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1. Introduction

Let R be a ring, by a derivation of R, we mean an additive map δ : R→ R
such that δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R. A derivation which is
not necessarily additive is said to be a multiplicative derivation or deriv-
able map of R. In addition, δ is called n−multiplicative derivation of R if
δ(a1a2 · · · an) =

Pn
i=1 a1a2 · · · δ(ai) · · · an for all a1, a2, · · · , an ∈ R. A map-

ping ψ : R→ R is said to be a left (resp. right) centralizer if ψ(ab) = ψ(a)b
(resp. ψ(ab) = aψ(b)) for all a, b ∈ R. Moreover, if ψ is left and right
centralizer, then it is called centralizer of R. A mapping F : R → R (not
necessarily additive) such that F (ab) = F (a)b+aδ(b) for all a, b ∈ R is said
to be a multiplicative generalized derivation associated with derivation δ of
R. Note that, every multiplicative left centralizer is a multiplicative gener-
alized derivation. By involution, we mean a mapping ∗ : R→ R such that
(x+y)∗ = x∗+y∗, (x∗)∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ R. An element
s ∈ R satisfying s∗ = s is called a symmetric element of R. In [12], Herstein

introduced a mapping “†” satisfying (a+b)† = a†+b† and (ab)† = b†a+ba†
called a reverse derivation, which is certainly not a derivation (see [16]).
Moreover, a mapping δ : R → R satisfying δ(ab) = δ(b)a + bδ(a) for all
a, b ∈ R is called a multiplicative reverse derivation or reverse derivable
map of R. Let ∗ be an involution on R, an additive mapping δ : R→ R is
called the ∗−reverse derivation if δ(ab) = δ(a)b∗+a∗δ(b) for all a, b ∈ R. If
δ is not necessarily additive then it is called ∗−reverse derivable map of R.
An additive mapping F : R→ R is called generalized ∗−reverse derivation
if there exists a ∗−reverse derivation d of R such that

F (xy) = F (y)x∗ + y∗d(x) for all x, y ∈ R.

Moreover, if F is not necessarily additive, then it is called generalized
∗−reverse derivable map.

Let e be an idempotent element of R such that e 6= 0, 1. Then R can
be decomposed as follows:

R = eRe
L

eR(1− e)
L
(1− e)Re

L
(1− e)R(1− e)

This decomposition of R is called two-sided Peirce decomposition relative
to e ([13], see pg. 48). It is easy to see that the components of this
decomposition are the subrings of R and for our convenience, we denote
R11 = eRe,R12 = eR(1− e), R21 = (1 − e)Re and R22 = (1 − e)R(1− e).
For any r ∈ R, we denote the elements of Rij by rij for all i, j ∈ {1, 2}.
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The problem of when a multiplicative mapping must be additive has
been studied by several authors. In this direction, Martindale [15] gave a
remarkable result. He discovered a set of conditions on R such that every
multiplicative isomorphism and anti-automorphism on R is additive. In
1991, inspired by Martindale’s work Daif [1] extended these results to mul-
tiplicative derivations. He imposed same restrictions on R and obtained the
additivity of multiplicative derivations. In a very nice paper [3], Eremita
and Ilisevic discussed the additivity of multiplicative left centralizers that
are defined from R into a bimodule M over R and gave a number of appli-
cations of the main result, that is stated as follows:

Let R be a ring and M be a bimodule over R. Further, let e1 ∈ R be a
nontrivial idempotent (and 1− e1 = e2) such that for any m ∈M = {m ∈
M : mZ(R) = (0)}, where Z(R) denotes the center of R,

(i) e1me1Re2 = (0) implies e1me1 = 0,

(ii) e1me2Re1 = (0) implies e1me2 = 0,

(iii) e1me2Re2 = (0) implies e1me2 = 0,

(iv) e2me1Re2 = (0) implies e2me1 = 0,

(v) e2me2Re1 = (0) implies e2me2 = 0,

(vi) e2me2Re2 = (0) implies e2me2 = 0.

Then every left centralizer φ : R → M is additive. An year later,
Daif and Tammam-El-Sayiad [2] investigated the additivity of multiplica-
tive generalized derivations. In 2009, Wang [17] extended the result of Daif
and obtained the additivity of n−multiplicative derivation of R. In a recent
paper, Jing and Lu [14] examined the additivity of multiplicative Jordan
and multiplicative Jordan triple derivations. This sort of problems and their
solutions are not limited only to the class associative rings. For the case of
additivity of maps defined on non-associative rings and having a nontrivial
idempotent, some results have already been proved. In alternative rings
we can mention the works in [4], [5], [6], [7], [8], [9], [10], [11]. In light of
all the cited papers, the natural question could be whether the results ob-
tained for multiplicative derivations can also be discussed for multiplicative
reverse derivations. In this paper, we consider this problem and answer it
with the same set of assumptions taken by Daif and Tammam-El-Sayiad
[2].
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2. Main Results

In view of the paper [2], we consider now the multiplicative generalized
∗−reverse derivation and discuss their additivity.

The main result of this paper reads as follows:

Theorem 2.1. Let R be a ring containing a nontrivial symmetric idem-
potent element e, which satisifies the following conditions:

(D1) xRe = 0 implies x = 0 (and hence xR = 0 implies x = 0).

(D2) exeR(1− e) = 0 implies exe = 0.

(D3) (1− e)xeR(1− e) = 0 implies (1− e)xe = 0.

Then every generalized ∗−reverse derivable map F : R→ R is additive.

The next example is of a generalized ∗−reverse derivation.
Example 2.1. Let a, b ∈ R be any fixed elements and G : R → R be a
mapping such that x 7→ ax∗ + x∗b. Then we note that G(xy)=G(y)x∗ +
y∗g(x) for all x, y ∈ R, where g is the associated reverse derivation defined
by g(x) = [x∗, b] for all x ∈ R.

Fact 2.1. Clearly, F (0) = 0. Let d(e) = a11 + a12 + a21 + a22. Then by
using the expression d(e) = d(e2) = d(e)e + ed(e), it is easy to see that
d(e) = a12 + a21. We now consider F (e) = F (e2) = F (e)e + ed(e), where
e is the nontrivial symmetric idempotent element of R. Also F (e) = b11 +
b12 + b21 + b22. The both expressions of F (e) imply b11 + b12 + b21 + b22 =
b11+ b21+a12. That yields b12+ b22 = a12 and hence b22 = 0 and b12 = a12.
In this view, we have F (e) = b11 + b21 + a12.

Fact 2.2. If ∆ is a ∗−reverse derivable map, then ∆(Rij) ⊂ Rji, where
i, j ∈ {1, 2}.

Let G : R → R and ℘ : R → R be the mappings such that G(x) =
(b11 + b21)x

∗ + x∗(a12 − a21) and ℘(x) = [x∗, a12 − a21]. Then it is easy
to observe that G is a generalized ∗−reverse derivation with associated
reverse derivation ℘. Further, we note that G(e) = b11 + b21 + a12 and
℘(e) = a12+a21. Now, we set Λ = F −G and ∆ = d−℘. Then it is difficult
to check that Λ is a generalized ∗−reverse derivable map associated with
∗−reverse derivation ∆ and Λ is additive if and only if F is so.

We shall use the following proposition very frequently in the sequel.

Proposition 2.1. Let s ∈ R (sij ∈ Rij , where i, j ∈ {1, 2}). Then s∗ij =
rji, where r = s∗ ∈ R. Moreover, sij = r∗ji.
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Proof. Let s ∈ R be any element. Then for es(1 − e) = s12 ∈ R12,
we have (es(1 − e))∗ = (1 − e)∗s∗e∗ = (1 − e)s∗e. It gives that s∗12 = r21,
where r = s∗. Similarly, one can easily observe that s∗21 = r21, s∗11 = r11
and s∗22 = r22. Moreover, since “∗” is bijective, for each sij ∈ R there exists
unique r ∈ R such that r∗ji = sij . 2

Lemma 2.1. Λ(e) = 0.

Proof. In view of our settings, it is trivial. 2

Lemma 2.2. (i). Λ(Ri1) ⊂ R1i for all i ∈ {1, 2}.

(ii). Λ is additive on Ri1 for all i ∈ {1, 2}.

(iii). Λ(x11 + x21) = Λ(x11) + Λ(x21) for all x11 ∈ R11 and x21 ∈ R21.

(iv). Λ(R11 +R21) ⊂ R11 +R12.

(v). Λ(R11 +R12) ⊂ R11 +R21.

(vi). Λ(R12) ⊂ R11 +R21.

(vii). Λ(R22) ⊂ R12 +R22.

Proof. Let xi1 ∈ Ri1 be any element, where i ∈ {1, 2}. Then, we have

Λ(xi1) = Λ(xi1e)

= Λ(e)x∗i1 + e∗∆(xi1)

= ∆(xi1).

Λ(xi1) = ∆(xi1) for all i ∈ {1, 2}.(2.1)

Since ∆(Ri1) ⊂ R1i, we get Λ(Ri1) ⊂ R1i for all i ∈ {1, 2}, which proves
our claim (i). Moreover, claim (ii) easily follows from equation 2.1.

A similar argument implies that if x11 ∈ R11 and x21 ∈ R21, then

Λ(x11 + x21) = Λ((x11 + x21)e)

= e∗∆(x11 + x21)

= ∆(x11) +∆(x21)

= Λ(x11) + Λ(x21) (using (2.1))
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and hence Λ(R11+R21) ⊂ R11+R12. It proves our claim (iii) and (iv). For
any x11 ∈ R11 and x12 ∈ R12, we have Λ(x11 + x12) = r11 + r12 + r21 + r22.
And Λ(x11+x12) = Λ(e(x11+x12)) = Λ(x11+x12)e

∗ = r11+ r21. It proves
claim (v). Now for any x12 ∈ R12, we have Λ(x12) = k11 + k12 + k21 + k22.
But Λ(x12) = Λ(ex12) = Λ(x12)e

∗ + x∗12∆(e) = Λ(x12)e = k11 + k21. It
implies that Λ(x12) ∈ R11 + R21 for all x12 ∈ R12. It proves our claim
(vi). Finally, let x22 ∈ R22. Then Λ(x22) = c11 + c12 + c21 + c22. Clearly,
0 = Λ(ex22) = Λ(x22)e = c11 + c21. It implies that c11 = 0 = c21, hence
Λ(x22) = c12 + c22. That is Λ(x22) ∈ R12 +R22 for all x22 ∈ R22, it proves
claim (vii). 2

The following lemmas have the same hypotheses of Theorem 2.1 and
we need these lemmas for the proof of this theorem.

Lemma 2.3. Λ(x12 + x21) = Λ(x12) + Λ(x21) for all x12 ∈ R12 and x21 ∈
R21.

Proof. For any x12 ∈ R12, x21 ∈ R21 and u1i ∈ R1i, where i ∈ {1, 2}.

(Λ(x12) + Λ(x21))u1i = Λ(x12)u1i

= Λ(x12)v
∗
i1

= Λ(vi1x12)− x∗12∆(vi1)

= Λ(vi1(x12 + x21))− x∗12∆(vi1)

= Λ(x12 + x21)v
∗
i1 + (x12 + x21)

∗∆(vi1)− x∗12∆(vi1)

= Λ(x12 + x21)u1i.

It implies that (Λ(x12 + x21)− Λ(x12) + Λ(x21))u1i = 0. That is

(Λ(x12 + x21)− Λ(x12) + Λ(x21))R1i = (0) for all i ∈ {1, 2}.(2.2)

In a similar way, we obtain

(Λ(x12 + x21)− Λ(x12) + Λ(x21))R2i = (0) for all i ∈ {1, 2}.(2.3)

Combining (2.2) and (2.3), we obtain

(Λ(x12 + x21)− Λ(x12) + Λ(x21))R = (0)

By hypothesis (D1), we have Λ(x12 + x21) = Λ(x12) + Λ(x21). 2

Lemma 2.4. Λ(x11 + x12) = Λ(x11) + Λ(x12) for all x11 ∈ R11 and x12 ∈
R12.
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Proof. Let x11 ∈ R11, x12 ∈ R12, z12 ∈ R12 and u1i ∈ R1i, where
i ∈ {1, 2}. Then we have

(Λ(x11 + x12)− Λ(x11)− Λ(x12))z12u1i = 0.
It implies that

(Λ(x11 + x12)− Λ(x11)− Λ(x12))z12R1i = 0 for all i ∈ {1, 2}.(2.4)

For any u2i ∈ R2i for all i ∈ {1, 2}, we find
Λ(x11 + x12)z12u2i = Λ(x11 + x12)w

∗
21v

∗
i2

= Λ(x11 + x12)(vi2w21)
∗

= Λ((vi2w21)(x11 + x12))− (x11 + x12)
∗∆(vi2w21)

= Λ((vi2w21 + vi2)(w21x11 + x12))− (x11 + x12)
∗∆(vi2w21)

= Λ(w21x11 + x12)(vi2w21 + vi2)
∗ + (w21x11 + x12)

∗∆(vi2w21

+vi2)− (x11 + x12)
∗∆(vi2w21)

= Λ(w21x11 + x12)(vi2w21 + vi2)
∗ + (w21x11)

∗∆(vi2w21) +

x∗12∆(vi2w21) + (w21x11)
∗∆(vi2) + x∗12∆(vi2)− x∗11∆(vi2

w21)− x∗12∆(vi2w21)

= Λ(w21x11 + x12)(vi2w21 + vi2)
∗ − x∗11∆(w21)v

∗
i2

= Λ(w21x11)(vi2w21 + vi2)
∗ + Λ(x12)(vi2w21 + vi2)

∗

−x∗11∆(w21)v∗i2 (using Lemma 2.3)

= Λ(w21x11)v
∗
i2 + Λ(x12)(vi2w21)

∗ − x∗11∆(w21)v
∗
i2

= Λ(x11)w
∗
21v

∗
i2 + x∗11∆(w21)v

∗
i2 + Λ(x12)w

∗
21v

∗
i2 − x∗11∆(w21)v

∗
i2

= (Λ(x11) + Λ(x12))z12u2i.

It implies that

(Λ(x11 + x12)− Λ(x11)− Λ(x12))z12R2i = (0) for all i ∈ {1, 2}.(2.5)

Combining (2.4) and (2.5), we obtain

(Λ(x11 + x12)− Λ(x11)− Λ(x12))z12R = (0).
Applying (D1), we get

(Λ(x11 + x12)− Λ(x11)− Λ(x12))R12 = (0).
Applying hypothesis (D2) and (D3), we get Λ(x11+x12) = Λ(x11)+Λ(x12),
as desired. 2

Lemma 2.5. Λ(x12 + x22) = Λ(x12) + Λ(x22) for all x12 ∈ R12, x22 ∈ R22.
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Proof. Let x12 ∈ R12, x22 ∈ R22 and u1i ∈ R1i, where i ∈ {1, 2}. Then
we have

(Λ(x12) + Λ(x22))u1i = Λ(x12)u1i

= Λ(x12)v
∗
i1

= Λ(vi1x12)− x∗12∆(vi1)

= Λ(vi1(x12 + x22))− x∗12∆(vi1)

= Λ(x12 + x22)v
∗
i1 + (x12 + x22)

∗∆(vi1)− x∗12∆(vi1)

= Λ(x12 + x22)u1i.

It implies that

(Λ(x12 + x22)− Λ(x12)− Λ(x22))R1i = (0) for all i ∈ {1, 2}.(2.6)

Analogously, we obtain

(Λ(x12 + x22)− Λ(x12)− Λ(x22))R2i = (0) for all i ∈ {1, 2}.(2.7)

Combining (2.6) and (2.7), we obtain (Λ(x12+x22)−Λ(x12)−Λ(x22))R =
(0). In view of (D1), we get Λ(x12 + x22) = Λ(x12) + Λ(x22). 2

Lemma 2.6. Λ is additive on R12.

Proof. Let x12, y12, z12 ∈ R12 and u2i ∈ R2i where i ∈ {1, 2}. Then we
have

Λ(x12 + y12)z12u2i = Λ(x12 + y12)w
∗
21v

∗
i2

= Λ(x12 + y12)(vi2w21)
∗

= Λ((vi2w21)(x12 + y12))− (x12 + y12)
∗∆(vi2w21)

= Λ((vi2w21 + vi2)(x12 + w21y12))− (x12 + y12)
∗∆(vi2w21)

= Λ(x12 + w21y12)(vi2w21 + vi2)
∗ + (x12 + w21y12)

∗∆(vi2w21 + vi2)

−(x12 + y12)
∗∆(vi2w21)

= Λ(x12)(vi2w21)
∗ + Λ(w21y12)v

∗
12 + (w21y12)

∗∆(vi2)− y∗12
∆(vi2w21) (using Lemma 2.5)

= Λ(x12)(vi2w21)
∗ + Λ(y12)w

∗
21v

∗
i2

= (Λ(x12) + Λ(y12))w
∗
21v

∗
i2

= (Λ(x12) + Λ(y12))z12u2i.
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It implies that

(Λ(x12 + y12)− Λ(x12)− Λ(y12))z12R2i = (0) for all i ∈ {1, 2}.(2.8)

And trivially, we have

(Λ(x12 + y12)− Λ(x12)− Λ(y12))z12R1i = (0) for all i ∈ {1, 2}.(2.9)

Combining (2.8) and (2.9), we find

(Λ(x12 + y12)− Λ(x12)− Λ(y12))z12R = (0).

By (D1), we get

(Λ(x12 + y12)− Λ(x12)− Λ(y12))R12 = (0).

Applying (D3), we get Λ(x12 + y12) = Λ(x12) + Λ(y12), as desired. 2

Lemma 2.7. Λ is additive on eR = R11 +R12.

Proof. For any x11, y11 ∈ R11 and x12, y12 ∈ R12, we have

Λ((x11 + x12) + (y11 + y12)) = Λ((x11 + y11) + (x12 + y12))

= Λ(x11 + y11) + Λ(x12 + y12) (using Lemma 2.4)

= Λ(x11) + Λ(y11) + Λ(x12) + Λ(y12)

(using Lemma 2.6 Lemma 2.1)

= Λ(x11 + x12) + Λ(y11 + y12) (using Lemma 2.4).

2

Proof of Theorem 2.1: Let x, y ∈ R and t ∈ Re be any elements. Then
we see that

Λ(x+ y)t = Λ(x+ y)p∗

= Λ(px+ py)− (x+ y)∗∆(p)

= Λ(px) + Λ(py)− (x+ y)∗∆(p) (using Lemma 2.7)

= Λ(x)p∗ + x∗∆(p) + Λ(y)p∗ + y∗∆(p)− (x+ y)∗∆(p)

= (Λ(x) + Λ(y))p∗

= (Λ(x) + Λ(y))t.
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It implies that

(Λ(x+ y)− Λ(x)− Λ(y))Re = (0).

In view of (D1), we get Λ(x+y) = Λ(x)+Λ(y) for all x, y ∈ R. It completes
the proof.

Example 2.2. It is well-known that a commutative integral domain does
not contain nontrivial idempotent elements. Thus it would be a fact of
interest to investigate some particular cases of our main theorem. In this
view, we give a counter example showing that the prime rings admitting
generalized ∗−reverse derivations are not necessarily commutative. Let

R =

(Ã
a b
c d

!
: a, b, c, d ∈ Z

)
, a noncommutative prime ring. Define

mappings F, d,∗ : R→ R such that

F

Ã
a b
c d

!
=

Ã
−d 4b
0 −3a

!
, d

Ã
a b
c d

!
=

Ã
0 3b
−3c 0

!
and

Ã
a b
c d

!∗
=Ã

d −b
−c a

!
. One can verify that ∗ is an involution and F is a generalized

∗−reverse derivation with associated ∗−reverse derivation d of R.

We conclude with the following consequence of our main result.

Corollary 2.1. Let R be a prime ring containing a nontrivial symmetric
idempotent element e. Then every generalized ∗−reverse derivable map
F : R→ R is additive.
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