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Abstract

The fundamental aim of this paper is to investigate the structure
of a quotient ring R/P where R is an arbitrary ring and P is a prime
ideal of R. More precisely, we will characterize the commutativity of
R/P via the behavior of generalized derivations of R satisfying alge-
braic identities involving the prime ideal P. Moreover, various well-
known results characterizing the commutativity of prime (semi-prime)
rings have been extended. Furthermore, examples are given to prove
that the restrictions imposed on the hypothesis of the various theorems
were not superfluous.
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1. Introduction

Throughout, the present paper R will denote an associative ring with cen-
ter Z(R), not necessarily with an identity element. Recall that an ideal P
of R is said to be prime if P 6= R and for all x, y ∈ R, xRy ⊆ P implies
that x ∈ P or y ∈ P . Therefore, R is called a prime ring if the ideal (0) is
prime. The Lie product of two elements x and y of R is [x, y] = xy − yx;
while the symbol x ◦ y will stand for the anti-commutator xy + yx. An
additive mapping d : R → R is a derivation if d satisfies the Leibnitz’rule:
d(xy) = d(x)y + xd(y) for all x, y ∈ R.

Recently several authors have investigated the relationship between the
commutativity i.e. the structure of the ring R and some concrete additive
mappings (such as derivations, automorphisms and generalized derivations)
acting on appropriate subsets of the rings. Herstien [9] showed that a
prime ring R with nonzero derivation d satisfying d(x)d(y) = d(y)d(x) for
all x, y ∈ R, must be a commutative integral domain if its characteristic
is not two, and, if the characteristic equals two, then the ring must be
commutative or an order in a simple algebra which is 4-dimensional over its
center. We first recall that a mapping f of R into itself is called centralizing
on a subset S of R if [f(x), x] ∈ Z(R) for all x ∈ S; in the sepecial case
where [f(x), x] = 0 for all x ∈ S, the mapping f is said to be commuting on
S. The classical result of Posner [14] states that the existence of a nonzero
centralizing derivation on a prime ring forces the ring to be commutative.
Mayne [11] proved the analogous result for centralizing automorphisms. A
number of authors have extended these theorems of Posner and Mayne in
serval ways. For example, see [6, 10, 12, 13].
One may observe that the concept of generalized derivations cover both
the concepts of derivations and the left multipliers when d = 0. Hence
it should be interesting to extend some results concerning these notions
to generalized derivations. More specifically, Brešar in [7] introduce the
notion of generalized derivation as follows: An additive map F : R −→ R
is said to be a generalized derivation if there exists a derivation d of R such
that F (xy) = F (x)y + xd(y) for all x, y ∈ R. Generalized derivations have
been primarily studied on operator algebras. For a, b ∈ R, the mapping
F : R → R defined as F (x) = ax + xb for all x ∈ R is an example of
generalized derivation of R, which is called as inner generalized derivation
of R. It is obvious that every derivation (or left multiplier) is a generalized
derivation but the converse is not true in general.
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The present paper is motivated by the previous results and we here continue
this line of investigation by considering a more general concept rather than
the ring R is prime or semiprime in the hypothesis of our theorems. More
precisely, we will establish a relationship between the structure of quotient
rings R/P and the behavior of generalized derivations satisfying algebraic
identities involving prime ideals.

2. Main results

Throughout this article idR will denote the identity map defined by idR(r) =
r for all r ∈ R. We will make frequent use of the following facts whose proof
will be left to the reader.

Fact 1. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R
such that P 6⊆ I. If aIb ⊆ P , with a, b ∈ R, then a ∈ P or b ∈ P .

Remark. Let R be a ring, I a nonzero ideal of R and P a prime ideal of
R such that P 6⊆ I. If [I, I] ⊆ P , then it is easy to show that R/P is a
commutative ring.
We will use this remark whenever needed without any specific mention.

In [1, Theorem 2.2] it is proved that if P is a prime ideal of a ring R

and d a derivation of R such that
h
[x, d(x)], y

i
∈ P for all x, y ∈ R, then

d(R) ⊆ P or R/P is a commutative ring. Using similar arguments with
some modifications, we get the following lemma which plays a crucial role
in developing the proofs of our main results.

Lemma 1. Let R be a ring, I a nonzero ideal ofR and P be a prime ideal of
R such that P 6⊆ I. If d is a derivation of R satisfying [d(x), x] ∈ Z(R/P )
for all x ∈ I, then either d(R) ⊆ P or R/P is a commutative integral
domain.

We recall some related known results in literature: In [5] Ashraf and
Rehman proved that if R is a 2-torsion free prime ring and U a nonzero
Lie ideal of R such that u2 ∈ U , for all u ∈ U and d a derivation which
satisfies d(u ◦ v) = u ◦ v, for all u, v ∈ U , then U ⊆ Z(R). Later, Quadri
and al. [15], have extended the mentioned result by considering a general-
ized derivation F acting on a nonzero ideal I of R and without 2-torsion
freeness hypothesis. More precisely, they proved that a prime ring must
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be commutative if it admits a generalized derivation F , associated with a
nonzero derivation d, such that F (x ◦ y) = x ◦ y for all x, y in a nonzero
ideal I.

In the following theorem we will consider the situation of a ring R
having a generalized derivation F satisfying the more general condition
F (x ◦ y) ∈ Z(R/P ) for all x, y ∈ I. Further, our goal is to confirm that
there is a relationship between the structure of the ringR/P and generalized
derivations of R, where P is a prime ideal of R.

Theorem 1. Let R be a ring, I a nonzero ideal of R and P a prime ideal of
R such that P 6⊆ I and char(R/P ) 6= 2. If F is a generalized derivation of
R associated with a derivation d satisfies the condition F (x ◦ y) ∈ Z(R/P )
for all x, y ∈ I, then F (R) ⊆ P or R/P is a commutative integral domain.

Proof. We are given that

F (x ◦ y) ∈ Z(R/P ) for all x, y ∈ I.(1.1)

If Z(R/P ) = {0}, then R/P is non-commutative and the relation (1.1)
becomes

F (x ◦ y) ∈ P for all x, y ∈ I.(1.2)

Replacing y by yx in (1.2), we find that

F (x ◦ y)x+ (x ◦ y)d(x) ∈ P for all x, y ∈ I

in such a way that

(x ◦ y)d(x) ∈ P for all x, y ∈ I.(1.3)

Substituting ry for y in (1.3), one can easily verify that

r(x ◦ y)d(x) + [x, r]yd(x) ∈ P for all x, y, r ∈ I

which implies that

[x, r]Id(x) ⊆ P for all x, r ∈ I.(1.4)

Applying Fact 1, it follows that either [x, I] ⊆ P or d(x) ∈ P holds for
all x ∈ I. Let us set H = {x ∈ I / [x, I] ⊆ P} and K = {x ∈ I / d(x) ∈ P}.
Then it can be seen that H and K are two additives subgroups of I whose
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union is I. Using Brauer’s trick we have either I = H or I = K. Because
of R/P is a non-commutative ring, we get necessarily d(R) ⊆ P . In this
case replacing y by yr in (1.2), we obtain

F (y)[r, x] ∈ P for all x, y, r ∈ I.

Hence the last expression proves that F (y)I[r, x] ⊆ P , by view of the
primeness of P we conclude that F (I) ⊆ P and thus F (R) ⊆ P .
Now if Z(R/P ) 6= {0}, then there exists z ∈ Z(R/P ) such that z 6= 0.
Substituting yz for y in (1.1), we can obviously get

F
³
(x ◦ y)z − y[x, z]

´
∈ Z(R/P ) for all x, y ∈ I

which reduces to

(x ◦ y)d(z)− y[x, d(z)] ∈ Z(R/P ) for all x, y ∈ I.(1.5)

Putting ry instead of y in (1.5), it is obvious to verify that

r
³
(x ◦ y)d(z)− y[x, d(z)]

´
+ [x, r]yd(z) ∈ Z(R/P ) for all x, y, r ∈ I

we readily see from the above relation thath
[x, r]yd(z), r

i
∈ P for all x, y, r ∈ I(1.6)

this equation can be rewritten as

[x, r]yd(z)r − r[x, r]yd(z) ∈ P for all x, y, r ∈ I.(1.7)

Writing xt instead of x in (1.7) and using it, we arrive at

x[t, r]yd(z)r − rx[t, r]yd(z) ∈ P for all x, y, r, t ∈ I.(1.8)

On the other hand, if we replace x by t in (1.7) and then left multiplying
it by x, we obtain

x[t, r]yd(z)r − xr[t, r]yd(z) ∈ P for all x, y, r, t ∈ I.(1.9)

Using (1.8) together with (1.9), we can also write

[x, r][t, r]yd(z) ∈ P for all x, y, r, t ∈ I

in particular
[x, r]I[x, r]Id(z) ⊆ P for all x, r ∈ I.
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In light of primeness, we get either [x, r] ∈ P for all x, r ∈ I or d(z) ∈ P
and thus, we conclude that R/P is an integral domain or d(z) = 0. Now if
we take y = z in (1.1), then we can see that³

F (x) + d(x)
´
z + F (z)x ∈ Z(R/P ) for all x ∈ I.(1.10)

The substitution xy for x in (1.10) gives 2[xd(y), y]z = 0 for all x, y ∈ I.
Putting rx instead of x, it follows that

2[r, y]xd(y)z = 0 for all x, y, r ∈ I.

Using 2-torsion freeness, we find that [r, y]Id(y) ⊆ P for all y, r ∈ I.
Therefore, we get d(R) ⊆ P or R/P is commutative. By the first case, our
hypothesis leads to

F (x)y + F (y)x ∈ Z(R/P ) for all x, y ∈ I.(1.11)

Replacing y by yr in (1.11), one can verify that³
F (x)y + F (y)x

´
r − F (y)[x, r] ∈ Z(R/P ) for all x, y, r ∈ I

thereby obtaining h
F (y)[x, r], r

i
∈ P for all x, y, r ∈ I.

Putting yF (y) instead of y, we get

F (y)
h
F (y)[x, r], r

i
+ [F (y), r]F (y)[x, r] ∈ P for all x, y, r ∈ I

which leads to [F (y), r]F (y)[x, r] ∈ P for all x, y, r ∈ I. Replacing x by tx,
we obtain

[F (y), r]F (y)t[x, r] ∈ P for all x, y, r, t ∈ I.

Substituting xF (y) for x, we deduce that

[F (y), r]F (y)tx[F (y), r] ∈ P for all x, y, r, t ∈ I.

On the other hand, we have [F (y), r]F (y)tx[F (y), r]F (y) ∈ P . As a
special case of the latter expression, we may write

[F (y), r]F (y)I[F (y), r]F (y)I[F (y), r]F (y) ⊆ P for all y, r ∈ I.
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According to Fact 1, it follows that [F (y), r]F (y) ∈ P for all y, r ∈ I.
Substituting rt for r in the last relation, we obtain

[F (y), r]t[F (y), r] ∈ P for all y, r, t ∈ I.

Hence the above equation assures that [F (y), r] ∈ P for all y, r ∈ I.
Now writing yt instead of y, we find that F (y)[t, r] ∈ P and therefore we
conclude that F (R) ⊆ P or R/P is commutative. Consequently, in any
cases, it follows that F (R) ⊆ P or R/P is a commutative integral domain.
2

Letting R be a prime ring in the previous theorem, then P = (0) is
a prime ideal of R, in this case we obtain the commutativity criteria for
category of prime rings.

Corollary 1. Let R be a 2-torsion free prime ring and I a nonzero ideal of
R. If R admits a nonzero generalized derivation F associated with a deriva-
tion d satisfies F (x ◦ y) ∈ Z(R) for all x, y ∈ I, then R is a commutative
integral domain.

As an application of Corollary 1 we have the following result.

Corollary 2. Let R be a 2-torsion free prime ring and I a nonzero ideal
of R. If R admits a generalized derivation F associated with a derivation

d such that F 6= idR and F (x ◦ y) − x ◦ y ∈ Z(R)
³
resp. F 6= −idR and

F (x ◦ y) + x ◦ y ∈ Z(R)
´
for all x, y ∈ I, then R is a commutative integral

domain.

Proof. Assume that F 6= ±idR, then F = F − idR (resp.
♥F = F + idR)

is also a nonzero generalized derivation satisfying the condition F(x ◦ y) ∈
Z(R)

³
resp. ♥F(x ◦ y) ∈ Z(R)

´
for all x, y ∈ I. However by virtue of

Corollary 1, we conclude that R is commutative. 2

With no further assumption to the characteristic of the considered ring,
the following proposition gives an improved version of some known results
obtained in [5] and [15] for semiprime ring.

Proposition 1. Let R be a semiprime ring and I a nonzero ideal of R. If
R admits a generalized derivation F associated with a nonzero derivation
d, satisfies one of the following properties:
1) F (x ◦ y) = 0 for all x, y ∈ I
2) F (x ◦ y)± x ◦ y = 0 for all x, y ∈ I
then R contains a nonzero central ideal.
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Proof. (1) Suppose that F (x ◦ y) = 0 for all x, y ∈ I. The ring R is
semiprime then there exists a family of prime ideals P = {Pα /α ∈ Λ} such
that α ∈ ΛTPα = (0). Using the proof of Theorem 1, by expression (1.4)
we get [d(x), x]I[d(x), x] ⊆ Pα for all α ∈ Λ and for all x ∈ I. Therefore,
[d(x), x]I[d(x), x] = 0 and the semiprimeness of R forces that [d(x), x] = 0
for all x ∈ I. Accordingly, by [6, Theorem 3], we conclude that R contains
a nonzero central ideal.
(2) Using the same technics as in the preceding proof, we can prove the
same conclusion holds for F (x ◦ y)± x ◦ y = 0 for all x, y ∈ I. 2

The authors in [3, Theorem 2.8] established that, if a 2-torsion free
semiprime ring R admits a generalized derivation F associated with a
nonzero derivation d such that F [x, y] = [F (x), y]+ [d(y), x] for all x, y ∈ I,
where I is a nonzero ideal of R, then R contains a nonzero central ideal.
Moreover, Ashraf and Almas Khan [2] considered the same identity, but
for Lie ideals in ∗-prime rings. More specifically, they proved that, if R
is a 2-torsion free ∗-prime ring, F : R → R is a generalized derivation
with a nonzero derivation d which commutes with ∗ and U is a ∗-Lie ideal
of R such that F [u, v] = [F (u), v]+[d(v), u] for all u, v ∈ U , then U ⊆ Z(R).

Motivated by the above results, the aim of the next theorem is to study
the more general case when the same relation contained on center of R/P .
More precisely we will prove the following result.

Theorem 2. Let R be a ring, I a nonzero ideal of R and P a prime ideal
of R such that P 6⊆ I. If R admits a generalized derivation F associated
with a derivation d satisfying the condition F [x, y]− [F (x), y]− [d(y), x] ∈
Z(R/P ) for all x, y ∈ I, then one of the following assertions holds:
1) char(R/P ) = 2;
2) d(R) ⊆ P ;
3) R/P is a commutative integral domain.

Proof. Suppose that char(R/P ) 6= 2. We are given that

F [x, y]− [F (x), y]− [d(y), x] ∈ Z(R/P ) for all x, y ∈ I.(1.12)

If Z(R/P ) = {0}, then the relation (1.12) reduces to

F [x, y]− [F (x), y]− [d(y), x] ∈ P for all x, y ∈ I.(1.13)

Replacing y by yx in (1.13), we get

[x, y]d(x)− y[F (x), x]− [yd(x), x] ∈ P for all x, y ∈ I.
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Substituting ry for y in the above relation and using it, we can verify
that

2[x, r]Id(x) ⊆ P for all x, r ∈ I.

Whence, using 2-torsion freeness with Fact 1 we get d(R) ⊆ P or R/P
is commutative, a contradiction. Therefore, we obviously obtain d(R) ⊆ P .
Now if Z(R/P ) 6= {0}, then there exists z ∈ Z(R/P ) such that z 6= 0.
Substituting yz for y in our hypothesis, we get

[x, y]d(z)− y[F (x), z]− [yd(z), x] ∈ Z(R/P ) for all x, y ∈ I

which proves that h
[x, r]yd(z), r

i
∈ P for all x, y, r ∈ I.

Since, this relation is exactly (1.6), then arguing as before, we find that
either R/P is a commutative integral domain or d(z) = 0. On the other
hand, if we replace y by −x in (1.12), then it is obvious to see that

[F (x), x] + [d(x), x] ∈ Z(R/P ) for all x ∈ I.(1.14)

A linearization of relation (1.14), leads to

[F (z), x] ∈ Z(R/P ) for all x ∈ I.(1.15)

Writing xF (z) instead of x in (1.15), we get F (z) ∈ Z(R/P ). Now
substituting zx for x in (1.14), we obtain

[F (z)x, zx] + 2[zd(x), zx] ∈ Z(R/P ) for all x ∈ I

and therefore
2[d(x), x] z2 ∈ Z(R/P ) for all x ∈ I.

Hence from the last relation, we get [d(x), x] ∈ Z(R/P ) for all x ∈ I.
Invoking Lemma 1, we conclude that d(R) ⊆ P or R/P is commutative.
Consequently, in both cases, we have either d(R) ⊆ P or R/P is a commu-
tative integral domain. 2

As an application of our theorem, the following corollary improves the
result of [2] for the case when the underlying identity belongs to the center
of a prime ring.

Corollary 3. Let R be a 2-torsion free prime ring and I a nonzero ideal
of R. If R admits a generalized derivation F associated with a nonzero
derivation d satisfying F [x, y]− [F (x), y]− [d(y), x] ∈ Z(R) for all x, y ∈ I,
then R is a commutative integral domain.
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Proposition 2 ([3], Theorem 2.8). Let R be a 2-torsion free semiprime
ring and I a nonzero ideal of R. If R admits a generalized derivation
F associated with a nonzero derivation d satisfying F [x, y] = [F (x), y] +
[d(y), x] for all x, y ∈ I, then R contains a nonzero central ideal.

In [17] Dhara and al. showed that, a prime ring R must be commutative
if it admits two generalized derivations F and G associated with derivations
d and g respectively and satisfies the properties F (x)F (y)±G(xy)± yx ∈
Z(R) for all x, y ∈ I, where I is a nonzero two sided ideal of R.

Motivated by the above results, our aim in the following theorem is to
investigate a more general context of differential identities with general-
ized derivations acting in a center of quotient ring R/P by omitting the
primeness assumption imposed on the ring.

Theorem 3. Let R be a ring, I a nonzero ideal of R and P a prime
ideal of R such that P 6⊆ I. If (F, d) and (G, g) two generalized deriva-
tions of R associated with derivations d and g satisfying the condition
F (x)F (y) +G(xy)± yx ∈ Z(R/P ) for all x, y ∈ I, then R/P is a com-
mutative integral domain.

Proof. Assume that

F (x)F (y) +G(xy)− yx ∈ Z(R/P ) for all x, y ∈ I.(1.16)

Replacing y by yr in (1.16), we haveh
F (x)yd(r) + xyg(r) + y[x, r], r

i
∈ P for all x, y, r ∈ I.(1.17)

Substituting xr for x in (1.17), we get

h
F (x)ryd(r)+xd(r)yd(r)+xryg(r)+ y[x, r]r, r

i
∈ P for all x, y, r ∈ I.(1.18)

Using (1.17) together with (1.18), we find thath
xd(r)yd(r) + [y[x, r], r], r

i
∈ P for all x, y, r ∈ I.(1.19)

Right multiplying (1.19) by r and combining it with the last relation,
it follows that h

x[d(r)yd(r), r], r
i
∈ P for all x, y, r ∈ I.(1.20)
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Writing d(r)yd(r)x instead of x in (1.20), we obtain

[d(r)yd(r), r]x[d(r)yd(r), r] ∈ P for all x, y, r ∈ I.

Applying Fact 1, we get [d(r)yd(r), r] ∈ P for all y, r ∈ I, that is

d(r)yd(r)r − rd(r)yd(r) ∈ P for all y, r ∈ I.(1.21)

Replacing y by yd(r)t in (1.21), we get

d(r)yd(r)td(r)r − rd(r)yd(r)td(r) ∈ P for all y, r, t ∈ I.(1.22)

Putting t instead of y in (1.21) and left multiplying it by d(r)y, we
arrive at

d(r)yd(r)td(r)r − d(r)yrd(r)td(r) ∈ P for all y, r, t ∈ I.(1.23)

Combining (1.22) with (1.23), one can verify that

d(r)yrd(r)td(r)− rd(r)yd(r)td(r) ∈ P for all y, r, t ∈ I.(1.24)

On the other hand, right multiplying (1.21) by td(r) and then subtract-
ing it from (1.24), it is obvious to see that

d(r)y[d(r), r]td(r) ∈ P for all y, r, t ∈ I

which forces that

[d(r), r]I[d(r), r]I[d(r), r] ⊆ P for all r ∈ I.

According to Fact 1, it follows that [d(r), r] ∈ P for all r ∈ I, which

proves that
h
[d(r), r], t

i
∈ P for all r, t ∈ I. By virtue of Lemma 1, the last

equation implies that either d(R) ⊆ P or R/P is an integral domain. Now
if we take d(R) ⊆ P , then the expression (1.17) becomes

x[yg(r), r] + [x, r]yg(r) +
h
y[x, r], r

i
∈ P for all x, y, r ∈ I.(1.25)

Putting xy instead of y in (1.25), one can see that

[x, r]xyg(r) + [x, r]y[x, r] ∈ P for all x, y, r ∈ I.(1.26)

Substituting r + x for r in (1.26), we obtain

[x, r]xyg(x) ∈ P for all x, y, r ∈ I.
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Accordingly,

[g(x), x]t[g(x), x]y[g(x), x] ∈ P for all x, y, t ∈ I.

Whence, using again Fact 1, we conclude that either g(R) ⊆ P or R/P
is commutative. Thus, in the first case the expression (1.26) reduces to
[x, r]y[x, r] ∈ P for all x, y, r ∈ I. Since P is prime, the last equation implies
that [R,R] ⊆ P and therefore R/P is a commutative integral domain.

By similar manner, the same conclusion holds for F (x)F (y) +G(xy) + yx ∈
Z(R/P ) for all x, y ∈ I. This completes the proof of our theorem. 2

As an application of Theorem 3, the following corollary extended the
results of Dhara [17, Theorem 1] for semiprime ring.

Corollary 4. Let R be a semiprime ring and I a nonzero ideal of R. If
(F, d) and (G, g) two generalized derivations of R associated with deriva-
tions d and g. Then the following assertions are equivalent:
1) F (x)F (y)±G(xy)± yx ∈ Z(R) for all x, y ∈ I
2) R is commutative.

Proof. We need only prove that (1) =⇒ (2). Assume that

F (x)F (y) +G(xy)± yx ∈ Z(R) for all x, y ∈ I.(1.27)

By view of the semiprimeness of the ringR, there exists a family of prime
ideals P = {Pα /α ∈ Λ} such that α ∈ Λ

T
Pα = (0), thereby obtaining

[F (x)F (y) + G(xy) ± yx, r] ∈ Pα for all x, y, r ∈ I and for all α ∈ Λ.
Hence, it follows that F (x)F (y) +G(xy)± yx ∈ Z(R/Pα) for all α ∈ Λ.
Invoking Theorem 3, we conclude that R/Pα is a commutative integral
domain which, because of α ∈ ΛTPα = (0), assures that R is commutative.
We notice that, if (G, g) is a generalized derivation on R, then (−G,−g) is
also a generalized derivation on R. Thus by putting (−G,−g) instead of
(G, g) in the expression (1.27), we get the required result. 2

If we replace G by G± idR in the Corollary 4, then one can obviously
obtain the following result.

Corollary 5. Let R be a semiprime ring and I a nonzero ideal of R. If
(F, d) and (G, g) two generalized derivations of R associated with deriva-
tions d and g. Then the following assertions are equivalent:
1) F (x)F (y)±G(xy)± [x, y] ∈ Z(R) for all x, y ∈ I
2) F (x)F (y)±G(xy)± x ◦ y ∈ Z(R) for all x, y ∈ I
3) R is commutative.
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In [4] Ashraf and al. established that if R is a prime ring, I is a nonzero
ideal of R and F is a generalized derivation of R associated with nonzero
derivation d such that F (xy)±xy ∈ Z(R) or F (x)F (y)±xy ∈ Z(R) for all
x, y ∈ I, then R is commutative.

Our fundamental aim is to generalize this result in two directions. First
of all, we will treat a more general differential identity involving two gen-
eralized derivations. More specifically, we will study the more general case
by considering the following situations:
(i) F (x)F (y)±G(xy) ∈ Z(R/P ) for all x, y ∈ I, (ii) [F (x), y]±G(xy) ∈
Z(R/P ) for all x, y ∈ I and (iii) F (x) ◦ y ±G(xy) ∈ Z(R/P ) for all
x, y ∈ I. Secondly, we will assume that the above algebraic identities
belong to Z(R/P ), where P is any prime ideal rather than the zero ideal.

Theorem 4. Let R be a ring, I a nonzero ideal of R and P a prime
ideal of R such that P 6⊆ I. If F and G are generalized derivations of
R associated with derivations d and g respectively, satisfying one of the
following properties:
1) F (x)F (y)±G(xy) ∈ Z(R/P ) for all x, y ∈ I;
2) [F (x), y]±G(xy) ∈ Z(R/P ) for all x, y ∈ I;
3) F (x) ◦ y ±G(xy) ∈ Z(R/P ) for all x, y ∈ I;

then
³
d(R) ⊆ P and g(R) ⊆ P

´
or R/P is a commutative integral domain.

Proof. (1) We are given that

F (x)F (y) +G(xy) ∈ Z(R/P ) for all x, y ∈ I.(1.28)

Replacing y by yr in (1.28), we find that³
F (x)F (y) +G(xy)

´
r + F (x)yd(r) + xyg(r) ∈ Z(R/P ) for all x, y, r ∈ I

and therefore

[F (x)yd(r) + xyg(r), r] ∈ P for all x, y, r ∈ I.(1.29)

Substituting xt for x in (1.29) and subtracting it with (1.29), we arrive
at

[xd(t)yd(r), r] ∈ P for all x, y, r, t ∈ I.(1.30)
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Putting ux instead of x in (1.30), we obtain

[u, r]xd(t)yd(r) + u[xd(t)yd(r), r] ∈ P for all x, y, r, t, u ∈ I

in such a way that

[u, r]Id(t)yd(r) ⊆ P for all y, r, t, u ∈ I(1.31)

which because of primeness, gives that either [I, r] ⊆ P or d(t)yd(r) ∈ P for
all y, r, t ∈ I. The sets of r for which theses conditions holds are additive
subgroups of I with union equal to I; so that by Brauer’s trick, we have
R/P is commutative or d(R) ⊆ P . In the later case the relation (1.29)
yields

[xyg(r), r] ∈ P for all x, y, r ∈ I.(1.32)

Substituting wx for x in (1.32) where w ∈ R, we get [w, r]xyg(r) ∈ P
for all x, y, r ∈ I. As a special case of the last equation, we may write

[w, r]xg(r)yg(r) ∈ P for all x, y, r ∈ I and w ∈ R.(1.33)

On the other hand, taking w = g(r) in the above relation and combining
it with (1.33), it is obvious to see that

[g(r), r]x[g(r), r]y[g(r), r] ∈ P for all x, y, r ∈ I.

Since P is prime, the last equation assures that [g(r), r] ∈ P which

leads to
h
[g(r), r], t

i
∈ P for all r, t ∈ I. Applying Lemma 1, it fol-

lows that either g(R) ⊆ P or R/P is commutative. Now assume that
F (x)F (y)−G(xy) ∈ Z(R/P ). Thus by putting (−G,−g) instead of (G, g)
in the relation (1.28), we get the required result.

(2) Suppose that

[F (x), y] +G(xy) ∈ Z(R/P ) for all x, y ∈ I.(1.34)

Replacing y by yr in (1.34), we get³
[F (x), y] +G(xy)

´
r + y[F (x), r] + xyg(r) ∈ Z(R/P ) for all x, y, r ∈ I

which leads to

[y[F (x), r] + xyg(r), r] ∈ P for all x, y, r ∈ I.(1.35)
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Writing ry instead of y in (1.35) and subtracting it from (1.35), we
arrive at h

[x, r]yg(r), r
i
∈ P for all x, y, r ∈ I.(1.36)

Since the expression (1.36) is similar as relation (1.6), reasoning in the
same manner as above, we find that

[x, r][t, r]yg(r) ∈ P for all x, y, r, t ∈ I

in particular

[g(r), r]I[g(r), r]I[g(r), r] ⊆ P for all r ∈ I.

Invoking Fact 1, we get either R/P is an integral domain or g(R) ⊆ P .
By the second case the relation (1.35) reduces toh

y[F (x), r], r
i
∈ P for all x, y, r ∈ I.(1.37)

Putting F (x)y instead of y in the expression (1.37) and using it, we
obtain

[F (x), r] ∈ P for all x, r ∈ I.(1.38)

Replacing x by xr in the expression (1.38), we find that [xd(r), r] ∈ P
for all x, r ∈ I. The substitution tx for x in the last equation gives

[t, r]Id(r) ⊆ P for all r, t ∈ I.

Finally, we claim that either d(R) ⊆ P or R/P is an integral domain.

Furthermore, if we have [F (x), y]−G(xy) ∈ Z(R/P ), then arguing as

above, we arrive at
³
d(R) ⊆ P and g(R) ⊆ P

´
or R/P is a commutative

integral domain.

(3) Using the same techniques as in the second case with a slight modifi-
cations, one can see that the same conclusion holds for F (x) ◦ y ±G(xy) ∈
Z(R/P ) for all x, y ∈ I. Whence, the proof of our theorem is complete. 2

The following corollary is an immediate consequence of the above the-
orem.
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Corollary 6. Let R be a prime ring and I a nonzero ideal of R. If F
and G are generalized derivations of R associated with derivations d and g
respectively such that at least one is nonzero, then the following assertions
are equivalent:

1) F (x)F (y)±G(xy) ∈ Z(R) for all x, y ∈ I
2) [F (x), y]±G(xy) ∈ Z(R) for all x, y ∈ I
3) F (x) ◦ y ±G(xy) ∈ Z(R) for all x, y ∈ I
4) F (x)F (y)±G(xy)± xy ∈ Z(R) for all x, y ∈ I
5) [F (x), y]±G(xy)± xy ∈ Z(R) for all x, y ∈ I
6) F (x) ◦ y ±G(xy)± xy ∈ Z(R) for all x, y ∈ I
7) R is a commutative integral domain.

As an application of Corollary 6, we have the following result.

Corollary 7. Let R be a prime ring and I a nonzero ideal of R. If F
and G are generalized derivations of R associated with derivations d and g
respectively such that at least one is nonzero, then the following assertions
are equivalent:

1) [F (x), y]±G(xy)± yx ∈ Z(R) for all x, y ∈ I
2) [F (x), y]±G(xy)± [x, y] ∈ Z(R) for all x, y ∈ I
3) [F (x), y]±G(xy)± x ◦ y ∈ Z(R) for all x, y ∈ I
4) F (x) ◦ y ±G(xy)± yx ∈ Z(R) for all x, y ∈ I
5) F (x) ◦ y ±G(xy)± [x, y] ∈ Z(R) for all x, y ∈ I
6) F (x) ◦ y ±G(xy)± x ◦ y ∈ Z(R) for all x, y ∈ I
7) R is a commutative integral domain.

As a consequence of Theorem 4, the next proposition gives a commu-
tativity criteria for semi-prime ring.

Proposition 3. Let R be a semiprime ring and I a nonzero ideal of R.
If R admits two generalized derivations F and G associated with nonzero
derivations d and g respectively, satisfying one of the following conditions:
1) F (x)F (y)±G(xy) ∈ Z(R) for all x, y ∈ I
2) [F (x), y]±G(xy) ∈ Z(R) for all x, y ∈ I
3) F (x) ◦ y ±G(xy) ∈ Z(R) for all x, y ∈ I
then R contains a nonzero central ideal.



Structure of a quotient ring R/P and its relation with generalized ...639

Proof. Assume that F (x)F (y)±G(xy) ∈ Z(R) for all x, y ∈ I. The ring
R is semiprime then there exists a family of prime ideals P = {Pα /α ∈ Λ}
such that α ∈ ΛTPα = (0). Therefore [F (x)F (y) ± G(xy), r] ∈ Pα for all
α ∈ Λ. Using the proof of Theorem 4, by equation (1.31) we get

[d(r), r]I[d(r), r]I[d(r), r] = 0 for all r ∈ I.

In light of the semiprimeness of R, we easily obtain [d(r), r] = 0 for all
r ∈ I. According to [6, Theorem 3], we conclude that R contains a nonzero
central ideal.
Using the same technics as in the preceding proof, the same conclusion holds
for the identities [F (x), y] ± G(xy) ∈ Z(R) and F (x) ◦ y ± G(xy) ∈ Z(R)
for all x, y ∈ I. 2

In the following proposition we will extend [17, Corollary 6] for semi-
prime ring.

Proposition 4. Let R be semiprime ring and I a nonzero ideal of R. Sup-
pose that R admits two generalized derivations F and G associated with
derivations d and g respectively such that at least one is nonzero. If the
condition F (x)F (y) ± G(xy) ± xy ∈ Z(R) holds for all x, y ∈ I, then R
contains a nonzero central ideal.

The following example proves that the condition ”R/P is 2-torsion free”
is necessary in Theorem 1.

Example 1. Let us set R =M2(Z2) and P = (0). It is straightforward to
check that R is a prime ring with char(R) = 2 and P is a prime ideal of
R. Define F : R→ R by F (X) = X ◦A, where

A =

Ã
0 1
0 0

!
,

then F is a nonzero generalized derivation of R associated with the inner
derivation d(X) = [X,A] satisfying

F (X ◦ Y ) =
Ã

ca0 + dc0 + c0a+ d0c 0
0 ca0 + dc0 + c0a+ d0c

!
∈ Z(R)

for all X =

Ã
a b
c d

!
and Y =

Ã
a0 b0

c0 d0

!
in R. However, R is non-commutative.
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The following example proves that the condition of the ”primeness”
imposed on the ideal is crucial in our Theorems.

Example 2. Consider R =

(Ã
a b
0 c

! .
a, b, c ∈ Z

)
and P = (0). Let

I the ideal of R defined by I =

(Ã
0 a
0 0

! .
a ∈ Z

)
. Define the maps

on R as follows F (x) = 2e11x − xe11 and G(x) = e12x + xe11. Then it
is clearly to see that F and G are generalized derivations of R associated
with nonzero derivations d and g respectively, where d(x) = e11x − xe11
and g(x) = −e11x+ xe11. Moreover F and G satisfies the conditions of all
Theorems, but R is not commutative.
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