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Abstract

In this paper, we investigate an inverse source problem involving
a one-dimensional diffusion equation of a time-fractional Riemann-
Liouville derivative with 0 < α < 1. First, results on the existence
and regularity of the weak solution of the direct problem are obtained.
For the determination of the unknown time-dependent source term,
we use a monotone and distinguishable input-output mapping defined
by the additional over-determination integral data for the considered
sub-diffusion problem. Finally, the uniqueness of the solution of the
inverse problem is proved.
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1. Introduction

Problems of determination of unknown source term in a diffusion equation
play a crucial role in engineering, physics and applied mathematics. They
are called inverse source diffusion problems and intensive investigations
have been carried out concerning this kind of inverse problems by various
theoretical and numerical methods, see for example [1, 3, 4, 6, 7, 9].

On the other hand, fractional integrals and derivatives which are gen-
eralizations of ordinary ones to an arbitrary fractional order, have a non-
local character and are used to describe memory and hereditary properties
of various phenomena and processes in science and engineering such as
chemistry, mechanics, control and viscoelasticity. Hence, fractional partial
differential equations become an important tool in modeling many real-
life problems, in some cases when the standard diffusion equations have
a disagreement with experimental data due to non Gaussian diffusion and
there are some important applications of the anomalous diffusion processes;
to know more about see [8, 27]. Note that, by a time-fractional diffu-
sion equation we mean a parabolic-like partial differential equation with
the partial time derivative of fractional order. It is called subdiffusion
equation when 0 < α < 1. There are many works on the direct prob-
lems for subdiffusion equations such as an initial-boundary value problem
[5, 15, 13, 14, 16, 17, 21, 24, 25]. Also, there has been growing interest in
studying inverse problems of time-fractional partial differential equations
by using different approaches [2, 10, 11, 18, 19, 20, 21, 22, 28]. The recov-
ering of unknown source term is frequently investigated and various inverse
problems were developed.

In this paper, we consider the inverse problem of finding a pair of func-
tions {u(x, t), c(t)} on ΩT = {(x, t) : 0 < x < 1, 0 < t ≤ T} which satisfies
the time-fractional diffusion equation

∂α0+,tu(x, t)− uxx (x, t) = c(t)f(x); (x, t) ∈ ΩT(1.1)

along with the fractional integral initial condition

lim
t−→0+

I1−α0+,t u(x, t) = ϕ(x); x ∈ [0, 1](1.2)

and the Dirichlet boundary conditions

u(0, t) = 0 = u(1, t); t ∈ (0, T ].(1.3)
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ϕ(x), f(x) are given functions, ∂α0+,t and I
1−α
0+,t stand for Riemann-Liouville

time fractional partial derivative of order 0 < α < 1 and integral of order
1− α, respectively.

The initial and boundary conditions are not sufficient to obtain the so-
lution, an additional condition is required to determine the time-dependent
source term c (t). The additional data may be given in an interior point, on
the boundary or on the whole domain. Here, we give the overdetermination
integral condition

Z 1

0
xu(x, t)dx = g (t) ; t ∈ (0, T ](1.4)

where g(t) is a given function.

Our main goal is to investigate theoretical aspects of the problem by
analyzing the weak solution and uniquely recover the source term from the
additional data (1.4). We introduce the input-output mapping G (c) = g (t)
on some admissible functions space H and determine analytically its se-
ries representation by using the additional integral overdetermination data.
Hence, the inverse problem is reduced to the problem of the invertibility of
the input-output mapping.

The new in this study that the problem is involving with Riemann-
Liouville fractionnal derivative with 0 < α < 1 and the fractional integral
initial condition.

The rest of the paper is structured as following. After some preliminar-
ies about fractional calculus in the next section, we obtain, in section 3,
existence and regularity results for the unique weak solution of the direct
problem (1.1)-(1.3) using the Fourier method and Duhamel’s principle (see
[26] for the fractional case) to give the spectral representation of the solu-
tion. In section 4, we obtain the input-output mapping explicitly from the
additional data g (t) and discuss its monotonicity and distinguishability via
the source term c (t). This ensures the unique determination of c (t). Then,
we check the uniqueness of the pair {u(x, t), c(t)} solution of the inverse
problem.

2. Preliminaries

In this section, we present some useful definitions and results of fractional
calculus which can be found in these books [12, 23].
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Definition 1. The left-sided Riemann-Liouville fractional integral of order
0 < α < 1 of f ∈ L1 (0, T ) is defined by

Iα0+f(t) :=
1

Γ(α)

Z t

0

f(s)

(t− s)1−α
ds, t > 0,

where Γ(α) is the Euler gamma function.

Proposition 2. For the Euler gamma function Γ(z) the following hold:

Γ (z + 1) = zΓ (z) ;

1Z
0

tz−1(1− t)w−1dt =
Γ (z)Γ (w)

Γ(z + w)
; z, w ∈ R+.

Definition 3. The left-sided Riemann-Liouville fractional derivative of or-
der 0 < α < 1 is defined by

Dα
0+f(t) :=

d

dt
I1−α0+ f(t) =

1

Γ(1− α)

d

dt

Z t

0

f(s)

(t− s)α
ds,

for all f ∈ L1 (0, T ) such that I1−α0+ f1,1(0, T ), a Sobolev space.

Proposition 4. For 0 < α < 1, f ∈ L1 [0, T ] , I1−α0+ f ∈W 1,1(0, T ),

Iα0+D
α
0+f(t) = f(t)− tα−1

Γ (α)
I1−α0+ f

¡
0+
¢
; Dα

0+I
α
0+f(t) = f(t).

We need to define an appropriate space: Cγ [0, T ] , 0 ≤ γ < 1 the
weighted space of functions f defined on (0, T ] such that tγf ∈ C [0, T ]
which is a Banach space with the norm kukCγ [0,T ] = kt

γukC[0,T ]. Also, we
define the α-weighted space

Cα
1−α[0, T ] = {u ∈ C1−α[0, T ] : D

α
0+u ∈ C1−α[0, T ]; 0 < α < 1} .

Lemma 5. Let 0 < α < 1,the functions f ∈ L1 [0, T ] and K (t) has a
measurable derivative K 0 (t) almost everywhere on [0, T ], then for any t ∈
[0, T ],

Dα
0+

Z t

0
f (s)K (t− s) ds =

Z t

0
f (t− s)Dα

0+,sK (s) ds+f (t) lim
s→0+

I1−α0+,sK (s) .

(2.1)
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Let us present the Mittag-Leffler Function which is an important
tool in fractional calculus.

Definition 6. A two-parameter Mittag-Leffler function is defined by the
series expansion

Eα,β(z) =
X
n≥0

zn

Γ(αn+ β)
; α, β, z ∈ C with Reα > 0.(2.2)

In particular, for β = 1, Eα,1(z) = Eα(z), for α = β = 1; E1(z) = ez

and for α = β, we define a special function called α-Exponential function
defined by

eα (λ, z) = zα−1Eα,α(λz
α), α, λ ∈ C, z ∈ C\ {0} with Reα > 0.

Corollary 7. The following properties hold on (0, T ] for α > 0, β > 0,
λ ∈ R :

(1) 0 < Eα,β(λt
α) <∞; lim

t→0
Eα,β(λt

α) =
1

Γ (β)
and

Iα0+

³
tβ−1Eα,β(λt

α)
´
= tα+β−1Eα,α+β(λt

α).

(2) eα (λ, t) is bounded positive completely monotonic function and
satisfies

Z t

0
eα (λ, s) ds < ∞;

Dα
0+ ( eα (λ, t)) = λ eα (λ, t) .

Theorem 8. For a sequence of functions (fi (t))i≥0 defined on (0, T ], sup-
pose the following conditions are fulfilled:

(i) For a given α > 0 the α-derivatives Dα
0+fi(t), i ≥ 0; t ∈ (0, T ] exists.

(ii)
P∞

i=1 fi(t) and
P∞

i=1D
α
0+fi(t) are uniformly convergent on the in-

terval [ε, T ] for any ε > 0.

Then the function defined by the series
P∞

i=1 fi(t) is α− differentiable
and satisfies

Dα
0+

∞X
i=1

fi(t) =
∞X
i=1

Dα
0+fi(t).
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Theorem 9. The Cauchy type fractional problem(
Dα
0+u(t) = λu(t), 0 < α < 1, t ∈ (0, T ], λ ∈ R∗,

lim
t−→0+

I1−α0+ u(t) = c,(2.3)

has a unique solution u ∈ Cα
1−α [0, T ] given by u(t) = ceα (λ, t) .

Remark 10. For 0 < α < 1, t ∈ (0, T ], u ∈ C1−α [0, T ]; lim
t−→0+

I1−α0+ u(t) =

c is equivalent to lim
t−→0+

t1−αu(t) = c/Γ (α) .

3. Direct Problem

In this section, we will establish the spectral representation, existence,
uniqueness and some regularity results for the weak solution of (1.1)-(1.3).
To this end, we state some assumptions on c, f and ϕ obviously with
H2(0, 1) and H1

0 (0, 1) denote the Sobolev spaces.
(A1) c ∈ C1−α[0, T ] ∩ L2 (0, T ) is positive and c (t) 6= 0 for each t ∈

(0, T ] .
(A2) f ∈ H1

0 (0, 1) with f 0 (0) = f 0 (1) .
(A3) ϕ ∈ H1

0 (0, 1) with ϕ0 (0) = ϕ0 (1) .
The initial boundary value problem (1.1)-(1.3) has a formal solution

u (x, t) defined in the domain ΩT as a Fourier series of the form

u (x, t) =
X
n≥0

un (t)Xn (x) ;(3.1)

where the eigenfunctions Xn (x) = sinnπx;n ≥ 1, corresponding to the
eigenvalues λn = (nπ)

2 , n ≥ 1 of the spectral problem(
−X” (x) = λX (x) ; x ∈ (0, 1)

X(0) = 0 = X(1),
(3.2)

form an orthogonal basis for the space L2(0, 1).
Let us define what we mean by a weak solution.

Definition 1. We call u (x, t) ∈ C1−α
¡
[0, T ] ,H1

0 (0, 1)
¢
is a weak solution

to the subdiffusion problem (1.1)-(1.3) if it satisfies the equation

1Z
0

³
∂α0+,tu(x, t)− uxx(x, t)− c(t)f (x)

´
φ (x) dx = 0, for any t ∈ (0, T ];
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and
1Z
0

µ
lim

t−→0+
I1−α0+,tu(x, t)− ϕ(x)

¶
φ (x) dx = 0;

for any φ ∈ H1
0 (0, 1).

Theorem 2. Under assumptions (A1)-(A3), there exists a unique weak
solution defined by (3.1) of the time-fractional diffusion problem (1.1)-(1.3)
where the coefficients un (t) , n ≥ 1 are given by

un(t) = ϕneα(−λn, t) + fn

tZ
0

c(s)eα(−λn, t− s)ds;(3.3)

where ϕn = 2

1Z
0

ϕ(x)Xn (x) dx, n ≥ 1 and fn = 2

1Z
0

f(x)Xn (x) dx, n ≥ 1.

Furthermore,for each n ≥ 1, un is in Cα
1−α [0, T ].

Proof. In order to simplify the initial-boundary values problem (1.1)-
(1.3), we put u (x, t) = v (x, t) +w (x, t) where w(x, t) is the solution of⎧⎪⎨⎪⎩

∂α0+,tw(x, t)− wxx = 0; (x, t) ∈ (0, 1)× (0, T ]
lim

t−→0+
I1−α0+,tw(x, t) = ϕ(x); x ∈ [0, 1]

w(0, t) = 0 = w(1, t); t ∈ (0, T ]
(3.4)

and v(x, t) is the solution of⎧⎪⎨⎪⎩
∂α0+,tv(x, t)− vxx = c(t)f(x); (x, t) ∈ (0, 1)× (0, T ]
lim

t−→0+
I1−α0+,tv(x, t) = 0; x ∈ [0, 1]

v(0, t) = 0 = v(1, t); t ∈ (0, T ].
(3.5)

The formal solution of (3.4) is given by w (x, t) =
P∞

n=1wn(t)Xn (x),

where wn(t) = 2

1Z
0

w(x, t)Xn (x) dx, n ≥ 1 are solutions of the fractional

problem (
Dα
0+wn(t) = −λnwn (t) , t ∈ (0, T ] ;n ≥ 1

lim
t−→0+

I1−α0+ wn(t) = ϕn,
(3.6)

given in Cα
1−α [0, T ] by
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wn(t) = ϕneα (−λn, t) ; t ∈ (0, T ] ; n ≥ 1.(3.7)

Therefore, the solution of (3.4) can be written as the series:

w(x, t) =
X
n≥1

ϕneα (−λn, t)Xn (x) .(3.8)

To determine v (x, t) =
P

n≥1 vn (t)Xn (x) solution of (3.5), we use

Duhamel’s principle. So, we put v (x, t) =

tZ
0

V (x, t, s) ds and by Lemma 5

we get V (x, t, s) is the solution of

⎧⎪⎨⎪⎩
∂αs+,tV (x, t, s)− Vxx (x, t, s) = 0; x ∈ (0, 1); 0 < s < t ≤ T

lim
t→s+

I1−α0+,sV (x, t, s) = f(x)c(s); x ∈ [0, 1]
V (0, t, s) = 0 = V (1, t, s); 0 < s < t ≤ T,

(3.9)

satisfying, in view of (3.8),

V (x, t, s) =
X
n≥1

Vn (t, s)Xn (x) =
X
n≥1

fnc(s)eα (−λn, t− s)Xn (x) ,(3.10)

where Vn (., s) ∈ Cα
1−α [0, T ] for each 0 < s < t. Thus,

v (x, t) =
X
n≥1

fn

tZ
0

c (s) eα (−λn, t− s) dsXn (x) .(3.11)

Finally, to sum up (3.8) and (3.11), the spectral representation of the
solution to the problem (1.1)- (1.3) is of the form (3.1)-(3.3).

In view of Theorem 9 and (A1)-(A3), for each fixed n ≥ 1, the solutions
of (3.5) and (3.6) are unique. Hence, for any n ≥ 1, wn (t) + vn (t) = un (t)
is unique in Cα

1−α [0, T ]. This leads to the uniqueness of the weak solution
u (x, t) with the spectral representation (3.1)- (3.3). This completes the
proof. 2

Now, we deal with the regularity properties of u (x, t) for a fixed term-
source c (t) in C1−α[0, T ]. Let us denote,

M :=sup
n>0

sup
0≤s<t≤T

Eα,α(−λn (t− s)α);(3.12)
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M1 :=sup
n>0

sup
0≤s<t≤T

λneα (−λn, t− s) ;(3.13)

Q1 := TαΓ
2 (α)

Γ (2α)
M.(3.14)

Q2 := T 1−αM1; Q3 :=
T

α
M1.(3.15)

Theorem 3. The unique weak solution of (1.1)-(1.3) is in C1−α([0, T ];L2(0, 1))
and satisfies the following approximation

kukC1−α([0,T ];L2(0,1)) ≤M kϕkL2(0,1) +Q1 kckC1−α[0,T ] kfkL2(0,1) ,(3.16)

for some positive constants M and Q1 given by (3.14).

Proof. The L2(0, 1) norm of w (x, t) with respect to x, satisfies for each
t ∈ (0, T ]

kw (., t)k2L2(0,1) =
1

2

X
n≥1

|wn (t)|2 .

This yields, for t ∈ (0, T ] ,

kw (., t)k2L2(0,1) ≤
1

2

X
n≥1

ϕ2n [eα (−λn, t)]2

≤ 1

2

h
Mtα−1

i2X
n≥1

ϕ2n ≤ t2(α−1)M2 kϕk2L20,1) ;

whereM is given by (3.12). By similar approximations and in view of (A2)
we get from (3.11) for each t ∈ (0, T ]

kv (., t)k2L2(0,1) =
1

2

X
n≥1

|vn (t)|2

≤ M2

2
kck2C1−α[0,T ]

X
n≥1

|fn|2
⎡⎣ tZ
0

sα−1 (t− s)α−1 ds

⎤⎦2

≤
Ã
t2α−1

Γ2 (α)

Γ (2α)

!2
kck2C1−α[0,T ]M

2 kfk2L2(0,1) .
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Hence, for each t ∈ (0, T ] we get

ku (., t)kL2 [0,1] ≤ kw (., t)kL2(0,1) + kv (., t)kL2(0,1)

≤ tα−1M kϕkL2(0,1) + t2α−1
Γ2 (α)

Γ (2α)
kckC1−α[0,T ]M kfkL2 (0,1) .

This leads to the result (3.16) with (3.14) which completes the proof.
2

Theorem 4. The unique weak solution of (1.1)-(1.3) u ∈ C1−α([0, T ];
H1
0 (0, 1)∩H2(0, 1)) such that ∂α0+,tu ∈ L2((0, T );L2(0, 1)) and satisfies the

following approximations

kukC1−α([0,T ];H1
0 (0,1))

+
°°°∂α0+,tu°°°

C1−α([0,T ];L2(0,1))
≤ A1 kϕkL2(0,1)(3.17)

+A2 kckC1−α[0,T ] kfkL2(0,1) ,

for some positive constants Ai, i = 1, 2 given by

A1 := Q2

µ
1

π
+ 1

¶
; A2 := Q3

µ
1

π
+ 1

¶
+ 1;(3.18)

where Q2, Q3 are defined by (3.15).

Proof. From (3.1)-(3.3) the spectral form of u (x, t), we deduce ux (x, t) =
wx (x, t) + vx (x, t). Then, under (A3), we get

kwx (., t)k2L2 (0,1) =
1

2

X
n≥1

λnw
2
n (t)

≤ 1

2

X
n≥1

|ϕn|2 λn [eα (−λn, t)]2

≤ M2
1

2

X
n≥1

(ϕn)

λn

2

≤ M2
1

π2
kϕk2L2(0,1) ;

where M1 is given by (3.13). Also, we get
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kvx (., t)k2L2 (0,1) ≤
1

2

X
n≥1

|fn|2

λn
kck2C1−α[0,T ]

×

⎡⎣ tZ
0

sα−1λneα (−λn, t− s) ds

⎤⎦2

≤ M2
1

π2
kfk2L2(0,1) kck

2
C1−α[0,T ]

∙
tα

α

¸2
.

As the H1
0 (0, 1) norm of u (x, t) with respect to x is

ku (., t)kH1
0 (0,1)

= kux (., t)kL2(0,1) ;

we obtain

kukC1−α([0,T ];H1
0 (0,1))

≤ Q2
π
kϕkL2(0,1) +

Q3
π
kckC1−α[0,T ] kfkL2(0,1) ,(3.19)

with (3.15). Thus, u ∈ C1−α([0, T ];H1
0 (0, 1)).

By the above similar arguments, we get

kwxx(., t)k2L2 (0,1) =
1

2

X
n≥1

λ2nw
2
n (t) ≤M2

1 kϕk2L2(0,1) ;

kvxx(., t)k2L2 (0,1) =
1

2

X
n≥1

λ2nv
2
n (t) ≤

µ
tα

α

¶2
kck2C1−α[0,T ]M

2
1 kfk2L2(0,1) .

Hence,

kuxx(., t)kL2 (0,1) ≤M1

µ
kϕkL2(0,1) +

tα

α
kckC1−α[0,T ] kfkL2(0,1)

¶
.

This implies that u (., t) ∈ H2(0, 1) for t ∈ (0, T ]. Next, note that
Dα
0+un (t) , n ≥ 1 exist for t ∈ (0, T ] and satisfies by fractional calculus

Dα
0+un (t) = ϕnD

α
0+,t eα (−λn, t) +

Z t

0
fnc (t− s)Dα

0+,s eα (λn, s) ds

+fnc (t) lim
s→0+

I1−α0+,seα (−λn, s)

= −ϕnλn eα (−λn, t)−
Z t

0
fnc (t− s)λn eα (λn, s) ds

+fnc (t) lim
s→0+

Eα,1(−λnsα).
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Thus, by hypotheses, we get

¯̄̄̄
¯̄X
n≥1

Dα
0+un (t)Xn (x)

¯̄̄̄
¯̄ ≤ M1 |ϕ (x)|+ |f (x)|

µ
M1

Z t

0
c (t− s) ds+ c (t)

¶
≤ M1 |ϕ (x)|

+ |f (x)|
µ
M1

tα

α
kckC1−α[0,T ] + tα−1 kckC1−α[0,T ]

¶
.

In consequent, the series
P

n≥1D
α
0+un (t)Xn (x) is uniformly convergent

for t ∈ [ , T ] , > 0 and in view of Theorem 8X
n≥1

Dα
0+un (t)Xn (x) = Dα

0+

X
n≥1

un (t)Xn (x) .

By (1.1), we have for t ∈ (0, T ]°°°∂α0+,tu(., t)°°°
L2 (0,1)

≤ kuxx(., t)kL2(0,1) + |c(t)| kfkL2(0,1) .

In view of the approximation of uxx(x, t) we get

°°°∂α0+,tu(., t)°°°
L2 (0,1)

≤ M1

µ
kϕkL2(0,1) + kckC1−α[0,T ]

Tα

α
kfkL2(0,1)

¶
+ |c(t)| kfkL2(0,1) ,

which implies in view of A1 that the time-fractional derivative of u is in
L2((0, T );L2(0, 1)) and yields

°°°∂α0+,tu°°°
C1−α([0,T ];L2(0,1))

≤ Q2 kϕkL2(0,1)+(1 +Q3) kckC1−α[0,T ] kfkL2(0,1) ,
(3.20)
with Q2 and Q3 are defined by (3.15). Then, between (3.20) and (3.20)
we conclude (3.17). In view of (3.16) and (3.20) we deduce that u (x, .) ∈
Cα
1−α [0, T ] almost everywhere on [0, 1] in L2(0, 1). 2

4. Inverse source Problem

Now, to prove the existence and uniqueness of the time dependent source
term c (t) we study the monotonicity and distinguishability of the input-
output mapping that can be determined as well.
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Therefore, multiplying (3.1) by x and integrating over [0, 1], g (t) can
be determined analytically by a series representation, for t ∈ (0, T ] ,

g (t) =
X
n≥1

(−1)n+1

nπ
ϕnt

α−1Eα,α(−λntα)(4.1)

+
X
n≥1

(−1)n+1

nπ
fn

tZ
0

c (s) (t− s)α−1Eα,α(−λn (t− s)α)ds,

which is well defined in view of (A1)-(A3).
Moreover (A1)-(A3), we assume the following assumptions:
(A4) g ∈ Cα

1−α[0, T ] and lim
t→0+

I1−α0+ g(t) =
R 1
0 xϕ(x)dx.

(A5) (−1)n fn ≥ 0;n ≥ 1 and
1Z
0

xf(x)dx 6= 0.

(A6) ϕn ≥ 0;n ≥ 1 and
1Z
0

xϕ(x)dx 6= 0.

Let us denote the set of admissible time-dependant source terms c (t)
by

H = {c ∈ C1−α [0, T ] : 0 < C0 ≤ c (t) ≤ C1, t ∈ (0, T ] } ⊂ C1−α [0, T ]

and by G⊂Cα
1−α[0, T ] the set of measured (free noisy) output data g (t).

Then, define the input-output mapping G (.) : H → G in view of the
right-hand side of (4.1) as follows:

G (c) =Wϕ + Vc = g, g ∈ G,(4.2)

where Wϕ and Vc are the part of (4.1) depending of ϕ and c respectively
given by

Wϕ (t) =

1Z
0

xw (x, t) dx =
X
n≥1

(−1)n+1

nπ
ϕnt

α−1Eα,α(−λntα);(4.3)

and

Vc (t) =

1Z
0

xv (x, t) dx =
X
n≥1

(−1)n+1

nπ
fn

tZ
0

c (s) (t− s)α−1Eα,α(−λn (t− s)α)ds.

(4.4)
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Hence, the inverse problem of determination of the time-source term
c (t) in (1.1)-(1.4) is reduced to the problem of invertibility of G.

Remark 1. The existence of c (t) inH derive from the relation g (t) −
Wϕ (t) = Vc (t) .

Let u (x, t), eu (x, t) be two solutions of the direct problem (1.1)-(1.3) and
g (t) , eg (t) be the overdetermination data corresponding to the admissible
time-source terms c, ec ∈ H respectively. Now, to ensure the existence of
the solution of the inverse problem let’s show the monotonicity of G.

Theorem 2. Let assumptions (A1)-(A6) hold. Then, the operator G is
monotone on H.

Proof. Given c, ec ∈ H such that 0 < c (t) ≤ ec (t) ; t ∈ (0, T ] , without
problems we can suppose that f (x) is positive and have(

∂α0+,tu (x, t)− uxx (x, t) ≤ ∂α0+,t eu (x, t)− euxx (x, t) ; (x, t) ∈ Ω
lim

t−→0+
I1−α0+,tu(x, t) = lim

t−→0+
I1−α0+,t eu(x, t); x ∈ [0, 1] .

Multiply by x and integrate over [0, 1] to obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dα
0+ ( eg (t)− g (t)) ≥

1Z
0

x (euxx (x, t)− uxx (x, t)) dx, t ∈ (0, T ]

lim
t−→0+

I1−α0+ (eg (t)− g (t)) = 0.

(4.5)

We have for t ∈ (0, T ]

1Z
0

x (euxx (x, t)− uxx (x, t)) dx = eux (1, t)− ux (1, t)

=
X
n≥1

(−1)n fn
³ehn (t)− hn (t)

´
;

where, for n ≥ 1,

ehn (t)− hn (t) = nπ

tZ
0

(ec (s)− c (s)) (t− s)α−1Eα,α(−λn (t− s)α)ds ≥ 0.
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Apply Iα0+ to the first equation of (4.5), we get

eg (t)− g (t) ≥
X
n≥1

(−1)n fnIα0+
³ehn (t)− hn (t)

´
≥ 0;

which implies the monotonicity of G. The proof is complete. 2

Although w (x, t) the solution of (3.4) does not depend on the source
term c (t) but it influences its uniqueness compared to the initial data. So,
we must present a uniqueness result concerning Wϕ the part of G related
on the input data ϕ.

Lemma 3. Let w1 (x, t), w2 (x, t) be the solutions of the direct problem
(3.4) related to the initial conditions ϕ (x), ψ (x) and Wϕ, Wψ be the part
of G related to the input data ϕ (x), ψ (x) respectively given by (4.3) where
ϕ (x), ψ (x) satisfy assumptions (A3) and (A6). If

Wϕ (t) =Wψ (t) , 0 < t ≤ T,

then,

ϕ (x) = ψ (x)(4.6)

almost everywhere on [0, 1].

Proof. wϕ (x, t), wψ (x, t) ∈ C1−α
¡
[0, T ] ;L2 [0, 1]

¢
the solutions of the

direct problem (3.4) related to the initial conditions ϕ (x) and ψ (x) are given
by (3.8), respectively. It is clear thatWϕ (t) ,Wψ (t) are in C1−α [0, T ]. Let
us suppose that

ϕ (x) > ψ (x) ; x ∈ (xi, xi+1) , i = 1, ...,m
ϕ (x) = ψ (x) ; otherwise,

for some xi ∈ [0, 1] , i = 1, ...,m+ 1. Then, we get

0 <
mX
i=1

xi+1Z
xi

x [ϕ (x)− ψ (x)] dx =

1Z
0

x [ϕ (x)− ψ (x)] dx

≤
1Z
0

x
X
n≥1

[ϕn − ψn]Xn (x) dx.
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Thus, by the fact that

lim
t→0+

t1−αtα−1Γ (α)Eα,α(−λntα) = 1,(4.7)

we get

0 <

1Z
0

x
X
n≥1

|ϕn − ψn| lim
t→0+

t1−αΓ(α)tα−1Eα,α(− (nπ)2 tα)Xn (x) dx

≤ sup
t∈[0,T ]

t1−αΓ(α)

1Z
0

x |wϕ (x, t)− wψ (x, t)| dx

= Γ(α) kWϕ −WψkC1−α[0,T ] = 0.

This gives us a contradiction. Then, ϕ (x) = ψ (x) almost everywhere
on [0, 1]. 2

To can identify c (t) uniquely we will study the distinguishability of the
unknown function c (t) via the input-output mapping G in the sense that
G (c) 6= G (ec) implies c 6= ec and this means the injectivity of its inverse
G−1. So, we give the following result.

Theorem 4. Assume that assumptions (A1)-(A6) hold. Then the input-
output mapping G (c) corresponding to the additional data (1.4), is distin-
guishable in the class of admissible source parameters H.

Proof. We will prove that G (c) is Lipschitz continuous on H. Let c,ec ∈ H such that c (t) 6= ec (t) ; t ∈ (0, T ] then z (x, t) = u (x, t)− eu (x, t) is a
solution of the problem

⎧⎪⎨⎪⎩
∂α0+,tz(x, t)− zxx = (c(t)− ec (t)) f(x); (x, t) ∈ (0, 1)× (0, T ]
lim

t−→0+
I1−α0+,t z(x, t) = 0; x ∈ [0, 1]

z(0, t) = 0 = z(1, t); t ∈ (0, T ].
(4.8)

In view of (3.1)-(3.3), z is given by

z (x, t) =
X
n≥1

tZ
0

(c(s)− ec (s)) (t− s)α−1Eα,α(−λn (t− s)α)dsfnXn (x) .

Then, we get
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1Z
0

xz (x, t) dx =

1Z
0

x
X
n≥1

tZ
0

(c(s)− ec (s))
× (t− s)α−1Eα,α(−λn (t− s)α)dshf ;XniXn (x) dx,

which implies that

|g (t)− eg (t)| ≤ 1Z
0

x

¯̄̄̄
¯̄X
n≥1

fnXn (x)

¯̄̄̄
¯̄ dx kc− eckC1−α[0,T ]M

tZ
0

sα−1 (t− s)α−1 ds.

Therefore, in view of (A2) and (A5) we obtain

kG (c)−G (ec)kC1−α[0,T ] = kg − egkC1−α[0,T ] ≤ H kc− eckC1−α[0,T ] ,
where H := M

TαΓ2 (α)

Γ (2α)

1Z
0

x |f (x)| dx. In consequent, if G (c) 6= G (ec) for
each c, ec ∈ H then c(t) 6= ec (t) on (0, T ] which is the wanted property. 2

Theorem 5. The source term c (t) can be determined uniquely in the prob-
lem (1.1)-(1.3) by the additional data (1.4).

Proof. The uniqueness of c (t) depends on v (x, t) the solution of (3.5).
Then for c, ec ∈ H

g (t)− eg (t) = 1Z
0

x (v (x, t)− ev (x, t)) dx.

Recall that v (x, t) =

tZ
0

V (x, t, s) ds where V (x, t, s) given by (3.10) is

the solution of the problem (3.9). Then, in view of Lemma 3, the initial
condition f(x)c(s) of this problem can be determined uniquely in L2 (0, 1)

by the additional data

1Z
0

xV (x, t, s) dx. Accordingly, under (A1)-(A5) and

by setting c (t) > ec (t) > 0 on (0, T ] we have
0 < (c (s)− ec (s)) .
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Then,

0 <

¯̄̄̄
¯̄
1Z
0

xf (x) dx

¯̄̄̄
¯̄ (c (s)− ec (s)) =

¯̄̄̄
¯̄
1Z
0

x
X
n≥1

fnXn (x) dx

¯̄̄̄
¯̄ (c (s)− ec (s)) .

Hence, by (4.7) and as V (x, t, s) is given by (3.10), we have,

¯̄̄̄
¯̄
1Z
0

x (c (s)− ec (s))X
n≥1

fnXn (x)

× lim
t−s→0+

(t− s)1−α (t− s)α−1 Γ (α)Eα,α(−λn (t− s)α)dx

¯̄̄̄

≤ Γ (α) sup
0≤s≤t

(t− s)1−α

¯̄̄̄
¯̄
1Z
0

x
h
V (x, t, s)− eV (x, t, s)i dx

¯̄̄̄
¯̄ .

From the fact that Vc (t) =

1Z
0

x

tZ
0

V (x, t, s) dsdx and the monotonicity

of G (c), we conclude

¯̄̄̄
¯̄
1Z
0

xf (x) dx

¯̄̄̄
¯̄ sup
t∈[0,T ]

t1−α (c (t)− ec (t)) tZ
0

sα−1ds

≤ Γ (α) sup
t∈[0,T ]

t1−α
tZ
0

1Z
0

x
h
V (x, t, s)− eV (x, t, s)i dxds

then,

kc− eckC1−α[0,T ] ≤ C2 sup
t∈[0,T ]

t1−α
¯̄
Vc (t)− Vec (t)¯̄

≤ C2
°°Vc − Vec°°C1−α[0,T ] ;

where C2 :=
αΓ (α)

Tα

⎡⎣¯̄̄̄¯̄
1Z
0

xf(x)dx

¯̄̄̄
¯̄
⎤⎦−1. Thus,

kc− eckC1−α[0,T ] ≤ C2 kg − egkC1−α[0,T ] .(4.9)
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So, c (t) can be obtained uniquely on (0, T ] by the output data g (t) and
the proof is completed. 2

Now, let us prove the uniqueness of the solution of the inverse problem
(1.1)-(1.4).

Theorem 6. Under the assumptions (A1)-(A5), {u (x, t) ; c (t)} the solu-
tion of the inverse problem (1.1)-(1.4) is unique.

Proof. Let {u (x, t) ; c (t)} and {eu (x, t) ; ec (t)} be two solutions of the
inverse problem (1.1)-(1.4) then for (x, t) ∈ Ω

|u (x, t)− eu (x, t)| ≤ X
n≥1

|fn|
tZ
0

|c (s)− ec (s)| (t− s)α−1Eα,α(−λn (t− s)α)ds

≤ M
X
n≥1

|fn| t2α−1
Γ2 (α)

Γ (2α)
kc− eckC1−α[0,T ] .

Thus, for x ∈ (0, 1)

ku (x, .)− eu (x, .)kC1−α[0,T ] ≤ K kc− eckC1−α[0,T ] ,(4.10)

where K := MTαΓ
2 (α)

Γ (2α)

P
n≥1 |fn| is a constant by the fact that f ∈

H1
0 (0, 1) which implies that

P
n≥1 |fn| is convergent in view of Bessel’s

inequality. In consequent,

ku− eukC1−α([0,T ],L2 (0,1)) ≤ K kc− eckC1−α[0,T ](4.11)

Also, from (4.9) and by virtue of the Cauchy-Schawrtz inequality, we
have

kc− eckC1−α[0,T ] ≤ C2

°°°°°°
1Z
0

x (u (x, .)− eu (x, .)) dx
°°°°°°
C1−α[0,T ]

(4.12)

≤ C2 ku− eukC1−α([0,T ],L2 (0,1)) .
The result is obtained between (4.11) and (4.12). 2



1124 Rahima Atmania and Loubna Settara

5. Conclusion

In this paper, we investigate an inverse source problem for the time-fractional
of Riemann-Liouville type diffusion problem with an integral over-detemination
data (1.4). First, we obtain the analytical solution of the direct problem
(1.1)-(1.3) using Fourier’s method, then, we study its regularity.

For the inverse problem, the obtained series representation of the mea-
sured output data g (t) leads to the explicit form of the input-output map-
ping G (c). Hence, we etablish the properties of monotonicity and distin-
guishability of this input-output mapping which implies the existence and
injectivity of the inverse mapping and permit us the determination of the
unknown time dependent term source c (t) by the additional data g (t).
Finally uniqueness result is given.
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