− 1

4n−i
2 , n is even, i is even, 2 ≤ i ≤ n− 2

f3(vnv1) = 2n

f3(viu
1
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n+ 1, n is odd, i = 1
5n+2−i

2 , n is odd, i is odd, 3 ≤ i ≤ n− 2
5n−1+i

2 , n is odd, i is even, 2 ≤ i ≤ n− 1
3n, n is odd, i = n
5n+1−i

2 , n is even, i is odd, 1 ≤ i ≤ n− 1
5n+2+i

2 , n is even, i is even, 2 ≤ i ≤ n− 2
5n+2
2 , n is even, i = n

f3(viu
k
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3n+ n−1
2 (k − 2) + (

i+1
2 ), n is odd, i is odd, k is even,

1 ≤ i ≤ n− 2, 2 ≤ k ≤ m2

3n+ n−1
2 (k − 1)− (

i−1
2 ), n is odd, i is odd, k is odd,

1 ≤ i ≤ n− 2, 3 ≤ k ≤ m2

3n+ n−1
2 [(m2 − 1) + (k − 2)] + ( i2), n is odd, i is even, k is even,

1 ≤ i ≤ n− 1, 2 ≤ k ≤ m2

3n+ n−1
2 [(m2 − 1) + (k − 1)]− ( i−22 ), n is odd, i is even, k is odd,

1 ≤ i ≤ n− 1, 3 ≤ k ≤ m2

3n+ 2(m2 − 1)n−12 + (k − 1), n is odd, i = n, 2 ≤ k ≤ m2
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f3(viu
k
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3n+ n
2 (k − 2) + (

i+1
2 ), n is even, i is odd, k is even,

1 ≤ i ≤ n− 1, 2 ≤ k ≤ m2

3n+ n
2 (k − 1)− (

i−1
2 ), n is even, i is odd, k is odd,

1 ≤ i ≤ n− 1, 3 ≤ k ≤ m2

3n+ n
2 [(m2 − 1) + (k − 2)] + ( i2), n is even, i is even, k is even,

1 ≤ i ≤ n, 2 ≤ k ≤ m2

3n+ n
2 [(m2 − 1) + (k − 1)]− ( i−22 ), n is even, i is even, k is odd,

1 ≤ i ≤ n, 3 ≤ k ≤ m2.

Case 2: m2 ≥ 4 is even
f3(cvi) = n− i+ 1, 1 ≤ i ≤ n
f3(vivi+1) = n+ i+ 1, 1 ≤ i ≤ n− 1
f3(vnv1) = n+ 1.

f3(viu
k
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

7n−i−2
2 , k = 1, n is odd, i is odd, 1 ≤ i ≤ n− 2

5n−i+1
2 , k = 1, n is odd, i is even, 2 ≤ i ≤ n− 1

4n− 1, k = 1, n is odd, i = n,
8n−i−3

2 , k = 2, n is odd, i is odd, 1 ≤ i ≤ n− 2
6n−i
2 , k = 2, n is odd, i is even, 2 ≤ i ≤ n− 1

4n, k = 2, n is odd, i = n.

f3(viu
k
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4n+ n−1
2 [(m2 − 2) + (k − 2)]−

³
i−2
2

´
, n is odd, i is even, k is even,

2 ≤ i ≤ n− 1, 4 ≤ k ≤ m2

4n+ n−1
2 [(m2 − 2) + (k − 3)] + i

2 , n is odd, i is even, k is odd,
2 ≤ i ≤ n− 1, 3 ≤ k ≤ m2

4n+
³
n−1
2

´
(k − 2)− ( i−12 ), n is odd, i is odd, k is even,

1 ≤ i ≤ n− 2, 4 ≤ k ≤ m2

4n+
³
n−1
2

´
(k − 3) + ( i+12 ), n is odd, i is odd, k is odd,

1 ≤ i ≤ n− 2, 3 ≤ k ≤ m2

4n+ (n− 1)(m2 − 2) + k − 2, n is odd, i = n, 3 ≤ k ≤ m2.

f3(viu
k
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

7n−i+1
2 , k = 1, n is even, i is odd, 1 ≤ i ≤ n− 1

5n−i
2 , k = 1, n is even, i is even, 2 ≤ i ≤ n− 2

5n
2 , k = 1, n is even, i = n
8n−i+1

2 , k = 2, n is even, i is odd, 1 ≤ i ≤ n− 1
6n−i
2 , k = 2, n is even, i is even, 2 ≤ i ≤ n− 2

6n
2 , k = 2, n is even, i = n.
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f3(viu
k
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4n+ n
2 [(m2 − 2) + (k − 2)]−

³
i−2
2

´
, n is even, i is even, k is even,

2 ≤ i ≤ n, 4 ≤ k ≤ m2

4n+ n
2 [(m2 − 2) + (k − 3)] + i

2 , n is even, i is even, k is odd,
2 ≤ i ≤ n, 3 ≤ k ≤ m2

4n+ n
2 (k − 2)−

³
i−1
2

´
, n is even, i is odd, k is even,

1 ≤ i ≤ n− 1, 4 ≤ k ≤ m2

4n+ n
2 (k − 3) +

³
i+1
2

´
, n is even, i is odd, k is odd,

1 ≤ i ≤ n− 1, 3 ≤ k ≤ m2.

Then the weight of the vertices are,

w3(c) =
n(n+1)
2

w3(u
k
i ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f3(viu

k
i ), n is even, 1 ≤ i ≤ n, 1 ≤ k ≤ m2,

f3(viu
k
i ), n is odd, 1 ≤ i ≤ n− 1, 1 ≤ k ≤ m2,

f3(viu
k
i ), n is odd, i = n, 1 ≤ k ≤ m2 − 1

f3(viu
k
i ) = w3(c), n is odd, i = n, k = m2.

If m2 ≥ 3 is odd, then,

w3(vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A+ 11n+5
2 , n is odd, i is odd, 1 ≤ i ≤ n− 2

B + 13n−1
2 , n is odd, i is even, 2 ≤ i ≤ n− 1

C + 7n+ 1, n is odd, i = n
D + 11n+4

2 , n is even, i is odd, 1 ≤ i ≤ n− 1
E + 13n+4

2 , n is even, i is even, 2 ≤ i ≤ n.
Where
A = 3n(m2 − 1) + 1

4m2(m2 − 1)(n− 1),
B = 3n(m2 − 1) + (m2−1)

4 [(3m2 − 3)(n− 1) + 2]
C = (m2 − 1) [3n+ (m2 − 1)(n− 1)] + 1

2m2(m2 − 1)
D = 3n(m2 − 1) + 1

4(m2 − 1)(nm2 − n+ 2)

E = 3n(m2 − 1) + (m2−1)
4 [n(3m2 − 3) + 2].

If m2 ≥ 4 is even, then

w3(vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P + 21n−1
2 , n is odd, i is odd, 1 ≤ i ≤ n− 2

Q+ 17n+5
2 , n is odd, i is even, 2 ≤ i ≤ n− 1

R+ 11n+ 1, n is odd, i = n
S + 21n+6

2 , n is even, i is odd, 1 ≤ i ≤ n− 1
T + 17n+4

2 , n is even, i is even, 2 ≤ i ≤ n
Where
P = 4n(m2 − 2) + (m2−2)

4 [(n− 1)m2 − 2n+ 4]
Q = 4n(m2 − 2) + (m2−2)

4 [(n− 1)(3m2 − 6) + 2]
R = (m2 − 2) [4n+ (m2 − 2)(n− 1)] + 1

2(m2 − 2)(m2 − 1)
S = 4n(m2 − 2) + (m2−2)

4 [n(m2 − 1)− n+ 2]

T = 4n(m2 − 2) + (m2−2)
4 [n(3m2 − 6) + 2].
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Clearly, any two adjacent vertices vi and vj receive different colors and

hence χla(
dWm2
n ) ≤ m2n+ 3. Thus χla(

dWm2
n ) = m2n+ 3. 2

4. Conclusion

We proved the local chromatic number for helm graph and wheel-related
graphs Wm

n with two different m values. A natural open question is to
extend this technique to more general graphs having exactly only one max-
imum degree vertex, other than the wheel graph.
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