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Abstract

Let A ∈ B(X) be a spectral operator on a non-archimedean Ba-
nach space over Cp. In this paper, we give a necessary and sufficient
condition on the resolvent of A so that the discrete semigroup consist-
ing of powers of A is contractions.
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1. Introduction and Preliminaries

In the archimedean operators theory, necessary and sufficient conditions
on the resolvent of a densely defined closed linear operator for it to be
the infinitesimal generator of a strongly continuous semigroup (T (s))s∈R+

such that there isM ≥ 1, kT (s)k ≤M. In particular, we have the following
theorem and its corollary.

Theorem 1.1. [7] A necessary and sufficient condition that a closed linear
operator A with dense domain be the infinitesimal generator of a strongly
continuous semigroup (T (s))s∈Ωr such that for all s ∈ R+, kT (s)k ≤M is
that

kRλ(A)
nk ≤ M

λn
(1.1)

for λ > 0 and n ∈ N, where Rλ(A) = (λI −A)−1.

Corollary 1.2. [7] A necessary and sufficient condition that a closed linear
operator A with dense domain be the infinitesimal generator of a strongly
continuous semigroup (T (s))s∈Ωr such that for all s ∈ R+, kT (s)k ≤ 1 is
that

kRλ(A)k ≤
M

λ
(1.2)

for λ > 0.

Throughout this paper, X is a non-archimedean (n.a) Banach space
over a (n.a) non trivially complete valued fieldK which is also algebraically
closed with valuation | · |, B(X) denote the set of all bounded linear oper-
ators on X into X, Qp is the field of p-adic numbers (p ≥ 2 being a prime)
equipped with p-adic valuation |.|p, Zp denotes the ring of p−adic integers
of Zp is the unit ball of Qp. For more details and related issues, we refer
to [4] and [6]. We denote the completion of algebraic closure of Qp under
the p-adic abolute value | · |p by Cp (see [4]). Let r > 0, Ωr be the clopen
ball of K centred at 0 with radius r > 0, that is Ωr = {t ∈ K : |t| < r}.
Recall that a free non-archimedean Banach space X is a non-archimedean
Banach space for which there exists a family (ei)i∈I in X\{0} such that any
element x ∈ X can be written in the form of a convergent sum x =

X
i∈I

xiei,

xi ∈ K, i.e., limi∈I xiei = 0 (the limit is with respect to the Fréchet filter
on I) and kxk = supi∈I |xi|keik. Let X be a free non-archimedean Banach
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space, recall that every bounded linear operator A on X can be written in
a unique fashion as a pointwise convergent series, that is, there exists an
infinite matrix (ai,j)(i,j)∈N×N with coefficients in K such that

A =
X
i,j∈N

ai,je
0
j ⊗ ei, and ∀j ∈ N, lim

i→∞
|ai,j |keik = 0,

where (∀i ≥ 1) e
0
i (u) = ui

³
e
0
i is the linear form associated with ei

´
.

Moreover, for each j ∈ N, Aej =
X
i∈N

aijei and its norm is defined by

k A k= sup
i,j

|aij |keik
kejk

.

For more details see [1], Proposition 3.7.

Definition 1.3. [1] Let ω = (ωi)i be a sequence of non-zero elements of
K. We define Eω by

Eω = {x = (xi)i : ∀i ∈ N, xi ∈ K, and limi→∞ |ωi|
1
2 |xi| = 0},

it is equipped with the norm

∀x ∈ Eω : x = (xi)i, kxk = supi∈N(|ωi|
1
2 |xi|).

Remark 1.4. (1) [1], Exemple 2.21. The space
³
Eω, k · k

´
is a non

archimedean Banach space.

(2) If

h·, ·i : Eω ×Eω −→ K

(x, y) 7→
∞X
i=0

xiyiωi,

where x = (xi)i and y = (yi)i. Then, the space

µ
Eω, k · k, h·, ·i

¶
is

called a p-adic (or non archimedean) Hilbert space.

(2) The orthogonal basis {ei, i ∈ N} is called the canonical basis of Eω,

where for all i ∈ N, keik = |ωi|
1
2 .
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Definition 1.5. [6] Let A ∈ B(X), set ν(A) = inf
n
kAnk 1n = lim

n
kAnk 1n ,

A is said to be a spectral operator if sup{|λ| : λ ∈ σ(A)} = ν(A). For

A ∈ B(X), set UA = {λ ∈ K : (I − λA)−1 exists in B(X)}.
µ
UA is open

and 0 ∈ UA

¶
and

CA = {α ∈ K : B(0, |β|) ⊂ UA for some β ∈K, |β| > |α|}.

Proposition 1.6. [6] Let A ∈ B(X), the following are equivalent.

(i) A is a spectral operator.

(ii) For all λ ∈ CA, (I − λA)−1 =
∞X
n=0

λnAn.

(iii) For each α ∈ C∗A, the function λ 7→ (I−λA)−1 is analytic on B(0, |α|).

2. Discrete semigroups of bounded linear operators on non-
archimedean Banach space

We begin with the following definition.

Definition 2.1. Let X be a non-archimedean Banach space over K. A
family (T (n))n∈N of bounded linear operators from X into X is said to be
a discrete semigroup of bounded linear operators on X if

(i) T (0) = I, where I is the unit operator of X;

(ii) For all m,n ∈ N, T (m+ n) = T (m)T (n).

Remark 2.2. Let A ∈ B(X), T (n) = An is a discrete semigroup of
bounded linear operators on X, its generator A.

Definition 2.3. Let X be a non-archimedean Banach space overK. A dis-
crete semigroup (T (n))n∈N is said to be uniformly bounded if sup

n∈N
kT (n)k

is finite.

In contrast with the classical setting, we have the following example.
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Example 2.4. Let K = Qp, if

A =

Ã
1 1
0 1

!

thenA generate a discrete semigroup of bounded linear operators (T (n))n∈N
given by:

∀n ∈N, T (n) =

Ã
1 n
0 1

!
.

In fact, it is easy to check that:

(i) T (0) = I where I is the unit operator on Q2p.

(ii) For all m,n ∈ N, T (m+ n) = T (m)T (n).

(iii) For all z = (x, y) ∈ Q2p, n ∈ N, we have

kT (n)zk =

°°°°
Ã

x+ ny
y

!°°°°,
= max{|x+ ny|p, |y|p},
≤ max{|x|p, |ny|p, |y|p},
≤ max{|x|p, |y|} with |n|p ≤ 1,
≤ kzk.

Then (T (n))n∈N is an uniformly bounded discrete semigroup of bounded
linear operators on Q2p.

We have the following definition.

Definition 2.5. Let X be a non-archimedean Banach space over K, let
(T (n))n∈N be a discrete semigroup of bounded linear operators on X,
(T (n))n∈N is said to be semigroup of contractions if for all n ∈ N, kT (n)k ≤
1.

Example 2.6. Let X = Eω where for all i ∈ N, ωi = pi. Let A be
unilateral shift given by

for all i ∈ N, Aei = ei+1.

Then, for all n ∈ N, Anei = en+i, hence, for all n ∈ N, kAneik
keik = p

−n
2 ≤

1. Consequently, for all n ∈ N, kAnk ≤ 1. Moreover, (An)n∈N is a discrete
semigroup of contractions on Eω.
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We start with the following statements.

Lemma 2.7. Let (T (n))n∈N be a discrete semigroup of bounded linear
operators on X such that sup

n∈N
kT (n)k ≤M. Then there exists an equivalent

norm on X such that (T (n))n∈N becomes a contraction.

Proof. Set: |x|1 = sup
n∈N

kT (n)xk. We have kT (0)k = 1 and

(∀n ∈ N, ) kT (n)k ≤M, then (∀x ∈ X) kxk ≤ |x|1 ≤Mkxk̇ Hence | · |1 is a
norm on X which is equivalent to the original norm k·k on X˙Furthermore,
for all x ∈ X, all n ∈ N, |T (n)x|1 = sup

m∈N
kT (n)T (m)xk = sup

m∈N
kT (n +

m)xk = sup
m≥n

kT (m)xk ≤ sup
m∈N

kT (m)xk = |x|1. 2

In the next Proposition, we assume that Qp ⊂ K.

Proposition 2.8. The set of all discrete semigroup of contractions form a
Zp-subspace of B(X).

Proof. Set C denote the set of all discrete semigroup of contractions on
X into X.

(1) kIXk ≤ 1, Hence C 6= ∅.

(2) Let (T (n))n∈N and (S(n))n∈N in C and λ ∈ Zp, we have

kT (n) + λS(n)k ≤ max

½
kT (n)k; |λ|kS(n)|

¾
;

≤ 1.

Hence, for all n ∈ N and for all λ ∈ Zp, T (n) + λS(n) ∈ C.

2

In the rest of this paper, for A ∈ B(X) be a spectral operator such that
sup
n∈N

kAnk is finite, we assume that UA = B(0, 1) where B(0, 1) = {λ ∈ K :

|λ| < 1}, and for all λ ∈ UA, R(λ,A) = (I − λA)−1.

Proposition 2.9. Let X be a non-archimedean Banach space over K, let
A be a spectral operator and there is M ≥ 1 such that sup

n∈N
kAnk ≤ M.

Then,
for all λ ∈ CA, kR(λ, A)k ≤M.
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Proof. By Proposition 1.6, for all λ ∈ CA, lim
n→∞

|λ|nkAnk = 0, hence

kR(λ, T )k =

°°°°°
∞X
n=0

λnAn

°°°°°
≤ M max

n∈N
|λn|

= M.

2

Proposition 2.10. Let A ∈ B(X) be a spectral operator, let (An)n∈N be
a discrete semigroup of bounded linear operators on X such that sup

n∈N
kAnk

is finite and UA = B(0, 1). Then, for all λ, µ ∈ CA,

λR(λ, A)− µR(µ, A) = (λ− µ)R(λ, A)R(µ, A).

Proof. Let λ, µ ∈ CA, we have

λR(λ, A)(I − µA)R(µ, A)− µR(λ, A)(I − λA)R(µ, A)(2.1)

(2.1) = λR(λ, A)R(µ, A)− λµR(λ, A)AR(µ, A)− µR(λ, A)R(µ, A)

+ λµR(λ, A)AR(µ, A);

= λR(λ, A)R(µ, A)− µR(λ, A)R(µ, A);

= (λ− µ)R(λ, A)R(µ, A).

2

Proposition 2.11. Let A ∈ B(X) be a spectral operator such that UA =
B(0, 1), let (An)n∈N be a discrete semigroup of contractions on X, then for
all λ ∈ CA, kR(λ,A)− Ik ≤ |λ|.

Proof. LetA ∈ B(X) be a spectral operator, then for all λ ∈ CA, R(λ,A) =
∞X
n=0

λnAn. Hence, for all λ ∈ CA,

kR(λ,A)− Ik = k
∞X
n=1

λnAnk,(2.2)

≤ sup
n≥1

kλnAnk,(2.3)

≤ |λ|.(2.4)
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2

Proposition 2.12. Let A ∈ B(X) be a spectral operator such that for all
n ∈N, kAnk ≤ 1, then for all n ∈ N, α ∈ C∗A, λ ∈ Ω|α|,

R(n)(λ,A) = n!(R(λ,A)−I)nR(λ,A)
λn .

Proof. Using Proposition 2.10, for all λ, µ ∈ Ω|α| whith α ∈ C∗A,µ
λI + (µ− λ)I + (λ− µ)R(λ,A)

¶
R(µ,A) = λR(λ,A).(2.5)

Then

µ
I − 1

λ
(µ− λ)(R(λ,A)− I)

¶
R(µ,A) = R(λ,A).(2.6)

The quantity in square brackets on the left of this equation is invertible for
|λ|−1|µ− λ|kR(λ,A)− Ik < 1. Thus

R(µ,A) =
∞X
n=0

(R(λ,A)− I)nR(λ,A)

λn
(µ− λ)n.(2.7)

But it follows from Proposition 1.6 that R(µ,A), is analytic on B(λ, |α|).
From A ∈ B(X) is spectral operator, then for all s, t ∈ Ω|α|, R(µ,A) can
be written as follows:

R(µ,A) =
P∞

n=0
R(n)(λ,A)

n! (µ− λ)n.

Hence, for all n ∈N, λ ∈ Ω|α|,
R(n)(λ,A) = n!(R(λ,A)−I)nR(λ,A)

λn . 2

We have the following theorem.

Theorem 2.13. Let X be a non-archimedean Banach space over Cp, and
A ∈ B(X) be a spectral operator, then for all n ∈ N, kAnk ≤ 1 if and only
if

k
µ
R(λ,A)− I

¶n
R(λ,A)k ≤ |λ|np ,(2.8)

for all λ ∈ Ω|α| where α ∈ C∗A and R(λ,A) = (I − λA)−1.
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Proof. Assume that for all n ∈ N, kAnk ≤ 1, let α ∈ C∗A, by Proposition

1.6, R(λ,A) = (I−λA)−1 =
∞X
k=0

λkAk is analytic on Ω|α|. Using Proposition

2.12, for all n ∈ N, λ ∈ Ω|α|,

R(n)(λ,A) =
n!(R(λ,A)− I)nR(λ,A)

λn
,(2.9)

and

R(n)(λ,A) =
∞X
k=n

k(k− 1) · · · (k−n+1)λk−nAk ==
∞X
k=n

n!

Ã
k

n

!
λk−nAk,

then for all n ∈N and λ ∈ Ω|α|,

°°°°R(n)(λ,A)n!

°°°° = k
∞X
k=n

Ã
k

n

!
λk−nAkk,(2.10)

≤ sup
k≥n

|
Ã
k

n

!
|p|λ|k−np kAkk,(2.11)

≤ sup
k≥n

|λ|k−np kAkk,(2.12)

≤ 1.(2.13)

Thus, for all n ∈ N and t ∈ Ω|α|,°°°°R(n)(λ,A)n!

°°°° ≤ 1.(2.14)

From 2.9 and 2.14, we have for all n ∈ N, λ ∈ Ω|α|,

k(R(λ,A)− I)nR(λ,A)k ≤ |λ|np .(2.15)

Conversely, let A ∈ B(X) be a spectral operator, we assume that 2.8,

for all λ ∈ Ω|α|, R(λ,A) =
∞X
n=0

λnAn. Set for all λ ∈ Ω|α|, k ∈ N, Sk(λ) =

λ−k(R(λ,A)− I)kR(λ,A), then for all λ ∈ Ω|α|, k ∈ N, kSk(λ)k ≤ 1. Since
A and R(λ,A) commute, we have:

Sk(λ) = λ−k
µ³

I − (I − λA)
´
R(λ,A)

¶k
R(λ,A),(2.16)

= λ−k(λAR(λ,A))kR(λ,A),(2.17)

= AkR(λ,A)k+1.(2.18)
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Then for all λ ∈ Ω|α|, k ∈N,

kAkk = k(I − λA)k+1Sk(λ)k,(2.19)

≤ k(I − λA)k+1kkSk(λ)k,(2.20)

≤ k
k+1X
j=0

Ã
k + 1

j

!
(−λA)jk,(2.21)

≤ max{1, kλAk, kλ2A2k, · · · , kλk+1Ak+1k},(2.22)

for λ→ 0, we have for all k ∈N, kAkk ≤ 1. 2

For A densely closed linear operator on X, the resolvant set ρ(A) is the
set of all λ ∈ K such that the range Im(λ − A) is dense in X and that
λI−A has the continous inverse (λI−A)−1 onD((λI−A)−1) = Im(λI−A),µ
where Im(λI−A) denote the range of (λI−A)

¶
. In the next statements,

we assume that K is a non-archimedean non trivially complete valued field
with valuation | · |.

Theorem 2.14. Let X be a non-archimedeab Banach space of countable
type over K, let (An)n∈N be a discrete semigroup of genrator A be densely
defined closed linear operator on X such that Im(A) ⊂ D(A). Suppose
that ρ(A) 6= ∅, then A is bounded.

Proof. Let (An)n∈N be a discrete semigroup, suppose that ρ(A) 6= ∅,
let λ ∈ ρ(A), hence (λI −A)−1 ∈ B(X), then there exists M > 0 such that

for all x ∈ D(λI −A) = D(A), k(λI −A)xk ≥Mkxk.(2.23)

Or A be densely closed linear operator, then Im(λI − A) is closed. In
fact, xn ∈ D(A) and z ∈ X, (λI − A)xn → z. By inequality 2.23, (xn)
is a Chauchy sequence in X. Or X is complete, then xn → x, for some
x ∈ X. Thus, xn → x and Axn → λx− z. By the closedness of A, we have
x ∈ D(A) and Ax = λx − z. Since λ ∈ ρ(A), Im(λI − A) is dense in X,
then Im(λI − A) = X. Consequently, X = Im(λI − A) ⊆ D(A), hence
D(A) = X, then A is bounded. 2

Proposition 2.15. Let X be a non-archimedean Banach space overK, let
A ∈ B(X) such that kAk < 1. Let q(λ) be an arbitrary polynomial and set
p(λ) = 1− (1− λ)q(λ). Then we have

kp(A)k = k(I −A)−1 − q(A)k.
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Proof. Let A ∈ B(X) such that kAk < 1. Let q(λ) be an arbitrary
polynomial and set p(λ) = 1− (1− λ)q(λ), then

(I −A)−1 − q(A) = (I −A)−1
µ
I − (I −A)q(A)

¶
(2.24)

= (I −A)−1p(A).(2.25)

Thus,

k(I −A)−1 − q(A)k = k(I −A)−1p(A)k,(2.26)

≤ kp(A)k.(2.27)

On the other hand,

p(A) = (I −A)

µ
(I −A)−1 − q(A)

¶
.(2.28)

Hence,

kp(A)k = k(I −A)

µ
(I −A)−1 − q(A)

¶
k,(2.29)

≤ k(I −A)kk
µ
(I −A)−1 − q(A)

¶
k,(2.30)

≤ k
µ
(I −A)−1 − q(A)

¶
k.(2.31)

Then,
kp(A)k = k(I −A)−1 − q(A)k.

2
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