# On asymptotic behavior of solution to a nonlinear wave equation with Space-time speed of propagation and damping terms 

Paul A. Ogbiyele<br>University of Ibadan, Nigeria<br>and<br>Peter O. Arawomo<br>University of Ibadan, Nigeria<br>Received: August 2020. Accepted: August 2021


#### Abstract

In this paper, we consider the asymptotic behavior of solution to the nonlinear damped wave equation $$
\begin{gathered} u_{t t}-\operatorname{div}(a(t, x) \nabla u)+b(t, x) u_{t}=-|u|^{p-1} u \quad t \in[0, \infty), \quad x \in \mathbf{R}^{n} \\ u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x) \quad x \in \mathbf{R}^{n} \end{gathered}
$$ with space-time speed of propagation and damping potential. We obtained $L^{2}$ decay estimates via the weighted energy method and under certain suitable assumptions on the functions $a(t, x)$ and $b(t, x)$. The technique follows that of Lin et al.[8] with modification to the region of consideration in $\mathbf{R}^{n}$. These decay result extends the results in the literature.


Subjclass Primary: 35L05, 35L70; Secondary: 37L15
Keywords: Space-time speed of propagation, Space-time dependent damping, Asymptotic behavior, Weighted energy method.

## 1. Introduction

In this paper, we are concerned with the asymptotic behavior of solution to the following nonlinear wave equation

$$
\left\{\begin{array}{l}
\quad u_{t t}-\operatorname{div}(a(t, x) \nabla u)+b(t, x) u_{t}=-|u|^{p-1} u, \quad t \in[0, \infty), \quad x \in \mathbf{R}^{n}  \tag{1.1}\\
u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x) \quad x \in \mathbf{R}^{n},
\end{array}\right.
$$

with space-time dependent coefficients of the form

$$
\begin{equation*}
b(t, x)=b_{0}\left(1+|x|^{2}\right)^{\frac{-\alpha}{2}}(1+t)^{-\beta} \tag{1.2}
\end{equation*}
$$

and
$\rho_{1}\left(1+|x|^{2}\right)^{\frac{\delta}{2}}(1+t)^{\gamma}|\xi|^{2} \leq a(t, x) \xi \cdot \xi \leq \rho_{0}\left(1+|x|^{2}\right)^{\frac{\delta}{2}}(1+t)^{\gamma}|\xi|^{2}, \quad \xi \in \mathbf{R}^{n}$
(1.3)
where $a(t, x)=\eta(t)^{-1} \rho(x)$ and $\eta(t)=(1+t)^{-\gamma}$. In addition, $b_{0}>0$, $\rho_{0}>0, \alpha+\delta \in[0,2)$ and $\beta+\gamma \in[0,1)$, where $u=u(t, x)$. More precisely, $\alpha+\beta+\delta+\gamma \in[0,1)$. Equations of the form (1.1) arise in the study of nonlinear wave equations describing the motion of body traveling in an in-homogeneous medium. They appear in various aspects of Mathematical Physics, Geophysics and Ocean acoustics.

In the case of scalar coefficients and bounded smooth domains $\Omega$, there is an extensive literature on energy dacay results. For the semi-linear wave equation

$$
\begin{equation*}
u_{t t}-\Delta u+u_{t}=|u|^{p} \tag{1.4}
\end{equation*}
$$

Todorova and Yordanov [18] showed that $C_{n}=1+\frac{2}{n}$ is the critical exponent(Fujita exponent) for $p<\infty(n<3)$ and $p<1+\frac{2}{n}(n \geq 3)$.

Nishihara in his paper [11] showed that the decay rate of solution to the damped linear wave equation follows that of self similar solution of its corresponding heat equation for $n=3$ and showed this by obtaining $L^{p}-L^{q}$ estimates on their difference. For similar results on 1-dimension and 2-dimensions, see Marcati and Nishihara [9] and Hosono and Ogawa [5] respectively, and in any dimension, see Narazaki [10]. Hence, it is expected that the behavior of the solution to equation (1.4) is similar to that of the corresponding heat equation

$$
\begin{equation*}
u_{t}-\Delta u=|u|^{p} \tag{1.5}
\end{equation*}
$$

whose similarity solution $u_{a}(t, x)$ has the form $t^{\frac{-1}{p-1}} F\left(x t^{-\frac{1}{2}}\right)$ with
$a=\lim _{|x| \rightarrow \infty}|x|^{\frac{2}{p-1}} f(x) \geq 0$ provided that $p<1+\frac{2}{n}$.
In the case of time dependent potential type of damping, with equations of the form

$$
\begin{equation*}
u_{t t}-\Delta u+b(t) u_{t}+|u|^{p-1} u=0 \tag{1.6}
\end{equation*}
$$

there are also several results on the decay rate of the solution. Nishihara and Zhai [13], used a weighted energy method similar to those in [18] and obtained decay estimates of the form

$$
\begin{align*}
\|u\|_{2} & \leq C t^{-\left(\frac{n}{4(p-1)}\right)(1+\beta)}  \tag{1.7}\\
\|u\|_{1} & \leq C t^{-\left(\frac{n}{2(p-1)}\right)(1+\beta)}
\end{align*}
$$

under the assumption that $b(t) \approx(1+t)^{-\beta}$. For Cauchy problem of the form

$$
\begin{equation*}
u_{t t}-a^{2}(t) \Delta u+b(t) u_{t}+c_{0}|u|^{p-1} u=0 \tag{1.8}
\end{equation*}
$$

it is well known that the interplay between the coefficient $a^{2}(t)$ and the term $b(t) u_{t}$ induces different effect on the asymptotic behavior of the energy $E(t)$ given by

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{a^{2}(t)}{2}\|\nabla u\|_{2}^{2}+\frac{1}{p}\|u\|_{p}^{p} \tag{1.9}
\end{equation*}
$$

For more details see $[2,3,4,20]$ and the references therein. In [1] Bui considered the asymptotic behavior of the nonlinear problem (1.8) with $a(t)=(1+t)^{\ell}$ and $b(t)=\mu(1+\ell)(1+t)^{-1}, \ell>0, c_{0}=0$ and obtained the following estimate
$\left\|u_{t}(t, \cdot),(1+t)^{\ell} \nabla u(t, \cdot)\right\|_{L^{2}} \leq(1+t)^{\ell+(\ell+1) \max \left\{\mu^{*}-\frac{1}{2},-1\right\}}\left(\left\|u_{1}\right\|_{H^{1}}+\left\|u_{2}\right\|_{L^{2}}\right)$
with $\mu^{*}=\frac{1}{2}\left(1-\mu-\frac{\ell}{\ell+1}\right)$.
In the case of damped wave equation with space dependent potential type of damping;

$$
\begin{equation*}
u_{t t}-\Delta u+b(x) u_{t}+|u|^{p-1} u=0 \tag{1.11}
\end{equation*}
$$

where $b_{1}(1+|x|)^{-\alpha} \leq b(x) \leq b_{2}(1+|x|)^{-\alpha}$ and $b_{1}, b_{2}>0$, Todorova and Yordanov [19] investigated the decay rate of the energy when $0 \leq \alpha<1$. They obtained several decay rate types for solutions of (1.11) depending on $p$ and $\alpha$. These decay rates take the form

$$
\begin{equation*}
\left(\left\|u_{t}\right\|_{2}+\|\nabla u\|_{2},\|u\|_{p+1}\right)=O\left(t^{\frac{-1}{p-1}+\delta}, t^{-\frac{p+1}{2(p-1)}+\delta}\right) \tag{1.12}
\end{equation*}
$$

if $1<p<1+\frac{2 \alpha}{n-\alpha}$ and
$\left(\left\|u_{t}\right\|_{2}+\|\nabla u\|_{2},\|u\|_{p+1}\right)=O\left(t^{-\left(1+\frac{\alpha}{2}\right) \frac{1}{p-1}+\frac{n}{2(p+1)}+\delta}, t^{-\left(1+\frac{\alpha}{2} \frac{p+1}{2(p-1)}+\frac{n}{4}+\delta\right.}\right)$ (1.13)
if $1+\frac{2 \alpha}{n-\alpha}<p<1+\frac{2(4-\alpha)}{(n-\alpha)(4-\alpha)}$, for $t>1$, where $\delta$ is a constant. Nishihara[12] also considered the asymptotic behavior of solution to the semi-linear wave equation (1.11) with $b(x)$ satisfying

$$
\begin{equation*}
b_{1}\left(1+|x|^{2}\right)^{-\frac{\alpha}{2}} \leq b(x) \leq b_{2}\left(1+|x|^{2}\right)^{-\frac{\alpha}{2}} \tag{1.14}
\end{equation*}
$$

and obtained decay rates of the following type

$$
\|u(t, \cdot)\|_{2} \leq\left\{\begin{array}{lr}
C(1+t)^{-\frac{n-2 \alpha}{2(2-\alpha}} & \text { if } 1+\frac{2}{n-\alpha} \leq p<\frac{n+2}{n-2}  \tag{1.15}\\
C(1+t)^{-\frac{2}{2-\alpha}\left(\frac{1}{p-1}\right)-\frac{n}{4}} & \text { if } 1+\frac{2 \alpha}{n-\alpha}<p \leq 1+\frac{2}{n-\alpha} \\
C(1+t)^{-\frac{2}{2-\alpha}\left(\frac{1}{p-1}\right)-\frac{n}{4}}[\log (t+2)]^{\frac{1}{2}} & \text { if } p=1+\frac{2 \alpha}{n-\alpha} \\
C(1+t)^{-\frac{1}{p-1}+\frac{\alpha}{2(2-\alpha)}} & \text { if } 1<p<1+\frac{2 \alpha}{n-\alpha}
\end{array}\right.
$$

where $\alpha \in[0,1)$.
Ikehata and Inoue [6] studied nonlinear wave equations with $b(x)=b_{0}(1+$ $|x|)^{-1}$ and showed that solutions to (1.11) depend on the coefficient $b_{0}$ and their decay estimate takes the form

$$
\begin{equation*}
\|u\|=O\left(t^{-1+\mu}\right) \quad\left\|u_{t}\right\|_{2}^{2}+\|\nabla u\|_{2}^{2}=O\left(t^{-1+\mu}\right) \tag{1.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& 1<\mu+b_{0}<1+b_{0} \quad \text { if } 0<b_{0} \leq 1 \\
& 0 \leq \mu<1 \quad \text { if } b_{0} \geq 1 .
\end{aligned}
$$

Moreover, for damped wave equations with space-time dependent potential type of damping

$$
\begin{align*}
& u_{t t}-\Delta u+b(t, x) u_{t}+|u|^{p-1} u=0, \quad t>0, x \in \mathbf{R}^{n} \\
& u(0, x)=u_{0}(x), u_{t}(0, x)=u_{1}(x), \quad x \in \mathbf{R}^{n}, \tag{1.17}
\end{align*}
$$

Lin et al. [8] considered decay rates of solution to (1.17) and showed using the weighted energy method that the $L^{2}$ norm of the solution decays as

$$
\|u(t \cdot \cdot)\|_{2} \leq \begin{cases}C(1+t)^{-\left(\frac{1}{p-1}-\frac{\alpha}{2(2-\alpha)}\right)(1+\beta)} & \text { if } \frac{\alpha(p+1)}{p-1}>n  \tag{1.18}\\ C(1+t)^{-\left(\frac{1}{p-1}-\frac{\alpha}{2(2-\alpha)}\right)(1+\beta)} \log (t+2), & \text { if } \frac{\alpha(p+1)}{p-1}=n \\ C(1+t)^{-(1+\beta) \frac{1}{p-1}+\frac{1+\beta}{2(2-\alpha)}\left(N-\alpha \frac{2}{p-1}\right)} & \text { if } \frac{\alpha(p+1)}{p-1}<n\end{cases}
$$

For nonlinear wave equations with variable coefficients which exhibit a dissipative term with a space dependent potential

$$
\begin{equation*}
u_{t t}-\nabla \cdot(b(x) \nabla u)+\nabla \cdot\left(b(x) u_{t}\right)=0, x \in \mathbf{R}^{n}, \quad t>0 \tag{1.19}
\end{equation*}
$$

under the assumption that

$$
\begin{equation*}
b_{0}(1+|x|)^{\beta}|\xi|^{2} \leq b(x) \xi \cdot \xi \leq b_{1}(1+|x|)^{\beta}|\xi|^{2}, \quad \xi \in \mathbf{R}^{n}, \tag{1.20}
\end{equation*}
$$

where $b_{0}>0, b_{1}>0$ and $\beta \in[0,2)$. R. Ikehata et al. [7] obtained long time asymptotics for solutions to (1.19)-(1.20) as a combination of solutions of wave and diffusion equations under certain assumptions on $b$ in an exterior domain, see also [15].

Said-Houari [17] considered a viscoelastic wave equation with spacetime dependent damping potential and an absorbing term

$$
\begin{align*}
& u_{t t}-\Delta u+\int_{0}^{t} g(t-s) \Delta u(s) d s+b(t, x) u_{t}+|u|^{p-1} u=0, \quad t>0, \quad x \in \mathbf{R}^{n} \\
& u(0, x)=u_{0}(x), u_{t}(0, x)=u_{1}(x) \quad x \in \mathbf{R}^{n} \tag{1.21}
\end{align*}
$$

and by using a weighted energy method, they showed that the $L^{2}$ decay rates are the same as those in [8].

More recently, Roberts[16] under the assumption that
$b_{0}(1+|x|)^{\beta} \leq b(x) \leq b_{1}(1+|x|)^{\beta} \quad$ and $\quad a_{0}(1+|x|)^{-\alpha} \leq a(x) \leq a_{1}(1+|x|)^{-\alpha}$ with

$$
\begin{equation*}
\alpha<1, \quad 0 \leq \beta<2, \quad 2 \alpha+\beta<2, \tag{1.22}
\end{equation*}
$$

obtained energy decay estimates of solution to the dissipative non-linear wave equation

$$
\begin{align*}
& u_{t t}-\operatorname{div}(b(x) \nabla u)+a(x) u_{t}+|u|^{p-1} u=0, \quad x \in \mathbf{R}^{n}, \quad t>0  \tag{1.23}\\
& u(0, x)=u_{0}(x) \in H^{1}\left(\mathbf{R}^{n}\right), \quad u_{t}(0, x)=u_{1}(x) \in L^{2}\left(\mathbf{R}^{n}\right),
\end{align*}
$$

using a modification of the weighted multiplier technique introduced by Todorova and Yordanov[14].

In this paper, by using the weighted $L^{2}$-energy method similar to that of [8], we obtain decay estimates of the energy of the solution to (1.1), where $a(t, x)$ and $b(t, x)$ have the form in (1.2)-(1.3) above. In [8], the space $\mathbf{R}^{n}$ was divided into two zones

$$
Z\left(t ; L, t_{0}\right):=\left\{x \in \mathbf{R}^{n}\left|\left(t_{0}+t\right)^{2} \geq L+|x|^{2}\right\}\right.
$$

and $Z^{c}\left(t ; L, t_{0}\right)=\mathbf{R}^{n} \backslash Z\left(t ; L, t_{0}\right)$. To obtain boundedness on certain estimates on $Z$, a further division of $Z$ was required. Here, we split the domain into two zones

$$
\begin{aligned}
& \Omega\left(t, L, t_{0}\right)=\left\{x \in \mathbf{R}^{n}:\left(t_{0}+t\right)^{A} \geq L+|x|^{2}\right\} \quad \text { and } \\
& \Omega^{c}\left(t, L, t_{0}\right)=\mathbf{R}^{n} \backslash \Omega\left(t, L, t_{0}\right)
\end{aligned}
$$

which depend on the weighted function for $A=\frac{2(1+\beta+\gamma)}{2-(\alpha+\delta)}$ and positive constants $L, t_{0}$. With this choice, we overcome the challenge of splitting the first zone in order to obtain boundedness for every estimate on $\Omega\left(t ; L, t_{0}\right)$ in the proof.

## 2. Preliminaries

In this section, we state some basic assumptions used in this paper. First, we introduce the following notations. $L^{p}\left(\mathbf{R}^{n}\right), 1 \leq p \leq \infty$, the Lebesgue space with norm $\|\cdot\|_{p}$ and $H_{\rho}^{1}\left(\mathbf{R}^{n}\right)$ the Sobolev space defined by

$$
\begin{equation*}
H_{\rho}^{1}\left(\mathbf{R}^{n}\right):=\left\{u \in L^{\frac{2 n}{n-2+\delta}}: \int_{\mathbf{R}^{n}}\left(1+|x|^{2}\right)^{\frac{\delta}{2}}|\nabla u|^{2} d x<\infty\right\} . \tag{2.1}
\end{equation*}
$$

Lemma 2.1. (Caffarelli-Kohn-Nirenberg)
There exist a constant $C>0$ such that the inequality

$$
\begin{equation*}
\left\||x|^{\sigma} u\right\|_{L^{r}} \leq\left. C\| \| x\right|^{\delta} \nabla u\left\|_{L^{q}}^{\theta}\right\||x|^{\ell} u \|_{L^{p}}^{1-\theta} \tag{2.2}
\end{equation*}
$$

holds for all $u \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ if and only if the following relations hold:

$$
\begin{equation*}
\frac{1}{r}+\frac{\sigma}{n}=\theta\left(\frac{1}{q}+\frac{\delta-1}{n}\right)+(1-\theta)\left(\frac{1}{p}+\frac{\ell}{n}\right) \tag{2.3}
\end{equation*}
$$

with $p, q \geq 1$. $r>0,0 \leq \theta \leq 1 . \delta-d \leq 1$ if $\theta>0$ and $\frac{1}{p}+\frac{\delta-1}{n}=\frac{1}{r}+\frac{\sigma}{n}$
Remark 1. When $\sigma=\delta=\ell=0$, the Lemma is referred to as the Gagliardo-Nirenberg inequality.

We define the weighted function $\psi(t, x)$ as follows:

$$
\begin{equation*}
\psi(t, x)=\lambda \frac{\left(L+|x|^{2}\right)^{\frac{2-(\alpha+\delta)}{2}}}{\left(t_{0}+t\right)^{1+\beta+\gamma}} \tag{2.4}
\end{equation*}
$$

for a small positive constant $\lambda=\frac{b_{0}(1+\beta+\gamma)}{2 \rho_{0}(2-(\alpha+\delta))^{2}}$ and $t_{0} \geq L \geq 1$. Moreover, we have

$$
\begin{array}{ll}
\psi_{t}(t, x)= & -\lambda(1+\beta+\gamma) \frac{\left(L+|x|^{2}\right)^{\frac{2-(\alpha+\delta)}{2}}}{\left(t_{0}+t\right)^{2+\beta+\gamma}} \\
\nabla \psi(t, x)= & \lambda(2-(\alpha+\delta)) \frac{\left(L+|x|^{2}\right)^{\frac{-\alpha-\delta}{2}} x}{\left(t_{0}+t\right)^{1+\beta+\gamma}} \\
|\nabla \psi(t, x)|^{2}= & \lambda^{2}(2-(\alpha+\delta))^{2} \frac{\left(L+|x|^{2}\right)^{-\alpha-\delta}|x|^{2}}{\left(t_{0}+t\right)^{2+2 \beta+2 \gamma}}
\end{array}
$$

and consequently, we have

$$
\begin{equation*}
\frac{a(t, x)|\nabla \psi|^{2}}{\left(-\psi_{t}(t, x)\right)} \leq \frac{1}{2} b(t, x) \tag{2.5}
\end{equation*}
$$

In the sequel, we will denote the function $\psi(t, x)$ by $\psi$ for simplicity. To begin, we state the following lemmas which will be needed in the proof of the main result. First, we define the functions $\mathcal{E}(t)$ and $\mathcal{H}(t)$ associated to problem (1.1) by

$$
\begin{equation*}
\mathcal{E}(t):=e^{2 \psi} \eta(t)\left[\frac{1}{2}\left|u_{t}\right|^{2}+\frac{a(t, x)}{2}|\nabla u|^{2}+\frac{1}{p+1}|u|^{p+1}\right] \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{H}(t):=e^{2 \psi} \eta(t)\left[u u_{t}+\frac{b(t, x)}{2}|u|^{2}\right] \tag{2.7}
\end{equation*}
$$

respectively. Then for the function $\mathcal{E}(t)$ in (2.6), we have the following result.

Lemma 2.2. Let $u$ be a solution of (1.1), then the function $\mathcal{E}(t)$ defined in (2.6), satisfies

$$
\begin{align*}
\frac{d}{d t} \mathcal{E}(t) \leq & \nabla \cdot\left(e^{2 \psi} \rho(x) \nabla u u_{t}\right)+e^{2 \psi} \eta(t)\left[-\frac{b(t, x)}{4}+\psi_{t}\right]\left|u_{t}\right|^{2}+e^{2 \psi} \frac{\eta_{t}(t)}{2}\left|u_{t}\right|^{2} \\
& +e^{2 \psi} \eta(t)\left[\frac{-\gamma}{(p+1)(1+t)}+\frac{2 \psi_{t}}{p+1}\right]|u|^{p+1}+e^{2 \psi}\left[\frac{\rho(x) \psi_{t}}{3}\right]|\nabla u|^{2} . \tag{2.8}
\end{align*}
$$

Proof. Multiplying (1.1) by $e^{2 \psi} u_{t}$ and using (2.5), we obtain

$$
\begin{align*}
& \frac{d}{d t}\left[e^{2 \psi}\left[\frac{1}{2}\left|u_{t}\right|^{2}+\frac{a(t, x)}{2}|\nabla u|^{2}+\frac{1}{p+1}|u|^{p+1}\right]\right] \\
& =\nabla \cdot\left(e^{2 \psi} a(t, x) \nabla u u_{t}\right)+e^{2 \psi}\left[\psi_{t}-b(t, x)\right]\left|u_{t}\right|^{2}+\frac{e^{2 \psi} a_{t}(t, x)}{2}|\nabla u|^{2} \\
& +\frac{e^{2 \psi} a(t, x)}{\psi_{t}}\left[\psi_{t}|\nabla u|^{2}-\nabla \psi u_{t}\right]^{2}-\frac{e^{2 \psi} a(t, x)|\nabla \psi|^{2}}{\psi_{t}}\left|u_{t}\right|^{2}+\frac{2 e^{2 \psi} \psi_{t}}{p+1}|u|^{p+1}  \tag{2.9}\\
& \leq \nabla \cdot\left(e^{2 \psi} a(t, x) \nabla u u_{t}\right)+e^{2 \psi}\left[\psi_{t}-\frac{1}{2} b(t, x)\right]\left|u_{t}\right|^{2}+\frac{e^{2 \psi} a_{t}(t, x)}{2}|\nabla u|^{2} \\
& +\frac{e^{2 \psi} a(t, x)}{\psi_{t}}\left[\psi_{t}|\nabla u|-\nabla \psi u_{t}\right]^{2}+\frac{2 e^{2 \psi} \psi_{t}}{p+1}|u|^{p+1},
\end{align*}
$$

where we have used

$$
\begin{equation*}
e^{2 \psi} u_{t} \cdot b(t, x) u_{t}=e^{2 \psi} b(t, x)\left|u_{t}\right|^{2} \tag{2.10}
\end{equation*}
$$

By employing Schwartz inequality, we observe that

$$
\begin{align*}
\frac{e^{2 \psi} a(t, x)}{\psi_{t}} & {\left[\psi_{t}|\nabla u|-\nabla \psi u_{t}\right]^{2} } \\
& =\frac{e^{2 \psi} a(t, x)}{\psi_{t}}\left[\left|\psi_{t}\right|^{2}|\nabla u|^{2}-2 \psi_{t} u_{t} \nabla u \cdot \nabla \psi+|\nabla \psi|^{2}\left|u_{t}\right|^{2}\right]  \tag{2.11}\\
& \leq \frac{e^{2 \psi} a(t, x)}{\psi_{t}}\left[\frac{1}{3}\left|\psi_{t}\right|^{2}|\nabla u|^{2}-\frac{1}{2}|\nabla \psi|^{2}\left|u_{t}\right|^{2}\right]
\end{align*}
$$

Hence, using (2.5) in (2.11) and substituting the resulting estimate in (2.9), we obtain

$$
\begin{aligned}
\frac{d}{d t} & {\left[e^{2 \psi}\left[\frac{1}{2}\left|u_{t}\right|^{2}+\frac{a(t, x)}{2}|\nabla u|^{2}+\frac{1}{p+1}|u|^{p+1}\right]\right] } \\
(2.12) \leq & \nabla \cdot\left(e^{2 \psi} a(t, x) \nabla u u_{t}\right)+e^{2 \psi}\left[\psi_{t}-\frac{b(t, x)}{4}\right]\left|u_{t}\right|^{2}+\frac{2 e^{2 \psi} \psi_{t}}{p+1}|u|^{p+1} \\
& +e^{2 \psi}\left[\frac{a_{t}(t, x)}{2}+\frac{a(t, x) \psi_{t}}{3}\right]|\nabla u|^{2}
\end{aligned}
$$

and multiplying (2.12) by $\eta(t)$, we get

$$
\begin{align*}
\frac{d}{d t} & {\left[e^{2 \psi} \eta(t)\left[\frac{1}{2}\left|u_{t}\right|^{2}+\frac{a(t, x)}{2}|\nabla u|^{2}+\frac{1}{p+1}|u|^{p+1}\right]\right] } \\
\leq & \nabla \cdot\left(e^{2 \psi} \rho(x) \nabla u u_{t}\right)+e^{2 \psi} \eta(t)\left[-\frac{b(t, x)}{4}+\psi_{t}\right]\left|u_{t}\right|^{2}+e^{2 \psi} \frac{\eta_{t}(t)}{2}\left|u_{t}\right|^{2} \\
& +e^{2 \psi} \eta(t)\left[\frac{-\gamma}{(p+1)(1+t)}+\frac{2 \psi_{t}}{p+1}\right]|u|^{p+1}+e^{2 \psi}\left[\frac{\rho(x) \psi_{t}}{3}\right]|\nabla u|^{2} \tag{2.13}
\end{align*}
$$

Now, for the function $\mathcal{H}(t)$, we have the following lemma.

Lemma 2.3. Let $u$ be a solution of (1.1), then the function $\mathcal{H}(t)$ defined in (2.7), satisfies

$$
\begin{align*}
\frac{d}{d t} \mathcal{H}(t) \leq & \nabla \cdot\left(e^{2 \psi} \rho(x) u \nabla u\right)+e^{2 \psi} \eta(t)\left|u_{t}\right|^{2}+2 e^{2 \psi} \eta(t) \psi_{t} u u_{t}-e^{2 \psi} \eta(t)|u|^{p+1} \\
& -\frac{e^{2 \psi} \rho(x)}{4}|\nabla u|^{2}+e^{2 \psi} \eta(t)\left[\frac{b_{t}(t, x)}{2}+\frac{b(t, x) \psi_{t}}{3}\right]|u|^{2} \\
& +e^{2 \psi} \frac{\eta_{t}(t) b(t, x)}{2}|u|^{2}+e^{2 \psi} \eta_{t}(t) u u_{t} \tag{2.14}
\end{align*}
$$

Proof. Multiplying (1.1) by $e^{2 \psi} u$ and using the estimate (2.5), we get

$$
\begin{align*}
\frac{d}{d t} & {\left[e^{2 \psi}\left[u u_{t}+\frac{b(t, x)}{2}|u|^{2}\right]\right] } \\
= & \nabla \cdot\left(e^{2 \psi} a(t, x) u \nabla u\right)+e^{2 \psi}\left|u_{t}\right|^{2}+2 e^{2 \psi} \psi_{t} u u_{t}+e^{2 \psi} \frac{b_{t}(t, x)}{2}|u|^{2} \\
& -e^{2 \psi} a(t, x)|\nabla u|^{2}-\frac{a^{2}(t, x)|\nabla \psi|^{2}}{\psi_{t} b(t, x)}|\nabla u|^{2} e^{2 \psi}-e^{2 \psi}|u|^{p+1}  \tag{2.15}\\
& +\frac{b(t, x)}{\psi_{t}}\left[\left.\left|\psi_{t} u+\frac{a(t, x) \nabla \psi}{b(t, x)}\right| \nabla u \right\rvert\,\right]^{2} e^{2 \psi} \\
\leq & \nabla \cdot\left(e^{2 \psi} a(t, x) u \nabla u\right)+e^{2 \psi}\left|u_{t}\right|^{2}+2 e^{2 \psi} \psi_{t} u u_{t}+e^{2 \psi} \frac{b_{t}(t, x)}{2}|u|^{2} \\
& -\frac{e^{2 \psi} a(t, x)}{2}|\nabla u|^{2}+\frac{b(t, x)}{\psi_{t}}\left[\left.\left|\psi_{t} u-\frac{a(t, x) \nabla \psi}{b(t, x)}\right| \nabla u \right\rvert\,\right]^{2} e^{2 \psi}-e^{2 \psi}|u|^{p+1}
\end{align*}
$$

where we have used

$$
\begin{align*}
e^{2 \psi} b(t, x) u u_{t}= & \frac{d}{d t}\left[\frac{e^{2 \psi} b(t, x)}{2}|u|^{2}\right]-e^{2 \psi} \psi_{t} b(t, x)|u|^{2}  \tag{2.16}\\
& -e^{2 \psi} \frac{b_{t}(t, x)}{2}|u|^{2}
\end{align*}
$$

Using Schwartz inequality for the second to the last term on the right hand side of (2.15), we have the following estimate

$$
\begin{align*}
& \frac{b(t, x)}{\psi_{t}}\left[\left.\left|\psi_{t} u+\frac{a(t, x) \nabla \psi}{b(t, x)}\right| \nabla u \right\rvert\,\right]^{2} \\
& \leq \frac{b(t, x)}{\psi_{t}}\left[\frac{1}{3}\left|\psi_{t}\right|^{2}|u|^{2}-\frac{|a(t, x)|^{2}|\nabla \psi|^{2}}{2|b(t, x)|^{2}}|\nabla u|^{2}\right] . \tag{2.17}
\end{align*}
$$

In a similar way, using (2.5) in (2.17), and substituting the resulting estimate in (2.15), we get

$$
\begin{array}{ll}
\frac{d}{d t} & {\left[e^{2 \psi}\left[u u_{t}+\frac{b(t, x)}{2}|u|^{2}\right]\right]} \\
\leq & \nabla \cdot\left(e^{2 \psi} a(t, x) u \nabla u\right)+e^{2 \psi}\left|u_{t}\right|^{2}+2 e^{2 \psi} \psi_{t} u u_{t}+e^{2 \psi} \frac{b_{t}(t, x)}{2}|u|^{2}  \tag{2.18}\\
& -\frac{e^{2 \psi} a(t, x)}{4}|\nabla u|^{2}+e^{2 \psi} \frac{b(t, x) \psi_{t}}{3}|u|^{2}-e^{2 \psi}|u|^{p+1}
\end{array}
$$

and multiplying (2.18) by $\eta(t)$, we obtain

$$
\begin{align*}
& \frac{d}{d t}\left[e^{2 \psi} \eta(t)\left[u u_{t}+\frac{b(t, x)}{2}|u|^{2}\right]\right] \\
& \leq \nabla \cdot\left(e^{2 \psi} \rho(x) u \nabla u\right)+e^{2 \psi} \eta(t)\left|u_{t}\right|^{2}+2 e^{2 \psi} \eta(t) \psi_{t} u u_{t}-e^{2 \psi} \eta(t)|u|^{p+1} \\
& -\frac{e^{2 \psi} \rho(x)}{4}|\nabla u|^{2}+e^{2 \psi} \eta(t)\left[\frac{b_{t}(t, x)}{2}+\frac{b(t, x) \psi_{t}}{3}\right]|u|^{2} \\
& +e^{2 \psi} \frac{\eta_{t}(t) b(t, x)}{2}|u|^{2}+e^{2 \psi} \eta_{t}(t) u u_{t} . \tag{2.19}
\end{align*}
$$

## 3. Main result

In this section, we consider the long time behavior of the solution to (1.1). The result here is obtained via a weighted energy method and the technique follows that of Lin et al.[8]. For local existence result, the compactness condition on the support of the initial data is replaced by the following condition:

$$
\begin{align*}
I_{0}:= & \int_{\Omega\left(0 ; L, t_{0}\right)} \eta(0)\left[t_{0}^{\beta+\frac{\alpha A}{2}}\left[\left|u_{1}\right|^{2}+a(0, x)\left|\nabla u_{0}\right|^{2}\right]+b(0, x)\left|u_{0}\right|^{2}\right] e^{2 \psi(0, x)} d x \\
& +\int_{\substack{\Omega^{c}\left(0 ; L, t_{0}\right)}} \eta(0)\left[\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\left[\left|u_{1}\right|^{2}+a(0, x)\left|\nabla u_{0}\right|^{2}\right]+b(0, x)\left|u_{0}\right|^{2}\right]  \tag{3.1}\\
& e^{2 \psi(0, x)} d x<+\infty .
\end{align*}
$$

With respect to the size of $\left(1+|x|^{2}\right)$ and $(1+t)$ and considering the weighted function $\psi$, we partition the space $\mathbf{R}^{n}$ into the following zones:

$$
\begin{aligned}
\Omega\left(t, L, t_{0}\right)= & \left\{x \in \mathbf{R}^{n}:\left(t_{0}+t\right)^{A} \geq L+|x|^{2}\right\} \quad \text { and } \\
& \Omega^{c}\left(t, L, t_{0}\right)=\mathbf{R}^{n} \backslash \Omega\left(t, L, t_{0}\right)
\end{aligned}
$$

which is a modification of the zones as inspired by Lin et. al. [8], where $A=\frac{2(1+\beta+\gamma)}{2-(\alpha+\delta)}$. Since $\alpha+\beta+\delta+\gamma \in[0,1)$, it follows that $A<2$.

Theorem 3.1. Let $u$ be the solution of (1.1) and let $a(t, x), b(t, x)$ satisfy (1.2) and (1.3) for $2<p+1<\frac{2 n}{n-2+\delta}$ when $n \geq 2$. Suppose that $\left(u_{0}, u_{1}\right) \in$ $H_{\rho}^{1}\left(\mathbf{R}^{n}\right) \cap L^{2}\left(\mathbf{R}^{n}\right)$ and (??) holds. Then there exist a unique solution $u$ of (1.1) with $u \in L^{\infty}\left([0, \infty) ; H_{\rho}^{1}\left(\mathbf{R}^{n}\right)\right)$ and $u_{t} \in L^{\infty}\left([0, \infty) ; L^{2}\left(\mathbf{R}^{n}\right)\right)$ which satisfies the following estimate
$(3.2)\|u\|_{L_{2}}^{2} \leq \begin{cases}C(1+t)^{-\frac{2(1+\beta)}{p-1}+\frac{\alpha(1+\beta+\gamma)}{2-(\delta+\alpha)}}, & \text { if } \frac{\alpha(p+1)}{(p-1)}>n \\ C(1+t)^{-\frac{2(1+\beta)}{p-1}+\frac{\alpha(1+\beta+\gamma)}{2-(\delta+\alpha)}} \log (2+t), & \text { if } \frac{\alpha(p+1)}{(p-1)}=n \\ C(1+t)^{-\frac{2(1+\beta)}{p-1}+\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{2 \alpha}{p-1}\right)}, & \text { if } \frac{\alpha(p+1)}{(p-1)}<n .\end{cases}$
Remark 2. The existence result can be proved using the same technique as in [8] where in this case the Caffarelli-Kohn-Nirenberg inequality is used instead of the Gagliardo-Nirenberg inequality, with the additional consideration of the inequality $|x|^{\delta} \leq\left(1+|x|^{2}\right)^{\frac{\delta}{2}}$. Hence, we omit the proof here.

Proof. [Proof of Theorem 3.1] We split the proof into three parts, the first part considers the case $x \in \Omega\left(t, L, t_{0}\right)$, the second part covers the case $x \in \Omega^{c}\left(t, L, t_{0}\right)$ and the third part combines the two results. We state the result in each of the zones in the form of a lemma.

Case 1: $\left(x \in \Omega\left(t, L, t_{0}\right)\right)$. In this region, we define a function $E_{\psi}\left(\Omega\left(t, L, t_{0}\right)\right)$ by

$$
\begin{equation*}
E_{\psi}\left(\Omega\left(t, L, t_{0}\right)\right):=\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \mathcal{E}(t)+\nu \mathcal{H}(t) \tag{3.3}
\end{equation*}
$$

where $\nu$ is a small positive constant to be determined later, and the functions $H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right), H_{1}(t)$ and $H_{2}(t)$ by

$$
\begin{align*}
& (3.4) H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right):=\int_{\Omega\left(t ; L, t_{0}\right)} E_{\psi}\left(\Omega\left(t, L, t_{0}\right)\right) d x \\
& \begin{aligned}
H_{1}(t):=\int_{0}^{2 \pi} E_{\psi}(\quad & \left.\Omega\left(t, L, t_{0}\right)\right)\left.\right|_{|x|=\sqrt{\left(t_{0}+t\right)^{A}-L}}\left[\left(t_{0}+t\right)^{A}-L\right]^{\frac{N-1}{2}} d \theta \\
& \times \frac{d}{d t} \sqrt{\left(t_{0}+t\right)^{A}-L}
\end{aligned} \\
& \begin{aligned}
&(3.5) \\
&(3.6) \quad H_{2}(t):= \\
& \int_{\partial \Omega\left(t ; L, t_{0}\right)} e^{2 \psi}\left[\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \rho(x) \nabla u u_{t}+\nu \rho(x) u \nabla u\right] \cdot \vec{n} d S
\end{aligned} \tag{3.5}
\end{align*}
$$

where $\vec{n}$ is the unit outward normal vector of $\partial \Omega\left(t ; L, t_{0}\right)$. Then we state the next lemma.

Lemma 3.2. Let $u$ be a solution of (1.1) and the functions $\mathcal{E}(t)$ and $\mathcal{H}(t)$ be defined as in (2.6) and (2.7) above, then for $x \in \Omega\left(t, L, t_{0}\right)$, the function $E_{\psi}\left(\Omega\left(t, L, t_{0}\right)\right)$ satisfies

$$
\begin{align*}
& \frac{d}{d t} E_{\psi}\left(\Omega\left(t, L, t_{0}\right)\right) \\
& \leq \nabla \cdot\left(e^{2 \psi}\left[\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \rho(x) \nabla u u_{t}+\nu \rho(x) u \nabla u\right]\right) \\
& -k_{0} e^{2 \psi} \eta(t)\left[1+\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\left(-\psi_{t}\right)\right]\left(\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right)  \tag{3.7}\\
& -k_{0}\left[\frac{1}{\left(t_{0}+t\right)}+\left(-\psi_{t}\right)\right] e^{2 \psi} \eta(t) b(t, x)|u|^{2}-k_{0} e^{2 \psi} \eta(t)|u|^{p+1}
\end{align*}
$$

where $k_{0}$ is a positive constant to be determined later. Furthermore, we have

$$
\begin{align*}
& \frac{d}{d t} \quad\left(\left(t_{0}+t\right)^{m} H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)-\left(t_{0}+t\right)^{m}\left(H_{1}(t)+H_{2}(t)\right)\right. \\
& 8)  \tag{3.8}\\
& \quad \leq \begin{cases}C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}}, & \text { if } \frac{\alpha(p+1)}{(p-1)}>n \\
C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}} \log (2+t), & \text { if } \frac{\alpha(p+1)}{(p-1)}=n \\
C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}+\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{\alpha(p+1)}{p-1}\right),} & \text { if } \frac{\alpha(p+1)}{(p-1)}<n .\end{cases}
\end{align*}
$$

Proof. Multiplying (2.8) by $\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}$, we obtain

$$
\begin{aligned}
& \frac{d}{d t}\left[\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \mathcal{E}(t)\right] \\
& \leq \nabla \cdot\left(e^{2 \psi}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \rho(x) \nabla u u_{t}\right)+\frac{\eta_{t}(t)}{2}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\left|u_{t}\right|^{2} \\
(3.9)^{+} & +\left[\frac{\left(\beta+\frac{\alpha A}{2}\right)}{2\left(t_{0}+t\right)^{1-\left(\beta+\frac{\alpha A}{2}\right)}}-\frac{b(t, x)}{4}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}+\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \psi_{t}\right] e^{2 \psi} \eta(t)\left|u_{t}\right|^{2} \\
& +\left[\frac{\left(\beta+\frac{\alpha A}{2}\right)}{2\left(t_{0}+t\right)^{1-\left(\beta+\frac{\alpha A}{2}\right)}}+\frac{\psi_{t}}{3}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\right] e^{2 \psi} \rho(x)|\nabla u|^{2} \\
& +\left[\frac{\left(\beta+\frac{\alpha A}{2}\right)-\gamma}{(p+1)\left(t_{0}+t\right)^{1-\left(\beta+\frac{\alpha A}{2}\right)}}+\frac{2 \psi_{t}}{p+1}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\right] e^{2 \psi} \eta(t)|u|^{p+1} .
\end{aligned}
$$

Observe that $\beta+\frac{\alpha A}{2} \leq \beta+\alpha<1$ since $A<2$ and $\alpha+\beta+\delta+\gamma<1$.
Now, multiplying (2.14) by $\nu$ (where $\nu<b_{0}$ ) and adding the resulting estimate to (3.9), we get

$$
\begin{align*}
& \frac{d}{d t}\left[\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \mathcal{E}(t)+\nu \mathcal{H}(t)\right] \\
& \leq \nabla \cdot\left(e^{2 \psi}\left[\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \rho(x) \nabla u u_{t}+\nu \rho(x) u \nabla u\right]\right) \\
& +\left[\frac{\left(\beta+\frac{\alpha A}{2}\right)-\gamma\left(1-\frac{\nu}{b_{0}}\right)}{2\left(t_{0}+t\right)^{1-\left(\beta+\frac{\alpha A}{2}\right)}}+\nu-\frac{b_{0}}{4}+\frac{\left(\epsilon_{1} b_{0}-3 \nu\right)}{\epsilon_{1} b_{0}}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}} \psi_{t}\right] e^{2 \psi} \eta(t)\left|u_{t}\right|^{2} \\
& +\left[\frac{\left(\beta+\frac{\alpha A}{2}\right)}{2\left(t_{0}+t\right)^{1-\left(\beta+\frac{\alpha A}{2}\right)}}-\frac{\nu}{4}+\frac{\psi_{t}}{3}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\right] e^{2 \psi} \rho(x)|\nabla u|^{2}  \tag{3.10}\\
& +\nu\left[\frac{-\beta}{2\left(t_{0}+t\right)}+\frac{\left(1-\epsilon_{1}\right)}{3} \psi_{t}\right] e^{2 \psi} \eta(t) b(t, x)|u|^{2} \\
& +\left[\frac{\left(\beta+\frac{\alpha A}{2}\right)-\gamma}{(p+1)\left(t_{0}+t\right)^{1-\left(\beta+\frac{\alpha A}{2}\right)}}-\nu+\frac{2 \psi_{t}}{p+1}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\right] e^{2 \psi} \eta(t)|u|^{p+1}
\end{align*}
$$

where we have used Schwartz inequality to obtain the following estimates for the third and last term on the right hand side of (2.14) respectively:

$$
\begin{align*}
\left|2 \psi_{t} u_{t} u\right| & \leq \frac{\epsilon_{1} b(t, x)\left(-\psi_{t}\right)}{3}|u|^{2}+\frac{3\left(-\psi_{t}\right)}{\epsilon_{1} b_{0}}(1+t)^{\beta}\left(1+|x|^{2}\right)^{\frac{\alpha}{2}}\left|u_{t}\right|^{2}  \tag{3.11}\\
& \leq \frac{-\epsilon_{1} b(t, x) \psi_{t}}{3}|u|^{2}-\frac{3 \psi_{t}}{\epsilon_{1} b_{0}}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\left|u_{t}\right|^{2}
\end{align*}
$$

and

$$
\begin{align*}
\left|\eta_{t}(t) u_{t} u\right| & \leq \frac{-b(t, x) \eta_{t}(t)}{2}|u|^{2}-\frac{\eta_{t}(t)}{2 b_{0}}(1+t)^{\beta}\left(1+|x|^{2}\right)^{\frac{\alpha}{2}}\left|u_{t}\right|^{2}  \tag{3.12}\\
& \leq \frac{-b(t, x) \eta_{t}(t)}{2}|u|^{2}-\frac{\eta_{t}(t)}{2 b_{0}}\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\left|u_{t}\right|^{2} .
\end{align*}
$$

By a suitable choice of $\nu$ sufficiently small as mentioned earlier, we can now choose a positive constant $k_{0}$ such that the estimates below are satisfied

$$
\begin{aligned}
& \frac{\left(\beta+\frac{\alpha A}{2}\right)-\gamma\left(1-\frac{\nu}{b_{0}}\right)}{2 t_{0}^{1-\left(\beta+\frac{\alpha A}{2}\right)}}+\nu-\frac{b_{0}}{4} \leq-k_{0} \\
& \frac{\left(\beta+\frac{\alpha A}{2}\right)}{2 t_{0}^{1-\left(\beta+\frac{\alpha A}{2}\right)}}-\frac{\nu}{4} \leq-k_{0}, \quad \frac{\left(\beta+\frac{\alpha A}{2}\right)-\gamma}{(p+1) t_{0}^{1-\left(\beta+\frac{\alpha A}{2}\right)}}-\nu \leq-2 k_{0} \\
& \nu \frac{1-\epsilon_{1}}{3} \geq k_{0}, \quad \frac{\left(\epsilon_{1} b_{0}-3 \nu\right)}{\epsilon_{1} b_{0}} \geq k_{0}, \quad \frac{1}{3} \geq k_{0}, \quad \frac{2}{(p+1)} \geq k_{0}, \quad \nu \frac{\beta}{2} \geq k_{0},
\end{aligned}
$$

this gives the desired estimate (3.7).
We now integrate the estimate (3.7) over $\Omega\left(t ; L, t_{0}\right)$ to obtain

$$
\begin{equation*}
\frac{d}{d t} H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)-H_{1}(t)-H_{2}(t) \leq-H_{3}\left(t ; \Omega\left(t ; L, t_{0}\right)\right), \tag{3.14}
\end{equation*}
$$

where

$$
\begin{align*}
H_{3} & \left(t ; \Omega\left(t ; L, t_{0}\right)\right) \\
:= & k_{0} \int_{\Omega\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[\left(1+\left(-\psi_{t}\right)\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\right)\left|u_{t}\right|^{2}+\left(1+\left(-\psi_{t}\right)\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\right)\right. \\
& a(t, x)|\nabla u|^{2} \\
& \left.+\left(-\psi_{t}+\frac{1}{t_{0}+t}\right) b(t, x)|u|^{2}+\left(1+\left(-\psi_{t}\right)\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\right)|u|^{p+1}+|u|^{p+1}\right] d x . \tag{3.15}
\end{align*}
$$

Define the function $\mathcal{H}_{\mathcal{E}}$ by

$$
\begin{align*}
& \mathcal{H}_{\mathcal{E}}\left(t ; \Omega\left(t ; L, t_{0}\right)\right):=\int_{\Omega\left(t ; L, t_{0}\right)} \eta(t) \\
& {\left[\left(t_{0}+t\right)^{\beta+\frac{\alpha A}{2}}\left[\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right]+b(t, x)|u|^{2}\right] e^{2 \psi} d x .}
\end{align*}
$$

It can be proved easily that for positive constants $k_{1}, k_{2}$, the following inequality is satisfied:

$$
\begin{equation*}
k_{1} \mathcal{H}_{\mathcal{E}} \leq H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right) \leq k_{2} \mathcal{H}_{\mathcal{E}} . \tag{3.17}
\end{equation*}
$$

Now, multiplying (3.14) by $\left(t_{0}+t\right)^{m}$ for $m$ a constant which will be determined later, we obtain

$$
\begin{align*}
\frac{d}{d t} & \left(\left(t_{0}+t\right)^{m} H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)\right]-\left(t_{0}+t\right)^{m}\left(H_{1}(t)+H_{2}(t)\right) \\
& \leq\left(t_{0}+t\right)^{m}\left[\frac{m}{t_{0}+t} H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)-H_{3}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)\right] . \tag{3.18}
\end{align*}
$$

The term on the right hand side is estimated as

$$
\begin{align*}
\frac{m}{t_{0}+t} & H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)-H_{3}\left(t ; \Omega\left(t ; L, t_{0}\right)\right) \\
& \leq \frac{m k_{2}}{t_{0}+t} \mathcal{H}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)-H_{3}\left(t ; \Omega\left(t ; L, t_{0}\right)\right) \\
& \leq \int_{\Omega\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[\frac{m k_{2}}{\left(t_{0}+t\right)^{1-\left(\beta+\frac{\alpha A}{2}\right)}}-k_{0}\right]\left[\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right] d x \\
& +\int_{\Omega\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[\left[\left[\frac{m k_{2}}{t_{0}+t}\right] b(t, x) u^{2}-k_{0}|u|^{p+1}\right] d x,\right.
\end{align*}
$$

where we have used $\psi_{t} \leq 0$.
From (3.13), it can be easily seen that we can choose $t_{0}$ large enough, such that $\frac{m k_{2}}{t_{0}^{1-\left(\beta+\frac{\alpha A}{2}\right)}}<\frac{k_{0}}{2}$. Therefore, the first term on the right hand side of (3.19) yields

$$
\begin{align*}
& \int_{\Omega\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[\frac{m k_{2}}{\left(t_{0}+t\right)^{1-\left(\beta+\frac{\alpha A}{2}\right)}}-k_{0}\right]\left[\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right] d x \\
& \quad \leq-\frac{k_{0}}{2} \int_{\Omega\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left(\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right) d x \leq 0 \tag{3.20}
\end{align*}
$$

To estimate the second term on the right hand of (3.19), we apply Young's inequality to obtain

$$
\begin{align*}
\int_{\Omega\left(t ; L, t_{0}\right)} & e^{2 \psi} \eta(t)\left[\left[\frac{m k_{2}}{t_{0}+t}\right] b(t, x) u^{2}-k_{0}|u|^{p+1}\right] d x \\
& \leq \int_{\Omega\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[\left[\frac{m k_{2}}{(1+t)^{1+\beta}}\right] b_{0}\left(1+|x|^{2}\right)^{\frac{-\alpha}{2}}|u|^{2}-k_{0}|u|^{p+1}\right] d x \\
& \leq \int_{\Omega\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[C(1+t)^{\frac{-(1+\beta)(p+1)}{p-1}}\left(1+|x|^{2}\right)^{\frac{-\alpha(p+1)}{2(p-1)}}-k_{p}|u|^{p+1}\right] d x \\
& \leq C \eta(t)(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}} \int_{\Omega\left(t ; L, t_{0}\right)} e^{2 \psi}\left(1+|x|^{2}\right)^{\frac{-\alpha(p+1)}{2(p-1)}} d x \\
& \leq C \eta(t)(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}} \int_{0}^{\left(t_{0}+t\right)^{\frac{A}{2}}}\left(1+r^{2}\right)^{\frac{-\alpha(p+1)}{2(p-1)}} r^{n-1} d r \tag{3.21}
\end{align*}
$$

where $C=C\left(m, b_{0}, k_{2}, p\right)$ and $k_{p}=k_{p}\left(k_{0}, p\right)$. Define $J$ by

$$
J:=C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}-\gamma} \int_{0}^{\left(t_{0}+t\right)^{\frac{A}{2}}}\left(1+r^{2}\right)^{\frac{-\alpha(p+1)}{2(p-1)}} r^{n-1} d r
$$

Thus, if $\frac{\alpha(p+1)}{(p-1)}>n$, it follows that

$$
\begin{equation*}
J \leq C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}-\gamma} \tag{3.22}
\end{equation*}
$$

if $\frac{\alpha(p+1)}{(p-1)}=n$, we have

$$
\begin{equation*}
J \leq C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}-\gamma} \log (2+t) \tag{3.23}
\end{equation*}
$$

and if $\frac{\alpha(p+1)}{(p-1)}<n$, we obtain

$$
\begin{equation*}
J \leq C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}-\gamma+\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{\alpha(p+1)}{p-1}\right)} . \tag{3.24}
\end{equation*}
$$

Combining (3.19) - (3.24), we have

$$
\begin{align*}
& \frac{m}{t_{0}+t} H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)-H_{3}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)  \tag{3.25}\\
& \leq \begin{cases}C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}-\gamma}, & \text { if } \frac{\alpha(p+1)}{(p-1)}>n \\
C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}-\gamma} \log (2+t), & \text { if } \frac{\alpha(p+1)}{(p-1)}=n \\
C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}-\gamma+\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{\alpha(p+1)}{p-1}\right)}, & \text { if } \frac{\alpha(p+1)}{(p-1)}<n\end{cases}
\end{align*}
$$

Hence, we have that

$$
\begin{align*}
& \frac{d}{d t} \quad\left(\left(t_{0}+t\right)^{m} H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)\right]-\left(t_{0}+t\right)^{m}\left(H_{1}(t)+H_{2}(t)\right) \\
& \leq \begin{cases}C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}}, & \text { if } \frac{\alpha(p+1)}{(p-1)}>n \\
C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}} \log (2+t), & \text { if } \frac{\alpha(p+1)}{(p-1)}=n \\
C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}+\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{\alpha(p+1)}{p-1}\right)}, & \text { if } \frac{\alpha(p+1)}{(p-1)}<n\end{cases} \tag{3.26}
\end{align*}
$$

Case 2: For the region $\Omega^{c}\left(t ; L, t_{0}\right)=\left\{x\left|\left(t_{0}+t\right)^{A} \leq L+|x|^{2}\right\}\right.$, we define another function $E_{\psi}\left(\Omega^{c}\left(t, L, t_{0}\right)\right)$ by

$$
\begin{equation*}
E_{\psi}\left(\Omega^{c}\left(t, L, t_{0}\right)\right):=\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \mathcal{E}(t)+\nu \mathcal{H}(t) \tag{3.27}
\end{equation*}
$$

where $\nu$ is a small positive constant to be determined later. In addition, define

$$
\begin{equation*}
H_{E}\left(t ; \Omega^{c} \quad\left(t ; L, t_{0}\right)\right):=\int_{\Omega^{c}\left(t ; L, t_{0}\right)} E_{\psi}\left(\Omega^{c}\left(t, L, t_{0}\right)\right) d x \tag{3.28}
\end{equation*}
$$

$$
\begin{align*}
H_{1}^{*}(t):=\int_{0}^{2 \pi} E_{\psi}( & \left.\Omega^{c}\left(t, L, t_{0}\right)\right)\left.\right|_{|x|=\sqrt{\left(t_{0}+t\right)^{A}-L}}\left[\left(t_{0}+t\right)^{A}-L\right]^{\frac{N-1}{2}} d \theta \\
& \times \frac{d}{d t} \sqrt{\left(t_{0}+t\right)^{A}-L} \tag{3.29}
\end{align*}
$$

$$
\begin{equation*}
H_{2}^{*}(t):=\int_{\partial \Omega^{c}\left(t ; L, t_{0}\right)} e^{2 \psi}\left[\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \rho(x) \nabla u u_{t}+\nu \rho(x) u \nabla u\right] \cdot \vec{n} d S \tag{3.30}
\end{equation*}
$$

where $\vec{n}$ is the unit outward normal vector of $\partial \Omega^{c}\left(t ; L, t_{0}\right)$.
We can now state the next lemma.

Lemma 3.3. Let $u$ be a solution of (1.1) and the functions $\mathcal{E}(t)$ and $\mathcal{H}(t)$ be defined as in (2.6) and (2.7) above, then for $x \in \Omega^{c}\left(t ; L, t_{0}\right)$, the function $E_{\psi}\left(\Omega^{c}\left(t, L, t_{0}\right)\right)$ satisfies

$$
\begin{align*}
& \frac{d}{d t} E_{\psi}\left(\Omega^{c}\left(t, L, t_{0}\right)\right) \\
& \leq \nabla \cdot\left(e^{2 \psi}\left[\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \rho(x) \nabla u u_{t}+\nu \rho(x) u \nabla u\right]\right) \\
& -k_{0} e^{2 \psi} \eta(t)\left[1+\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\left(-\psi_{t}\right)\right]\left(\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right) \\
& -k_{0}\left[\frac{1}{\left(t_{0}+t\right)}+\left(-\psi_{t}\right)\right] e^{2 \psi} \eta(t) b(t, x)|u|^{2}-k_{0}\left[1+\left(L+|x|^{2}\right)^{-\frac{1}{A}\left[1-\left(\beta+\frac{\alpha A}{2}\right)\right]}\right]  \tag{3.31}\\
& e^{2 \psi} \eta(t)|u|^{p+1}
\end{align*}
$$

where $k_{0}$ is a positive constant to be determined later. Moreover, we have that

$$
\begin{equation*}
\frac{d}{d t}\left[\left(t_{0}+t\right)^{m} H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)\right]-\left(t_{0}+t\right)^{m}\left(H_{1}(t)+H_{2}(t)\right) \leq 0 \tag{3.32}
\end{equation*}
$$

Proof. Multiplying (2.8) by $\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}$, we obtain

$$
\begin{align*}
& \frac{d}{d t}\left[\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \mathcal{E}(t)\right] \\
& \leq \nabla \cdot\left(e^{2 \psi}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \rho(x) \nabla u u_{t}\right)+e^{2 \psi} \frac{\eta_{t}(t)}{2}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\left|u_{t}\right|^{2} \\
& +\eta(t)\left[-\frac{b(t, x)}{4}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}+\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \psi_{t}\right] e^{2 \psi}\left|u_{t}\right|^{2} \\
& +\left[\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right) \frac{\psi_{t}}{3}}\right] e^{2 \psi} \rho(x)|\nabla u|^{2}-\frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}{\left(L+|x|^{2}\right)^{1-\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}} e^{2 \psi} x \cdot \rho(x) \nabla u u_{t} \\
& +e^{2 \psi} \eta(t)\left[\frac{-\gamma\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}}{(p+1)(1+t)}+\frac{2 \psi_{t}}{p+1}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\right]|u|^{p+1} . \tag{3.33}
\end{align*}
$$

Adding (3.33) to $\nu \times$ (2.19), we obtain

$$
\begin{align*}
& \frac{d}{d t} E_{\psi}\left(\Omega^{c}\left(t, L, t_{0}\right)\right) \\
& \leq \nabla \cdot\left(e^{2 \psi}\left[\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \rho(x) \nabla u u_{t}+\nu \rho(x) u \nabla u\right]\right) \\
& -\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right) e^{2 \psi}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)-1} x \cdot \rho(x) \nabla u u_{t}+\nu e^{2 \psi} \frac{\eta_{t}(t) b(t, x)}{2}|u|^{2} \\
& +\eta(t)\left[\nu-\frac{b(t, x)}{4}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}+\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \psi_{t}\right] e^{2 \psi}\left|u_{t}\right|^{2} \\
& +\left[-\frac{\nu}{4}+\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right) \frac{\psi_{t}}{3}}\right] e^{2 \psi} \rho(x)|\nabla u|^{2}+e^{2 \psi} \frac{\eta_{t}(t)}{2}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\left|u_{t}\right|^{2} \\
& +\eta(t)\left[-\nu-\frac{\gamma\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}}{(p+1)(1+t)}+\frac{2 \psi_{t}}{p+1}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\right] e^{2 \psi}|u|^{p+1} \\
& +\nu\left[\frac{-\beta}{2\left(t_{0}+t\right)}+\frac{\psi_{t}}{3}\right] e^{2 \psi} \eta(t) b(t, x)|u|^{2}+2 \nu e^{2 \psi} \eta(t) \psi_{t} u u_{t}+\nu e^{2 \psi} \eta_{t}(t) u u_{t} . \tag{3.34}
\end{align*}
$$

For the second term on the right hand of (3.34), by using Schwartz inequality, we obtain

$$
\begin{align*}
& \left|\frac{1}{A}\left(\beta \quad+\frac{\alpha A}{2}\right)\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)-1} x \cdot \rho(x) \nabla u u_{t}\right| \\
& \leq \frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)-\frac{1}{2}}\left|u_{t}\right| \rho(x)|\nabla u| \\
& \leq \frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right) \rho(x)}{2\left(L+|x|^{2}\right)^{1-\frac{1}{A}\left(\beta+1+\frac{\alpha A}{2}\right)}} \rho(x)|\nabla u|^{2}+\frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}{2\left(L+|x|^{2}\right)^{\frac{1}{A}} 1\left(1-\left(\beta+\frac{\alpha A}{2}\right)\right]}\left|u_{t}\right|^{2}  \tag{3.35}\\
& \leq \frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right) \rho_{0}}{2\left(L+|x|^{2}\right)^{1-\frac{1}{A}\left(\beta+1+\frac{(\alpha+\delta) A}{2}\right)}} \rho(x)|\nabla u|^{2}+\frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}{2\left(L+|x|^{2}\right)^{\frac{1}{A}\left[1-\left(\beta+\frac{\alpha A}{2}\right)\right]}}|u|^{2}
\end{align*}
$$

and observe here that $\frac{1}{A}\left(\beta+1+\frac{(\alpha+\delta) A}{2}\right)=\frac{2(\beta+1)+\gamma(\alpha+\delta)}{2(1+\beta+\gamma)}<1$. Also, by using the Schwartz inequality, we obtain the following estimates for the second to the last term and the last term on the right hand side of (3.34) respectively:

$$
\begin{aligned}
(3.36)^{\left|2 \psi_{t} u u_{t}\right|} & \leq \frac{\epsilon_{2}}{3}\left(-\psi_{t}\right) b(t, x)|u|^{2}+\frac{3}{\epsilon_{2} b_{0}}\left(-\psi_{t}\right)(1+t)^{\beta}\left(1+|x|^{2}\right)^{\frac{\alpha}{2}}\left|u_{t}\right|^{2} \\
& \leq \frac{-\epsilon_{2}}{3}\left(\psi_{t}\right) b(t, x)|u|^{2}-\frac{3}{\epsilon_{2} b_{0}}\left(\psi_{t}\right)\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\left|u_{t}\right|^{2}
\end{aligned}
$$

and

$$
\begin{align*}
\left|\eta_{t}(t) u_{t} u\right| & \leq \frac{b(t, x)\left(-\eta_{t}(t)\right)}{2}|u|^{2}+\frac{\left(-\eta_{t}(t)\right)}{2 b_{0}}(1+t)^{\beta}\left(1+|x|^{2}\right)^{\frac{\alpha}{2}}\left|u_{t}\right|^{2}  \tag{3.37}\\
& \leq \frac{-b(t, x) \eta_{t}(t)}{2}|u|^{2}-\frac{\eta_{t}(t)}{2 b_{0}}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\left|u_{t}\right|^{2} .
\end{align*}
$$

Therefore, substituting the estimates (3.35) - (3.37) in (3.34), we get

$$
\begin{align*}
& \frac{d}{d t} E_{\psi}\left(\Omega^{c}\left(t, L, t_{0}\right)\right) \\
& \leq \nabla \cdot\left(e^{2 \psi}\left[\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \rho(x) \nabla u u_{t}+\nu \rho(x) u \nabla u\right]\right) \\
& +\eta(t)\left[\nu+\frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)-\gamma\left(1-\frac{\nu}{b_{0}}\right)}{2 L \frac{1}{A}\left[1-\left(\beta+\frac{\alpha A}{2}\right)\right]}-\frac{b_{0}}{4}+\left(1-\frac{3 \nu}{\epsilon_{2} b_{0}}\right)\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)} \psi_{t}\right] e^{2 \psi}\left|u_{t}\right|^{2} \\
& +\left[-\frac{\nu}{4}+\frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right) \rho_{0}}{2 L^{1-\frac{1}{A}\left(\beta+1+\frac{(\alpha+\delta) A}{2}\right)}}+\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right) \frac{\psi_{t}}{3}}\right] e^{2 \psi} \rho(x)|\nabla u|^{2} \\
& +\eta(t)\left[-\nu-\frac{\gamma}{(p+1)\left(L+|x|^{2}\right)^{\frac{1}{A}\left[1-\left(\beta+\frac{\alpha A}{2}\right)\right]}}+\frac{2 \psi_{t}}{p+1}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\right] e^{2 \psi}|u|^{p+1} \\
& +\nu\left[\frac{-\beta}{2\left(t_{0}+t\right)}+\frac{\left(1-\epsilon_{2}\right)}{3} \psi_{t}\right] e^{2 \psi} \eta(t) b(t, x)|u|^{2} . \tag{3.38}
\end{align*}
$$

Now, just as in the Case 1, we choose a suitable value for $\nu$ which is sufficiently small and a positive constant $k_{0}$ such that the estimates we have below are satisfied.

$$
\begin{align*}
& \nu+\frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)-\gamma\left(1-\frac{\nu}{b_{0}}\right)}{2 L^{\frac{1}{A}}\left[1-\left(\beta+\frac{\alpha A}{2}\right)\right]}-\frac{b_{0}}{4} \leq-k_{0}, \quad-\frac{\nu}{4}+\frac{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right) \rho_{0}}{2 L^{1-\frac{1}{A}\left(\beta+1+\frac{(\alpha+\delta) A}{2}\right)} \leq-k_{0},} \\
& \nu \frac{\left(1-\epsilon_{2}\right)}{3} \geq k_{0}, \quad \frac{2}{p+1} \geq k_{0}, \quad \frac{1}{3} \geq k_{0}, \quad\left(1-\frac{3 \nu}{\epsilon_{2} b_{0}}\right) \geq k_{0}, \quad \nu \geq 2 k_{0}, \\
& \frac{\beta v}{2} \geq k_{0}, \quad \frac{\gamma}{p+1} \geq k_{0}, \tag{3.39}
\end{align*}
$$

which gives the desired estimate. Therefore by integrating the estimate (3.31) over $\Omega^{c}\left(t, L, t_{0}\right)$, we obtain
(3.40) $\frac{d}{d t} H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)-H_{1}^{*}(t)-H_{2}^{*}(t) \leq-H_{3}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)$
where

$$
\begin{align*}
& H_{3}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right) \\
& :=k_{0} \int_{\Omega^{c}\left(t ; L, t_{0}\right)} \eta(t) e^{2 \psi}\left[\left[1+\left(-\psi_{t}\right)\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\right]\right.  \tag{3.41}\\
& {\left[\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right]} \\
& \left.+\left(-\psi_{t}+\frac{1}{t_{0}+t}\right) b(t, x)|u|^{2}+\left[1+\left(L+|x|^{2}\right)^{-\frac{1}{A}\left[1-\left(\beta+\frac{\alpha A}{2}\right)\right]}\right]|u|^{p+1}\right] d x
\end{align*}
$$

Define the function $\mathcal{H}_{\mathcal{E}}{ }^{c}$ by

$$
\begin{aligned}
& \mathcal{H}_{\mathcal{E}}^{c} \\
& =\int_{\substack{\Omega^{c}\left(t ; L, t_{0}\right) \\
(3.42)}} \eta(t)\left[\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\left[\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right]+b(t, x)|u|^{2}\right] e^{2 \psi} d x .
\end{aligned}
$$

It can be proved in a similar way as in Case 1 that for positive constants $k_{1}^{*}, k_{2}^{*}$, the following inequality holds.

$$
\begin{equation*}
k_{1}^{*} \mathcal{H}_{\mathcal{E}}{ }^{c} \leq H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right) \leq k_{2}^{*} \mathcal{H}_{\mathcal{E}}{ }^{c} . \tag{3.43}
\end{equation*}
$$

Multiplying (3.40) by $\left(t_{0}+t\right)^{m}$ for the same constant $m$ as in Case 1, we have

$$
\begin{align*}
\frac{d}{d t} & {\left[\left(t_{0}+t\right)^{m} H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)\right]-\left(t_{0}+t\right)^{m}\left(H_{1}^{*}(t)+H_{2}^{*}(t)\right) } \\
& \leq\left(t_{0}+t\right)^{m}\left[\frac{m}{t_{0}+t} H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)-H_{3}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)\right] . \tag{3.44}
\end{align*}
$$

The term on the right hand side is estimated as

$$
\begin{align*}
\frac{m}{t_{0}+t} & H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)-H_{3}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right) \\
& \leq \frac{m k_{2}^{*}}{t_{0} t} \mathcal{H}_{\mathcal{E}}^{c}-H_{3}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right) \\
& \leq \int_{\Omega^{c}\left(t ; L, t_{0}\right)} e^{2 \psi}\left[\frac{m k_{2}^{*}\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}}{\left(t_{0}+t\right)}-k_{0}\left[1+\left(-\psi_{t}\right)\left(L+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\right]\right] \\
& \times \eta(t)\left[\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right] d x \\
& +\int_{\Omega^{c}\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[\left(\frac{m k_{2}^{*}}{t_{0}+t}-k_{0}\left(-\psi_{t}\right)\right) b(t, x) u^{2}-k_{0}|u|^{p+1}\right] d x . \tag{3.45}
\end{align*}
$$

It can be seen from (3.39) that we can suitably choose $k_{0}$ such that $m k_{2}^{*} \leq \lambda k_{0}(1+\beta+\gamma)$. Therefore the first term on the right hand side of (3.45) yields

$$
\begin{array}{ll}
\int_{\Omega^{c}\left(t ; L, t_{0}\right)} e^{2 \psi}(L & \left.+|x|^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}\left[\frac{m k_{2}^{*}}{\left(t_{0}+t\right)}-k_{0} \lambda(1+\beta+\gamma) \frac{\left(L+|x|^{2}\right)^{\frac{2-(\delta+\alpha)}{2}}}{\left(t_{0}+t\right)^{2+\beta+\gamma}}\right] \\
\leq \int_{\Omega^{c}\left(t ; L, t_{0}\right)} & \times \eta(t)\left[\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right] d x \\
& e^{\left.2 \psi(L+\mid x)^{2}\right)^{\frac{1}{A}\left(\beta+\frac{\alpha A}{2}\right)}}{\left(t_{0}+t\right)}\left[m k_{2}^{*}-k_{0} \lambda(1+\beta+\gamma)\right] \\
& \times \eta(t)\left[\left|u_{t}\right|^{2}+a(t, x)|\nabla u|^{2}+|u|^{p+1}\right] d x \leq 0 . \tag{3.46}
\end{array}
$$

Likewise, for the second term on the right hand side of (3.45), we have

$$
\begin{align*}
& \quad \int_{\Omega^{c}\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[\left(\frac{m k_{2}^{*}}{t_{0}+t}-k_{0} \lambda(1+\beta+\gamma) \frac{\left(L+|x|^{2}\right)^{\frac{2-(\alpha+\delta)}{2}}}{\left(t_{0}+t\right)^{2+\beta+\gamma}}\right) b(t, x) u^{2}-k_{0}|u|^{p+1}\right] d x \\
& \leq \int_{\Omega^{c}\left(t ; L, t_{0}\right)} e^{2 \psi} \eta(t)\left[\left(\frac{m k_{2}^{*}}{t_{0}+t}-\frac{k_{0} \lambda(1+\beta+\gamma)}{\left(t_{0}+t\right)}\right) b(t, x) u^{2}\right] d x \leq 0 .  \tag{3.47}\\
& .47) \\
& \text { Consequently, we have }
\end{align*}
$$

$$
\text { (3.48dt }\left[\left(t_{0}+t\right)^{m} H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)\right]-\left(t_{0}+t\right)^{m}\left(H_{1}^{*}(t)+H_{2}^{*}(t)\right) \leq 0 .
$$

Case 3. With $t_{0}>L$ and $H_{1}=H_{1}^{*}, H_{2}=H_{2}^{*}$, then it follows from (3.26) and (3.48) that

$$
\begin{align*}
\frac{d}{d t} & \left(\left(t_{0}+t\right)^{m}\left[H_{E}\left(t ; \Omega\left(t ; L, t_{0}\right)\right)+H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)\right]\right) \\
49) & \leq \begin{cases}C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}}, & \text { if } \frac{\alpha(p+1)}{(p-1)}>n \\
C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}} \log (2+t), & \text { if } \frac{\alpha(p+1)}{(p-1)}=n \\
C(1+t)^{m-\gamma-\frac{(1+\beta)(p+1)}{p-1}+\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{\alpha(p+1)}{p-1}\right)}, & \text { if } \frac{\alpha(p+1)}{(p-1)}<n .\end{cases} \tag{3.49}
\end{align*}
$$

Choosing

$$
m= \begin{cases}\frac{(1+\beta)(p+1)}{p-1}-1+\gamma+\epsilon & \text { if } \frac{\alpha(p+1)}{(p-1)}>n  \tag{3.50}\\ \frac{(1+\beta)(p+1)}{p-1}-\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{\alpha(p+1)}{p-1}\right)-1+\gamma+\epsilon & \text { if } \frac{\alpha(p+1)}{(p-1)}<n,\end{cases}
$$

for $0<\epsilon<1$ and integrating (3.49) over [ $0, t]$, we obtain

$$
\begin{align*}
{\left[H_{E}(t ;\right.} & \left.\left.\Omega\left(t ; L, t_{0}\right)\right)+H_{E}\left(t ; \Omega^{c}\left(t ; L, t_{0}\right)\right)\right] \\
& \leq \begin{cases}C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}+1-\gamma}, & \text { if } \frac{\alpha(p+1)}{(p-1)}>n \\
C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}+1-\gamma} \log (2+t), & \text { if } \frac{\alpha(p+1)}{(p-1)}=n \\
C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}+\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{\alpha(p+1)}{p-1}\right)+1-\gamma}, & \text { if } \frac{\alpha(p+1)}{(p-1)}<n\end{cases} \tag{3.51}
\end{align*}
$$

In particular, we have

$$
\begin{align*}
\mathcal{A}:= & \int_{\Omega\left(t, L, t_{0}\right)} e^{2 \psi} b(t, x)|u|^{2} d x+\int_{\Omega^{c}\left(t ; L, t_{0}\right)} e^{2 \psi} b(t, x)|u|^{2} d x \\
& \leq \begin{cases}C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1)}+1}, & \text { if } \frac{\alpha(p+1)}{(p-1)}>n \\
C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}+1} \log (2+t), & \text { if } \frac{\alpha(p+1)}{(p-1)}=n \\
C(1+t)^{-\frac{(1+\beta)(p+1)}{p-1}+\frac{1+\beta+\gamma}{2-(\delta+\alpha)}\left(n-\frac{\alpha(p+1)}{p-1}\right)+1}, & \text { if } \frac{\alpha(p+1)}{(p-1)}<n .\end{cases} \tag{3.52}
\end{align*}
$$

Now, set $y=\frac{\left(L+|x|^{2} \frac{2-(\delta+\alpha)}{2}\right.}{\left(t_{0}+t\right)^{1+\beta+\gamma}}$. Since the following estimate

$$
\begin{equation*}
\left(1+|x|^{2}\right)^{\frac{-\alpha}{2}} \geq\left(L+|x|^{2}\right)^{\frac{-\alpha}{2}}=\left[\frac{\left(L+|x|^{2}\right)^{\frac{2-(\delta+\alpha)}{2}}}{\left(t_{0}+t\right)^{1+\beta+\gamma}}\right]^{\frac{-\alpha}{2-(\delta+\alpha)}}\left(t_{0}+t\right)^{\frac{-\alpha}{2-(\delta+\alpha)}(1+\beta+\gamma)} \tag{3.53}
\end{equation*}
$$

holds, then for $y>0$, we have that

$$
\begin{equation*}
e^{2 \lambda y} y^{-\frac{\alpha}{2-(\delta+\alpha)}} \geq C . \tag{3.54}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{equation*}
\mathcal{A} \geq C(1+t)^{-\beta-\frac{\alpha}{2-(\delta+\alpha)}(1+\beta+\gamma)} \int_{\mathbf{R}^{N}} u^{2} d x \tag{3.55}
\end{equation*}
$$

which gives the desired estimate.

Remark 3. The decay result in Theorem 3.1 coincides with that of [8] for the case $\delta=\gamma=0$ and with that of [13] for the case $\delta=\gamma=\alpha=0$.

## References

[1] T.B. N. Bui, "Wave models with time-dependent speed and dissipation", Ph. D. thesis, Technical University Bergakademie Freiberg, 2013.
[2] T. B. N. Bui and M. Reissig, "The interplay between time-dependent speed of propagation and dissipation in wave models", in Fourier analysis, M. Ruzhansky and V. Turunen, Eds. Cham: Birkhäuser, 2014, pp. 9-45.
[3] M. D'Abbicco and M. R. Ebert, "A class of dissipative wave equations with time-dependent speed and damping", Journal of mathematical analysis and applications, vol. 399, no. 1, pp. 315-332, 2013.
[4] M. R. Ebert and W. N. Nascimento, "A classification for wave models with time-dependent mass and speed of propagation", Advances in differential equations, vol. 23, no. 11, pp. 847-888, 2018.
[5] T. Hosono and T. Ogawa, "Large time behavior and $L^{p}-L^{q}$ estimate of solutions of 2-dimensional nonlinear damped wave equations", Journal of differential equations, vol. 203, no. 1, 82-118, 2004.
[6] R. Ikehata, Y. Inoue, "Total energy decay for semilinear wave equations with a critical potential type of damping", Nonlinear analysis, vol. 69, no.1, pp. 1396-1401, 2008.
[7] R. Ikehata, G. Todorova, and B. Yordanov, "Wave equations with strong damping in Hilbert spaces", Journal of differential equations, vol. 254, no. 8, pp. 3352-3368, 2013.
[8] J. Lin, K. Nishihara, and J. Zhai, "L²-estimates of solutions for damped wave equations with space-time dependent damping term", Journal of differential equations, vol. 248, no. 2, pp. 403-422, 2010.
[9] P. Marcati and K. Nishihara, "The $\mathrm{L}^{\mathrm{p}}-\mathrm{L}^{\mathrm{q}}$ estimates of solutions to onedimensional damped wave equations and their application to the compressible flow through porous media", Journal of differential equations, vol. 191, no. 2, pp.445-469, 2003.
[10] T. Narazaki, " ${ }^{p}$ - L ${ }^{q}$ estimates for damped wave equations and their applications to semi-linear problem", Journal of the Mathematical Society of Japan, vol. 56, no. 2, pp. 585-626, 2004.
[11] K. Nishihara, " ${ }^{\mathrm{p}}-\mathrm{L}^{\mathrm{q}}$ estimates of solutions to the damped wave equation in 3-dimensional space and their application", Mathematische zeitschrift, vol. 244, pp.631-649, 2003.
[12] K. Nishihara, "Decay properties for the damped wave equation with space dependent potential and absorbed semilinear term", Communications in partial differential equations, vol. 35 , no. $8, \mathrm{pp}$. 1402-1418, 2010.
[13] K. Nishihara and J. Zhai, "Asymptotic behaviors of solutions for time dependent damped wave equations", Journal of mathematical analysis and applications, vol. 360, no. 2, pp. 412-421, 2009.
[14] P. Radu, G. Todorova, and B. Yordanov, "Decay estimates for wave equations with variable coefficients", Transactions of the American Mathematical Society, vol. 362, no. 5, pp. 2279-2299, 2009.
[15] P. Radu, G. Todorova, and B. Yordanov, "Diffusion phenomenon in Hilbert spaces and applications", Journal of differential equations, vol. 250, no. 11, pp. 4200-4218, 2011.
[16] M. Roberts, "Decay estimates for nonlinear wave equations with variable coefficients", Electronic journal of differential equations, vol. 2019, Art. ID. 91, 2019.
[17] B. Said-Houari, "Asymptotic behaviors of solutions for viscoelastic wave equation with space-time dependent damping term", Journal of mathematical analysis and applications, vol. 387, no. 2, pp. 1088-1105, 2012.
[18] Y. Todorova and B. Yordanov, "Critical exponent for a nonlinear wave equation with damping", Journal of differential equations, vol. 174, no. 2 pp. 464-489, 2001.
[19] G. Todorova, B. Yordanov, "Nonlinear dissipative wave equations with potential", in Control methods in PDE-dynamical systems, F. Ancona, I. Lasiecka, W. Littman and R. Triggiani, Eds. Providence, RI: American Mathematical Society, 2007, pp. 317-337.
[20] K. Yagdjian, "Parametric resonance and nonexistence of the global solution to nonlinear wave equations", Journal of mathematical analysis and applications, vol. 260, no. 1, pp. 251-268, 2001.

On asymptotic behavior of solution to a nonlinear wave equation .. 1639

Paul A. Ogbiyele<br>Department of Mathematics, University of Ibadan,<br>Ibadan, 200284,<br>Nigeria<br>e-mail: paulogbiyele@yahoo.com<br>Corresponding author<br>and

Peter O. Arawomo
Department of Mathematics,
University of Ibadan,
Ibadan, 200284,
Nigeria
e-mail: po.arawomo@ui.edu.ng

