Structure of a quotient ring R / P and its relation with generalized derivations of R

Karim Bouchannafa
Sidi Mohamed Ben Abdellah University, Morocco
Abdellah Mamouni
University Moulay Ismaïl, Morocco
and
Lahcen Oukhtite
Sidi Mohamed Ben Abdellah University, Morocco
Received: August 2020. Accepted: December 2021

Abstract

The fundamental aim of this paper is to investigate the structure of a quotient ring R / P where R is an arbitrary ring and P is a prime ideal of R. More precisely, we will characterize the commutativity of R / P via the behavior of generalized derivations of R satisfying algebraic identities involving the prime ideal P. Moreover, various wellknown results characterizing the commutativity of prime (semi-prime) rings have been extended. Furthermore, examples are given to prove that the restrictions imposed on the hypothesis of the various theorems were not superfluous.

Key words: Quotient ring, prime ideal, generalized derivations, commutativity.

MSC numbers: 16U80, 16W25, 16N60.

1. Introduction

Throughout, the present paper R will denote an associative ring with center $Z(R)$, not necessarily with an identity element. Recall that an ideal P of R is said to be prime if $P \neq R$ and for all $x, y \in R, x R y \subseteq P$ implies that $x \in P$ or $y \in P$. Therefore, R is called a prime ring if the ideal (0) is prime. The Lie product of two elements x and y of R is $[x, y]=x y-y x$; while the symbol $x \circ y$ will stand for the anti-commutator $x y+y x$. An additive mapping $d: R \rightarrow R$ is a derivation if d satisfies the Leibnitz'rule: $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$.

Recently several authors have investigated the relationship between the commutativity i.e. the structure of the ring R and some concrete additive mappings (such as derivations, automorphisms and generalized derivations) acting on appropriate subsets of the rings. Herstien [9] showed that a prime ring R with nonzero derivation d satisfying $d(x) d(y)=d(y) d(x)$ for all $x, y \in R$, must be a commutative integral domain if its characteristic is not two, and, if the characteristic equals two, then the ring must be commutative or an order in a simple algebra which is 4-dimensional over its center. We first recall that a mapping f of R into itself is called centralizing on a subset S of R if $[f(x), x] \in Z(R)$ for all $x \in S$; in the sepecial case where $[f(x), x]=0$ for all $x \in S$, the mapping f is said to be commuting on S. The classical result of Posner [14] states that the existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative. Mayne [11] proved the analogous result for centralizing automorphisms. A number of authors have extended these theorems of Posner and Mayne in serval ways. For example, see $[6,10,12,13]$.
One may observe that the concept of generalized derivations cover both the concepts of derivations and the left multipliers when $d=0$. Hence it should be interesting to extend some results concerning these notions to generalized derivations. More specifically, Brešar in [7] introduce the notion of generalized derivation as follows: An additive map $F: R \longrightarrow R$ is said to be a generalized derivation if there exists a derivation d of R such that $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. Generalized derivations have been primarily studied on operator algebras. For $a, b \in R$, the mapping $F: R \rightarrow R$ defined as $F(x)=a x+x b$ for all $x \in R$ is an example of generalized derivation of R, which is called as inner generalized derivation of R. It is obvious that every derivation (or left multiplier) is a generalized derivation but the converse is not true in general.

The present paper is motivated by the previous results and we here continue this line of investigation by considering a more general concept rather than the ring R is prime or semiprime in the hypothesis of our theorems. More precisely, we will establish a relationship between the structure of quotient rings R / P and the behavior of generalized derivations satisfying algebraic identities involving prime ideals.

2. Main results

Throughout this article $i d_{R}$ will denote the identity map defined by $i d_{R}(r)=$ r for all $r \in R$. We will make frequent use of the following facts whose proof will be left to the reader.

Fact 1. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \not \subset I$. If $a I b \subseteq P$, with $a, b \in R$, then $a \in P$ or $b \in P$.

Remark. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$. If $[I, I] \subseteq P$, then it is easy to show that R / P is a commutative ring.
We will use this remark whenever needed without any specific mention.
In [1, Theorem 2.2] it is proved that if P is a prime ideal of a ring R and d a derivation of R such that $[[x, d(x)], y] \in P$ for all $x, y \in R$, then $d(R) \subseteq P$ or R / P is a commutative ring. Using similar arguments with some modifications, we get the following lemma which plays a crucial role in developing the proofs of our main results.

Lemma 1. Let R be a ring, I a nonzero ideal of R and P be a prime ideal of R such that $P \nsubseteq I$. If d is a derivation of R satisfying $\overline{[d(x), x]} \in Z(R / P)$ for all $x \in I$, then either $d(R) \subseteq P$ or R / P is a commutative integral domain.

We recall some related known results in literature: In [5] Ashraf and Rehman proved that if R is a 2 -torsion free prime ring and U a nonzero Lie ideal of R such that $u^{2} \in U$, for all $u \in U$ and d a derivation which satisfies $d(u \circ v)=u \circ v$, for all $u, v \in U$, then $U \subseteq Z(R)$. Later, Quadri and al. [15], have extended the mentioned result by considering a generalized derivation F acting on a nonzero ideal I of R and without 2-torsion freeness hypothesis. More precisely, they proved that a prime ring must
be commutative if it admits a generalized derivation F, associated with a nonzero derivation d, such that $F(x \circ y)=x \circ y$ for all x, y in a nonzero ideal I.

In the following theorem we will consider the situation of a ring R having a generalized derivation F satisfying the more general condition $\overline{F(x \circ y)} \in Z(R / P)$ for all $x, y \in I$. Further, our goal is to confirm that there is a relationship between the structure of the ring R / P and generalized derivations of R, where P is a prime ideal of R.

Theorem 1. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$ and $\operatorname{char}(R / P) \neq 2$. If F is a generalized derivation of R associated with a derivation d satisfies the condition $\overline{F(x \circ y)} \in Z(R / P)$ for all $x, y \in I$, then $F(R) \subseteq P$ or R / P is a commutative integral domain.

Proof. We are given that

$$
\begin{equation*}
\overline{F(x \circ y)} \in Z(R / P) \text { for all } x, y \in I \tag{1.1}
\end{equation*}
$$

If $Z(R / P)=\{\overline{0}\}$, then R / P is non-commutative and the relation (1.1) becomes

$$
\begin{equation*}
F(x \circ y) \in P \text { for all } x, y \in I . \tag{1.2}
\end{equation*}
$$

Replacing y by $y x$ in (1.2), we find that

$$
F(x \circ y) x+(x \circ y) d(x) \in P \text { for all } x, y \in I
$$

in such a way that

$$
\begin{equation*}
(x \circ y) d(x) \in P \text { for all } x, y \in I . \tag{1.3}
\end{equation*}
$$

Substituting $r y$ for y in (1.3), one can easily verify that

$$
r(x \circ y) d(x)+[x, r] y d(x) \in P \text { for all } x, y, r \in I
$$

which implies that

$$
\begin{equation*}
[x, r] I d(x) \subseteq P \text { for all } x, r \in I \tag{1.4}
\end{equation*}
$$

Applying Fact 1, it follows that either $[x, I] \subseteq P$ or $d(x) \in P$ holds for all $x \in I$. Let us set $H=\{x \in I /[x, I] \subseteq P\}$ and $K=\{x \in I / d(x) \in P\}$. Then it can be seen that H and K are two additives subgroups of I whose
union is I. Using Brauer's trick we have either $I=H$ or $I=K$. Because of R / P is a non-commutative ring, we get necessarily $d(R) \subseteq P$. In this case replacing y by $y r$ in (1.2), we obtain

$$
F(y)[r, x] \in P \quad \text { for all } x, y, r \in I
$$

Hence the last expression proves that $F(y) I[r, x] \subseteq P$, by view of the primeness of P we conclude that $F(I) \subseteq P$ and thus $F(R) \subseteq P$.
Now if $Z(R / P) \neq\{\overline{0}\}$, then there exists $\bar{z} \in Z(R / P)$ such that $\bar{z} \neq \overline{0}$. Substituting $y z$ for y in (1.1), we can obviously get

$$
\overline{F((x \circ y) z-y[x, z])} \in Z(R / P) \quad \text { for all } x, y \in I
$$

which reduces to

$$
\begin{equation*}
\overline{(x \circ y) d(z)-y[x, d(z)]} \in Z(R / P) \quad \text { for all } x, y \in I \tag{1.5}
\end{equation*}
$$

Putting ry instead of y in (1.5), it is obvious to verify that

$$
\overline{r((x \circ y) d(z)-y[x, d(z)])+[x, r] y d(z)} \in Z(R / P) \quad \text { for all } x, y, r \in I
$$

we readily see from the above relation that

$$
\begin{equation*}
[[x, r] y d(z), r] \in P \quad \text { for all } x, y, r \in I \tag{1.6}
\end{equation*}
$$

this equation can be rewritten as

$$
\begin{equation*}
[x, r] y d(z) r-r[x, r] y d(z) \in P \quad \text { for all } x, y, r \in I \tag{1.7}
\end{equation*}
$$

Writing $x t$ instead of x in (1.7) and using it, we arrive at

$$
\begin{equation*}
x[t, r] y d(z) r-r x[t, r] y d(z) \in P \quad \text { for all } x, y, r, t \in I \tag{1.8}
\end{equation*}
$$

On the other hand, if we replace x by t in (1.7) and then left multiplying it by x, we obtain

$$
\begin{equation*}
x[t, r] y d(z) r-x r[t, r] y d(z) \in P \quad \text { for all } x, y, r, t \in I \tag{1.9}
\end{equation*}
$$

Using (1.8) together with (1.9), we can also write

$$
[x, r][t, r] y d(z) \in P \quad \text { for all } x, y, r, t \in I
$$

in particular

$$
[x, r] I[x, r] I d(z) \subseteq P \quad \text { for all } x, r \in I
$$

In light of primeness, we get either $[x, r] \in P$ for all $x, r \in I$ or $d(z) \in P$ and thus, we conclude that R / P is an integral domain or $\overline{d(z)}=\overline{0}$. Now if we take $y=z$ in (1.1), then we can see that

$$
\begin{equation*}
\overline{(F(x)+d(x)) z+F(z) x} \in Z(R / P) \text { for all } x \in I \tag{1.10}
\end{equation*}
$$

The substitution $x y$ for x in (1.10) gives $2 \overline{[x d(y), y]} \bar{z}=\overline{0}$ for all $x, y \in I$. Putting $r x$ instead of x, it follows that

$$
2 \overline{[r, y] x d(y)} \bar{z}=\overline{0} \text { for all } x, y, r \in I
$$

Using 2-torsion freeness, we find that $[r, y] I d(y) \subseteq P$ for all $y, r \in I$. Therefore, we get $d(R) \subseteq P$ or R / P is commutative. By the first case, our hypothesis leads to

$$
\begin{equation*}
\overline{F(x) y+F(y) x} \in Z(R / P) \text { for all } x, y \in I \tag{1.11}
\end{equation*}
$$

Replacing y by $y r$ in (1.11), one can verify that

$$
\overline{(F(x) y+F(y) x) r-F(y)[x, r]} \in Z(R / P) \quad \text { for all } x, y, r \in I
$$

thereby obtaining

$$
[F(y)[x, r], r] \in P \quad \text { for all } x, y, r \in I
$$

Putting $y F(y)$ instead of y, we get

$$
F(y)[F(y)[x, r], r]+[F(y), r] F(y)[x, r] \in P \quad \text { for all } x, y, r \in I
$$

which leads to $[F(y), r] F(y)[x, r] \in P$ for all $x, y, r \in I$. Replacing x by $t x$, we obtain

$$
[F(y), r] F(y) t[x, r] \in P \quad \text { for all } x, y, r, t \in I
$$

Substituting $x F(y)$ for x, we deduce that

$$
[F(y), r] F(y) t x[F(y), r] \in P \quad \text { for all } x, y, r, t \in I
$$

On the other hand, we have $[F(y), r] F(y) t x[F(y), r] F(y) \in P$. As a special case of the latter expression, we may write

$$
[F(y), r] F(y) I[F(y), r] F(y) I[F(y), r] F(y) \subseteq P \quad \text { for all } y, r \in I
$$

According to Fact 1, it follows that $[F(y), r] F(y) \in P$ for all $y, r \in I$. Substituting $r t$ for r in the last relation, we obtain

$$
[F(y), r] t[F(y), r] \in P \quad \text { for all } y, r, t \in I
$$

Hence the above equation assures that $[F(y), r] \in P$ for all $y, r \in I$. Now writing $y t$ instead of y, we find that $F(y)[t, r] \in P$ and therefore we conclude that $F(R) \subseteq P$ or R / P is commutative. Consequently, in any cases, it follows that $F(R) \subseteq P$ or R / P is a commutative integral domain.

Letting R be a prime ring in the previous theorem, then $P=(0)$ is a prime ideal of R, in this case we obtain the commutativity criteria for category of prime rings.

Corollary 1. Let R be a 2-torsion free prime ring and I a nonzero ideal of R. If R admits a nonzero generalized derivation F associated with a derivation d satisfies $F(x \circ y) \in Z(R)$ for all $x, y \in I$, then R is a commutative integral domain.

As an application of Corollary 1 we have the following result.
Corollary 2. Let R be a 2-torsion free prime ring and I a nonzero ideal of R. If R admits a generalized derivation F associated with a derivation d such that $F \neq i d_{R}$ and $F(x \circ y)-x \circ y \in Z(R)$ (resp. $F \neq-i d_{R}$ and $F(x \circ y)+x \circ y \in Z(R))$ for all $x, y \in I$, then R is a commutative integral domain.

Proof. Assume that $F \neq \pm i d_{R}$, then $\mathcal{F}=F-i d_{R}\left(\right.$ resp. $\left.\mathscr{F}=F+i d_{R}\right)$ is also a nonzero generalized derivation satisfying the condition $\mathcal{F}(x \circ y) \in$ $Z(R)($ resp. $\mathscr{F}(x \circ y) \in Z(R))$ for all $x, y \in I$. However by virtue of Corollary 1 , we conclude that R is commutative.

With no further assumption to the characteristic of the considered ring, the following proposition gives an improved version of some known results obtained in [5] and [15] for semiprime ring.

Proposition 1. Let R be a semiprime ring and I a nonzero ideal of R. If R admits a generalized derivation F associated with a nonzero derivation d, satisfies one of the following properties:

1) $F(x \circ y)=0$ for all $x, y \in I$
2) $F(x \circ y) \pm x \circ y=0$ for all $x, y \in I$
then R contains a nonzero central ideal.

Proof. (1) Suppose that $F(x \circ y)=0$ for all $x, y \in I$. The ring R is semiprime then there exists a family of prime ideals $\mathcal{P}=\left\{P_{\alpha} / \alpha \in \Lambda\right\}$ such that $\alpha \in \Lambda \cap P_{\alpha}=(0)$. Using the proof of Theorem 1, by expression (1.4) we get $[d(x), x] I[d(x), x] \subseteq P_{\alpha}$ for all $\alpha \in \Lambda$ and for all $x \in I$. Therefore, $[d(x), x] I[d(x), x]=0$ and the semiprimeness of R forces that $[d(x), x]=0$ for all $x \in I$. Accordingly, by [6 , Theorem 3], we conclude that R contains a nonzero central ideal.
(2) Using the same technics as in the preceding proof, we can prove the same conclusion holds for $F(x \circ y) \pm x \circ y=0$ for all $x, y \in I$.

The authors in [3, Theorem 2.8] established that, if a 2 -torsion free semiprime ring R admits a generalized derivation F associated with a nonzero derivation d such that $F[x, y]=[F(x), y]+[d(y), x]$ for all $x, y \in I$, where I is a nonzero ideal of R, then R contains a nonzero central ideal. Moreover, Ashraf and Almas Khan [2] considered the same identity, but for Lie ideals in $*$-prime rings. More specifically, they proved that, if R is a 2 -torsion free $*$-prime ring, $F: R \rightarrow R$ is a generalized derivation with a nonzero derivation d which commutes with $*$ and U is a $*$-Lie ideal of R such that $F[u, v]=[F(u), v]+[d(v), u]$ for all $u, v \in U$, then $U \subseteq Z(R)$.

Motivated by the above results, the aim of the next theorem is to study the more general case when the same relation contained on center of R / P. More precisely we will prove the following result.

Theorem 2. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$. If R admits a generalized derivation F associated with a derivation d satisfying the condition $\overline{F[x, y]-[F(x), y]-[d(y), x]} \in$ $Z(R / P)$ for all $x, y \in I$, then one of the following assertions holds:

1) $\operatorname{char}(R / P)=2$;
2) $d(R) \subseteq P$;
3) R / P is a commutative integral domain.

Proof. Suppose that $\operatorname{char}(R / P) \neq 2$. We are given that

$$
\begin{equation*}
\overline{F[x, y]-[F(x), y]-[d(y), x]} \in Z(R / P) \text { for all } x, y \in I \tag{1.12}
\end{equation*}
$$

If $Z(R / P)=\{\overline{0}\}$, then the relation (1.12) reduces to

$$
\begin{equation*}
F[x, y]-[F(x), y]-[d(y), x] \in P \quad \text { for all } x, y \in I \tag{1.13}
\end{equation*}
$$

Replacing y by $y x$ in (1.13), we get

$$
[x, y] d(x)-y[F(x), x]-[y d(x), x] \in P \quad \text { for all } x, y \in I .
$$

Substituting $r y$ for y in the above relation and using it, we can verify that

$$
2[x, r] I d(x) \subseteq P \quad \text { for all } \quad x, r \in I
$$

Whence, using 2-torsion freeness with Fact 1 we get $d(R) \subseteq P$ or R / P is commutative, a contradiction. Therefore, we obviously obtain $d(R) \subseteq P$. Now if $Z(R / P) \neq\{\overline{0}\}$, then there exists $\bar{z} \in Z(R / P)$ such that $\bar{z} \neq \overline{0}$. Substituting $y z$ for y in our hypothesis, we get

$$
\overline{[x, y] d(z)-y[F(x), z]-[y d(z), x]} \in Z(R / P) \quad \text { for all } x, y \in I
$$

which proves that

$$
[[x, r] y d(z), r] \in P \quad \text { for all } x, y, r \in I
$$

Since, this relation is exactly (1.6), then arguing as before, we find that either R / P is a commutative integral domain or $\overline{d(z)}=\overline{0}$. On the other hand, if we replace y by $-x$ in (1.12), then it is obvious to see that

$$
\begin{equation*}
\overline{[F(x), x]+[d(x), x]} \in Z(R / P) \text { for all } x \in I \tag{1.14}
\end{equation*}
$$

A linearization of relation (1.14), leads to

$$
\begin{equation*}
\overline{[F(z), x]} \in Z(R / P) \text { for all } x \in I \tag{1.15}
\end{equation*}
$$

Writing $x F(z)$ instead of x in (1.15), we get $\overline{F(z)} \in Z(R / P)$. Now substituting $z x$ for x in (1.14), we obtain

$$
\overline{[F(z) x, z x]}+2 \overline{[z d(x), z x]} \in Z(R / P) \quad \text { for all } x \in I
$$

and therefore

$$
2 \overline{[d(x), x]} \bar{z}^{2} \in Z(R / P) \quad \text { for all } x \in I
$$

Hence from the last relation, we get $\overline{[d(x), x]} \in Z(R / P)$ for all $x \in I$. Invoking Lemma 1 , we conclude that $d(R) \subseteq P$ or R / P is commutative. Consequently, in both cases, we have either $d(R) \subseteq P$ or R / P is a commutative integral domain.

As an application of our theorem, the following corollary improves the result of [2] for the case when the underlying identity belongs to the center of a prime ring.

Corollary 3. Let R be a 2-torsion free prime ring and I a nonzero ideal of R. If R admits a generalized derivation F associated with a nonzero derivation d satisfying $F[x, y]-[F(x), y]-[d(y), x] \in Z(R)$ for all $x, y \in I$, then R is a commutative integral domain.

Proposition 2 ([3], Theorem 2.8). Let R be a 2-torsion free semiprime ring and I a nonzero ideal of R. If R admits a generalized derivation F associated with a nonzero derivation d satisfying $F[x, y]=[F(x), y]+$ $[d(y), x]$ for all $x, y \in I$, then R contains a nonzero central ideal.

In [17] Dhara and al. showed that, a prime ring R must be commutative if it admits two generalized derivations F and G associated with derivations d and g respectively and satisfies the properties $F(x) F(y) \pm G(x y) \pm y x \in$ $Z(R)$ for all $x, y \in I$, where I is a nonzero two sided ideal of R.

Motivated by the above results, our aim in the following theorem is to investigate a more general context of differential identities with generalized derivations acting in a center of quotient ring R / P by omitting the primeness assumption imposed on the ring.

Theorem 3. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$. If (F, d) and (G, g) two generalized derivations of R associated with derivations d and g satisfying the condition $\overline{F(x) F(y)+G(x y) \pm y x} \in Z(R / P)$ for all $x, y \in I$, then R / P is a commutative integral domain.

Proof. Assume that

$$
\begin{equation*}
\overline{F(x) F(y)+G(x y)-y x} \in Z(R / P) \text { for all } x, y \in I \tag{1.16}
\end{equation*}
$$

Replacing y by $y r$ in (1.16), we have

$$
\begin{equation*}
[F(x) y d(r)+x y g(r)+y[x, r], r] \in P \quad \text { for all } x, y, r \in I \tag{1.17}
\end{equation*}
$$

Substituting $x r$ for x in (1.17), we get

$$
(1[\mathbb{H} \text { x) }) r y d(r)+x d(r) y d(r)+x r y g(r)+y[x, r] r, r] \in P \quad \text { for all } x, y, r \in I
$$

Using (1.17) together with (1.18), we find that

$$
\begin{equation*}
[x d(r) y d(r)+[y[x, r], r], r] \in P \quad \text { for all } x, y, r \in I \tag{1.19}
\end{equation*}
$$

Right multiplying (1.19) by r and combining it with the last relation, it follows that

$$
\begin{equation*}
[x[d(r) y d(r), r], r] \in P \quad \text { for all } x, y, r \in I \tag{1.20}
\end{equation*}
$$

Writing $d(r) y d(r) x$ instead of x in (1.20), we obtain

$$
[d(r) y d(r), r] x[d(r) y d(r), r] \in P \quad \text { for all } x, y, r \in I
$$

Applying Fact 1 , we get $[d(r) y d(r), r] \in P$ for all $y, r \in I$, that is

$$
\begin{equation*}
d(r) y d(r) r-r d(r) y d(r) \in P \quad \text { for all } y, r \in I \tag{1.21}
\end{equation*}
$$

Replacing y by $y d(r) t$ in (1.21), we get

$$
\begin{equation*}
d(r) y d(r) t d(r) r-r d(r) y d(r) t d(r) \in P \quad \text { for all } y, r, t \in I \tag{1.22}
\end{equation*}
$$

Putting t instead of y in (1.21) and left multiplying it by $d(r) y$, we arrive at

$$
\begin{equation*}
d(r) y d(r) t d(r) r-d(r) y r d(r) t d(r) \in P \quad \text { for all } y, r, t \in I \tag{1.23}
\end{equation*}
$$

Combining (1.22) with (1.23), one can verify that

$$
\begin{equation*}
d(r) y r d(r) t d(r)-r d(r) y d(r) t d(r) \in P \quad \text { for all } y, r, t \in I \tag{1.24}
\end{equation*}
$$

On the other hand, right multiplying (1.21) by $t d(r)$ and then subtracting it from (1.24), it is obvious to see that

$$
d(r) y[d(r), r] t d(r) \in P \quad \text { for all } y, r, t \in I
$$

which forces that

$$
[d(r), r] I[d(r), r] I[d(r), r] \subseteq P \quad \text { for all } r \in I
$$

According to Fact 1, it follows that $[d(r), r] \in P$ for all $r \in I$, which proves that $[[d(r), r], t] \in P$ for all $r, t \in I$. By virtue of Lemma 1 , the last equation implies that either $d(R) \subseteq P$ or R / P is an integral domain. Now if we take $d(R) \subseteq P$, then the expression (1.17) becomes
(1.25) $x[y g(r), r]+[x, r] y g(r)+[y[x, r], r] \in P \quad$ for all $x, y, r \in I$.

Putting $x y$ instead of y in (1.25), one can see that

$$
\begin{equation*}
[x, r] x y g(r)+[x, r] y[x, r] \in P \quad \text { for all } x, y, r \in I \tag{1.26}
\end{equation*}
$$

Substituting $r+x$ for r in (1.26), we obtain

$$
[x, r] x y g(x) \in P \quad \text { for all } x, y, r \in I
$$

Accordingly,

$$
[g(x), x] t[g(x), x] y[g(x), x] \in P \quad \text { for all } x, y, t \in I .
$$

Whence, using again Fact 1 , we conclude that either $g(R) \subseteq P$ or R / P is commutative. Thus, in the first case the expression (1.26) reduces to $[x, r] y[x, r] \in P$ for all $x, y, r \in I$. Since P is prime, the last equation implies that $[R, R] \subseteq P$ and therefore R / P is a commutative integral domain.

By similar manner, the same conclusion holds for $\overline{F(x) F(y)+G(x y)+y x} \in$ $Z(R / P)$ for all $x, y \in I$. This completes the proof of our theorem.

As an application of Theorem 3, the following corollary extended the results of Dhara [17, Theorem 1] for semiprime ring.

Corollary 4. Let R be a semiprime ring and I a nonzero ideal of R. If (F, d) and (G, g) two generalized derivations of R associated with derivations d and g. Then the following assertions are equivalent:

1) $F(x) F(y) \pm G(x y) \pm y x \in Z(R)$ for all $x, y \in I$
2) R is commutative.

Proof. We need only prove that $(1) \Longrightarrow(2)$. Assume that

$$
\begin{equation*}
F(x) F(y)+G(x y) \pm y x \in Z(R) \text { for all } x, y \in I . \tag{1.27}
\end{equation*}
$$

By view of the semiprimeness of the ring R, there exists a family of prime ideals $\mathcal{P}=\left\{P_{\alpha} / \alpha \in \Lambda\right\}$ such that $\alpha \in \Lambda \bigcap P_{\alpha}=(0)$, thereby obtaining $[F(x) F(y)+G(x y) \pm y x, r] \in P_{\alpha}$ for all $x, y, r \in I$ and for all $\alpha \in \Lambda$. Hence, it follows that $\overline{F(x) F(y)+G(x y) \pm y x} \in Z\left(R / P_{\alpha}\right)$ for all $\alpha \in \Lambda$. Invoking Theorem 3, we conclude that R / P_{α} is a commutative integral domain which, because of $\alpha \in \Lambda \cap P_{\alpha}=(0)$, assures that R is commutative. We notice that, if (G, g) is a generalized derivation on R, then $(-G,-g)$ is also a generalized derivation on R. Thus by putting $(-G,-g)$ instead of (G, g) in the expression (1.27), we get the required result.

If we replace G by $G \pm i d_{R}$ in the Corollary 4, then one can obviously obtain the following result.

Corollary 5. Let R be a semiprime ring and I a nonzero ideal of R. If (F, d) and (G, g) two generalized derivations of R associated with derivations d and g. Then the following assertions are equivalent:

1) $F(x) F(y) \pm G(x y) \pm[x, y] \in Z(R)$ for all $x, y \in I$
2) $F(x) F(y) \pm G(x y) \pm x \circ y \in Z(R)$ for all $x, y \in I$
3) R is commutative.

In [4] Ashraf and al. established that if R is a prime ring, I is a nonzero ideal of R and F is a generalized derivation of R associated with nonzero derivation d such that $F(x y) \pm x y \in Z(R)$ or $F(x) F(y) \pm x y \in Z(R)$ for all $x, y \in I$, then R is commutative.

Our fundamental aim is to generalize this result in two directions. First of all, we will treat a more general differential identity involving two generalized derivations. More specifically, we will study the more general case by considering the following situations:
(i) $\overline{F(x) F(y) \pm G(x y)} \in Z(R / P)$ for all $x, y \in I$, (ii) $\overline{[F(x), y] \pm G(x y)} \in$ $Z(R / P)$ for all $x, y \in I$ and (iii) $\overline{F(x) \circ y \pm G(x y)} \in Z(R / P)$ for all $x, y \in I$. Secondly, we will assume that the above algebraic identities belong to $Z(R / P)$, where P is any prime ideal rather than the zero ideal.

Theorem 4. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$. If F and G are generalized derivations of R associated with derivations d and g respectively, satisfying one of the following properties:

1) $\overline{F(x) F(y) \pm G(x y)} \in Z(R / P)$ for all $x, y \in I$;
2) $[F(x), y] \pm G(x y) \in Z(R / P)$ for all $x, y \in I$;
3) $\overline{F(x) \circ y \pm G(x y)} \in Z(R / P)$ for all $x, y \in I$;
then $(d(R) \subseteq P$ and $g(R) \subseteq P)$ or R / P is a commutative integral domain.

Proof. (1) We are given that

$$
\begin{equation*}
\overline{F(x) F(y)+G(x y)} \in Z(R / P) \text { for all } x, y \in I \tag{1.28}
\end{equation*}
$$

Replacing y by $y r$ in (1.28), we find that
$\overline{(F(x) F(y)+G(x y)) r+F(x) y d(r)+x y g(r)} \in Z(R / P) \quad$ for all $x, y, r \in I$ and therefore

$$
\begin{equation*}
[F(x) y d(r)+x y g(r), r] \in P \quad \text { for all } x, y, r \in I \tag{1.29}
\end{equation*}
$$

Substituting $x t$ for x in (1.29) and subtracting it with (1.29), we arrive at

$$
\begin{equation*}
[x d(t) y d(r), r] \in P \quad \text { for all } x, y, r, t \in I \tag{1.30}
\end{equation*}
$$

Putting $u x$ instead of x in (1.30), we obtain

$$
[u, r] x d(t) y d(r)+u[x d(t) y d(r), r] \in P \quad \text { for all } x, y, r, t, u \in I
$$

in such a way that

$$
\begin{equation*}
[u, r] \operatorname{Id}(t) y d(r) \subseteq P \quad \text { for all } y, r, t, u \in I \tag{1.31}
\end{equation*}
$$

which because of primeness, gives that either $[I, r] \subseteq P$ or $d(t) y d(r) \in P$ for all $y, r, t \in I$. The sets of r for which theses conditions holds are additive subgroups of I with union equal to I; so that by Brauer's trick, we have R / P is commutative or $d(R) \subseteq P$. In the later case the relation (1.29) yields

$$
\begin{equation*}
[x y g(r), r] \in P \quad \text { for all } x, y, r \in I \tag{1.32}
\end{equation*}
$$

Substituting $w x$ for x in (1.32) where $w \in R$, we get $[w, r] x y g(r) \in P$ for all $x, y, r \in I$. As a special case of the last equation, we may write

$$
\begin{equation*}
[w, r] x g(r) y g(r) \in P \quad \text { for all } x, y, r \in I \text { and } w \in R \tag{1.33}
\end{equation*}
$$

On the other hand, taking $w=g(r)$ in the above relation and combining it with (1.33), it is obvious to see that

$$
[g(r), r] x[g(r), r] y[g(r), r] \in P \quad \text { for all } x, y, r \in I
$$

Since P is prime, the last equation assures that $[g(r), r] \in P$ which leads to $[[g(r), r], t] \in P$ for all $r, t \in I$. Applying Lemma 1 , it follows that either $g(R) \subseteq P$ or R / P is commutative. Now assume that $\overline{F(x) F(y)-G(x y)} \in Z(R / P)$. Thus by putting $(-G,-g)$ instead of (G, g) in the relation (1.28), we get the required result.
(2) Suppose that

$$
\begin{equation*}
\overline{[F(x), y]+G(x y)} \in Z(R / P) \text { for all } x, y \in I \tag{1.34}
\end{equation*}
$$

Replacing y by $y r$ in (1.34), we get

$$
\overline{([F(x), y]+G(x y)) r+y[F(x), r]+x y g(r)} \in Z(R / P) \text { for all } x, y, r \in I
$$

which leads to

$$
\begin{equation*}
[y[F(x), r]+x y g(r), r] \in P \quad \text { for all } x, y, r \in I \tag{1.35}
\end{equation*}
$$

Writing $r y$ instead of y in (1.35) and subtracting it from (1.35), we arrive at

$$
\begin{equation*}
[[x, r] y g(r), r] \in P \quad \text { for all } x, y, r \in I \tag{1.36}
\end{equation*}
$$

Since the expression (1.36) is similar as relation (1.6), reasoning in the same manner as above, we find that

$$
[x, r][t, r] y g(r) \in P \quad \text { for all } x, y, r, t \in I
$$

in particular

$$
[g(r), r] I[g(r), r] I[g(r), r] \subseteq P \quad \text { for all } r \in I
$$

Invoking Fact 1, we get either R / P is an integral domain or $g(R) \subseteq P$. By the second case the relation (1.35) reduces to

$$
\begin{equation*}
[y[F(x), r], r] \in P \quad \text { for all } x, y, r \in I \tag{1.37}
\end{equation*}
$$

Putting $F(x) y$ instead of y in the expression (1.37) and using it, we obtain

$$
\begin{equation*}
[F(x), r] \in P \quad \text { for all } x, r \in I \tag{1.38}
\end{equation*}
$$

Replacing x by $x r$ in the expression (1.38), we find that $[x d(r), r] \in P$ for all $x, r \in I$. The substitution $t x$ for x in the last equation gives

$$
[t, r] I d(r) \subseteq P \quad \text { for all } r, t \in I
$$

Finally, we claim that either $d(R) \subseteq P$ or R / P is an integral domain.

Furthermore, if we have $\overline{[F(x), y]-G(x y)} \in Z(R / P)$, then arguing as above, we arrive at $(d(R) \subseteq P$ and $g(R) \subseteq P)$ or R / P is a commutative integral domain.
(3) Using the same techniques as in the second case with a slight modifications, one can see that the same conclusion holds for $\overline{F(x) \circ y \pm G(x y)} \in$ $Z(R / P)$ for all $x, y \in I$. Whence, the proof of our theorem is complete.

The following corollary is an immediate consequence of the above theorem.

Corollary 6. Let R be a prime ring and I a nonzero ideal of R. If F and G are generalized derivations of R associated with derivations d and g respectively such that at least one is nonzero, then the following assertions are equivalent:

1) $F(x) F(y) \pm G(x y) \in Z(R)$ for all $x, y \in I$
2) $[F(x), y] \pm G(x y) \in Z(R)$ for all $x, y \in I$
3) $F(x) \circ y \pm G(x y) \in Z(R)$ for all $x, y \in I$
4) $F(x) F(y) \pm G(x y) \pm x y \in Z(R)$ for all $x, y \in I$
5) $[F(x), y] \pm G(x y) \pm x y \in Z(R)$ for all $x, y \in I$
6) $F(x) \circ y \pm G(x y) \pm x y \in Z(R)$ for all $x, y \in I$
7) R is a commutative integral domain.

As an application of Corollary 6, we have the following result.

Corollary 7. Let R be a prime ring and I a nonzero ideal of R. If F and G are generalized derivations of R associated with derivations d and g respectively such that at least one is nonzero, then the following assertions are equivalent:

1) $[F(x), y] \pm G(x y) \pm y x \in Z(R)$ for all $x, y \in I$
2) $[F(x), y] \pm G(x y) \pm[x, y] \in Z(R)$ for all $x, y \in I$
3) $[F(x), y] \pm G(x y) \pm x \circ y \in Z(R)$ for all $x, y \in I$
4) $F(x) \circ y \pm G(x y) \pm y x \in Z(R)$ for all $x, y \in I$
5) $F(x) \circ y \pm G(x y) \pm[x, y] \in Z(R)$ for all $x, y \in I$
6) $F(x) \circ y \pm G(x y) \pm x \circ y \in Z(R)$ for all $x, y \in I$
7) R is a commutative integral domain.

As a consequence of Theorem 4, the next proposition gives a commutativity criteria for semi-prime ring.

Proposition 3. Let R be a semiprime ring and I a nonzero ideal of R. If R admits two generalized derivations F and G associated with nonzero derivations d and g respectively, satisfying one of the following conditions:

1) $F(x) F(y) \pm G(x y) \in Z(R)$ for all $x, y \in I$
2) $[F(x), y] \pm G(x y) \in Z(R)$ for all $x, y \in I$
3) $F(x) \circ y \pm G(x y) \in Z(R)$ for all $x, y \in I$
then R contains a nonzero central ideal.

Proof. Assume that $F(x) F(y) \pm G(x y) \in Z(R)$ for all $x, y \in I$. The ring R is semiprime then there exists a family of prime ideals $\mathcal{P}=\left\{P_{\alpha} / \alpha \in \Lambda\right\}$ such that $\alpha \in \Lambda \bigcap P_{\alpha}=(0)$. Therefore $[F(x) F(y) \pm G(x y), r] \in P_{\alpha}$ for all $\alpha \in \Lambda$. Using the proof of Theorem 4, by equation (1.31) we get

$$
[d(r), r] I[d(r), r] I[d(r), r]=0 \quad \text { for all } r \in I
$$

In light of the semiprimeness of R, we easily obtain $[d(r), r]=0$ for all $r \in I$. According to [6, Theorem 3], we conclude that R contains a nonzero central ideal.
Using the same technics as in the preceding proof, the same conclusion holds for the identities $[F(x), y] \pm G(x y) \in Z(R)$ and $F(x) \circ y \pm G(x y) \in Z(R)$ for all $x, y \in I$.

In the following proposition we will extend [17, Corollary 6] for semiprime ring.

Proposition 4. Let R be semiprime ring and I a nonzero ideal of R. Suppose that R admits two generalized derivations F and G associated with derivations d and g respectively such that at least one is nonzero. If the condition $F(x) F(y) \pm G(x y) \pm x y \in Z(R)$ holds for all $x, y \in I$, then R contains a nonzero central ideal.

The following example proves that the condition "R/P is 2-torsion free" is necessary in Theorem 1.

Example 1. Let us set $R=M_{2}\left(\mathbf{Z}_{2}\right)$ and $P=(0)$. It is straightforward to check that R is a prime ring with $\operatorname{char}(R)=2$ and P is a prime ideal of R. Define $F: R \rightarrow R$ by $F(X)=X \circ A$, where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

then F is a nonzero generalized derivation of R associated with the inner derivation $d(X)=[X, A]$ satisfying

$$
F(X \circ Y)=\left(\begin{array}{cc}
c a^{\prime}+d c^{\prime}+c^{\prime} a+d^{\prime} c & 0 \\
0 & c a^{\prime}+d c^{\prime}+c^{\prime} a+d^{\prime} c
\end{array}\right) \in Z(R)
$$

for all $X=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ and $Y=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$
in R. However, R is non-commutative.

The following example proves that the condition of the "primeness" imposed on the ideal is crucial in our Theorems.

Example 2. Consider $R=\left\{\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right) / a, b, c \in \mathbf{Z}\right\}$ and $P=(0)$. Let I the ideal of R defined by $I=\left\{\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) / a \in \mathbf{Z}\right\}$. Define the maps on R as follows $F(x)=2 e_{11} x-x e_{11}$ and $G(x)=e_{12} x+x e_{11}$. Then it is clearly to see that F and G are generalized derivations of R associated with nonzero derivations d and g respectively, where $d(x)=e_{11} x-x e_{11}$ and $g(x)=-e_{11} x+x e_{11}$. Moreover F and G satisfies the conditions of all Theorems, but R is not commutative.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] F. A. A. Almahdi, A. M amouni and M. Tamekkante, "A Generalization of Posner's Theorem on Derivations in Rings", Indian J ournal of Pure and A pplied M athematics, vol. 51, no. 1, pp. 187-194, 2020.
[2] M. Ashraf and A. K han, "Commutativity of *prime rings with generalized derivations", Rendiconti del Seminario Matematico della U niversità di Padova, vol. 125, pp. 71-79, 2011.
[3] M. A shraf, N. Rehman, A. Shakir and M. Rahman M ozumder, "On semiprime rings with generalized derivations", Boletim da Sociedade Paranaense de M atemática, vol. 28, no. 2, pp. 25-32, 2010.
[4] M . A shraf, A. Ali and S. Ali, "Some commutativity theorems for rings with generalized derivations", Southeast Asian Bulletin of M athematics, vol. 31, no. 3, 415-421, 2007.
[5] M. Ashraf and N. Rehman, "On commutativity of rings with derivations", Results in M athematics, vol. 42, no. 1-2, pp. 3-8, 2002.
[6] H. E. Bell and W. S. M artindale III, "Centralizing mappings of semiprime rings. Canadian Mathematical Bulletin, vol. 30, no. 1, pp. 92-101, 1987.
[7] M . Brešar, "On the distance of the composition of two derivations to the generalized derivations", Glasgow M athematical Journal, vol. 33, no. 1, pp. 89-93, 1991.
[8] M. Brešar, "Centralizing mappings and derivations in prime rings", J ornal of algebra, vol. 156, no. 2, pp. 385-394, 1993.
[9] I. N. Herstein, "A note on derivations", Canadian Mathematical Bulletin, vol. 21, no. 3, pp. 369-370, 1978.
[10] C. Lanski, "Differential identities, Lie ideals and Posner's theorems", Pacific J ournal of M athematics, vol. 134, no. 2, pp. 275-297, 1988.
[11] J. Mayne, Centralizing automorphisms of prime rings. Canadian M athematical Bulletin, vol. 19, no. 1, pp. 113-115, 1976.
[12] A. Mamouni, L. Oukhtite and B. Nejjar, "On *semiderivations and *generalized semiderivations", J ournal of A Igebra and its A pplications, vol. 16, no. 4, Art. ID. 1750075, 2017.
[13] L. Oukhtite, "Posners second theorem for Jordan ideals in rings with involution", Expositiones M athematicae, vol. 29, N no. 4, pp. 415-419, 2011.
[14] E. C. Posner, "D erivations in prime rings", Proceedings of the American M athematical Society, vol. 8, pp. 1093-1100, 1957.
[15] M . A . Quadri, M. S. K han and N. Rehman, "Generalized derivations and commutativity of prime rings", Indian Journal of Pure and Applied M athematics, vol. 34, no. 9, pp. 1393-1396, 2003.
[16] N. U r-Rehman, "On generalized derivations as homomorphisms and anti-homomorphisms", Glasnik M atematiǒki, vol. 39, no. 59, pp. 27-30, 2004.
[17] S. K. Tiwari, R. K. Sharma and B. Dhara, "Identities related to gener-alized derivation on ideal in prime rings", Beiträge zur A Igebra und Geometrie, vol. 57, no. 4, pp. 809-821, 2016.

Karim Bouchannafa

Department of Mathematics, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Box 2202, Fez,
Morocco
e-mail: bouchannafa.k@gmail.com

Abdellah Mamouni

Department of Mathematics, Faculty of Science, University Moulay Ismail, Meknes,
Morocco
email: a.mamouni.fste@gmail.com
Corresponding author
and

Lahcen Oukhtite

Department of Mathematics,
Faculty of Science and Technology,
Sidi Mohamed Ben Abdellah University,
Box 2202, Fez,
Morocco
e-mail: oukhtitel@hotmail.com

