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1. Introduction and Preliminaries

The fundamental concept of fuzzy sets was first introduced by Zadeh [10]
in 1965. In 1968, Chang [2] introduced the notion of fuzzy topological
spaces as a generalization of topological spaces. Since then many topol-
ogist have contributed to the theory of fuzzy topological spaces. Kelly
[5] first introduced the concept of bitopological spaces. The concept of
fuzzy bitopological spaces was introduced by Kandil [4] in 1989 as a nat-
ural generalization of fuzzy topological spaces. After the introduction of
the definition of a fuzzy bitopological space by Kandil, a large number of
topologists have turned their attention to the generalization of different
concepts of a single fuzzy topological spaces. Kumar [7, 8] introduced and
studied different types mappings in fuzzy bitopological spaces. Also Dhar
[3] introduced and studied some pairwise weakly fuzzy mappings. Singal
and Singal [9] initiated the study of bitopological ordered spaces. Bakier
and Sayed [1] introduced and studied the notion of continuity, openness
and closedness in bitopological ordered spaces. The study of the relation-
ship between fuzzy topology and order was initiated by Katsaras [6] in
1981. In this paper, pairwise fuzzy I-continuous mappings, pairwise fuzzy
D-continuous mappings, pairwise fuzzy B-continuous mappings, pairwise
fuzzy D-open mapping, pairwise fuzzy B-open mappings, pairwise fuzzy
I-closed mappings, pairwise fuzzy D-closed mappings and pairwise fuzzy
B-closed mappings for fuzzy bitopological ordered spaces have been intro-
duced and investigated.

Definition 1.1. [I] Let (X, <) be a partially ordered set (i.e. a set X
together with a reflexive, antisymmetric and transitive relation). For a
subset A C X, we write: L(A) = {y € X : y < x for somex € A},
M(A) ={y € X : x <y for some x € A}. In particular, if A is a singleton
set, say {x}, then we write L(x) and M (x) respectively. A subset A of
X is said to be decreasing (resp. increasing) if A = L(A) (resp. A =
M(A)). The complement of a decreasing (respectively an increasing) set is
an increasing (respectively a decreasing) set.

Definition 1.2. [6] Let X be a non-empty set. A preorder on X is a
relation < on X which is reflexive and transitive. A preorder on X which
is also anti-symmetric is called a partial order or simply an order. By an
ordered set we mean a set X with an order on it and we denote it by (X, <).
An ordered set on which there is given a fuzzy topology is called a fuzzy
topological ordered space and we denote it by (X, 7, <).
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Definition 1.3. [6] A fuzzy set p in a pre- ordered set (X, <), is called
(i) increasing if ¢ < yu(x) < p(y),
(ii)) decreasing if x < yu(x) > u(y),
(iii) order-convex if x <y < zu(y) > min {u(x), u(z)}.

The smallest increasing fuzzy set, in (X, <), which contains p is called
the increasing hull denoted by i(n). The decreasing (respectively order-
convex) hull d(p) (resp. c(p)) is defined analogously.

Proposition 1.4. [6] Let pu be a fuzzy set in a preordered set (X, <). Then,
for each x € X, we have

(i) i(p)(z) = sup {u(y) y <z}

i) A (@) = sup (uly) > o};

(iii) c(p)(y) = min {p(z),u(2)}, z <y < 2.

Definition 1.5. [6] Let u be a fuzzy set, in a preordered set (X, <) with
a fuzzy topology T. Then we have

(i) D(u) = inf{p: p > p,p is closed and decreasing};

(ii) I(p) = inf {p: p > u,p is closed and increasing }.

Clearly, D(u) (respectively I(u)) is the smallest closed decreasing (respec-
tively increasing) fuzzy set in (X, >) which contains f.

2. Pairwise fuzzy /- continuous, pairwise fuzzy D-continuous
and pairwise fuzzy B- continuous mappings

bitopological space (X, T1,T2) equipped with a partial order < (that is, re-
flexive, transitive and antisymetric).

Definition 2.1. A fuzzy bitopological ordered space (X, 11, T2, <) is a fuzzy

Definition 2.2. A fuzzy subset u of (X, 11,72, <) is said to be increasing
if x <yp(z) < p(y), forz,y € X.

Definition 2.3. A fuzzy subset p of (X, 71,72, <) is said to be decreasing
if z < yﬂ(x) > ,u(y), for z,y € X.

Definition 2.4. For a fuzzy subset A of a fuzzy bitopological ordered space
(X, 71,72, <),

H!(A) = N{F : F is 7;-decreasing fuzzy closed subset of X containing A},
H"™(A) = N{F : F is 1;-increasing fuzzy closed subset of X containing A},
HY(A) = N{F : F is a fuzzy closed subset of X containing A with F' =
L(F) = M(F)},
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OL(A) = V{G : G is 1;-decreasing fuzzy open subset of X contained in A},
O"(A) = V{G : G is 1j-increasing fuzzy open subset of X contained in A},
O?(A) = V{G : G is both T;-increasing and 7;-decreasing fuzzy open subset
of X contained in A}.

Clearly, H"(A) (respectively H!(A), H?(A)) is the smallest 7;-increasing
(respectively 7;-decreasing, both 7;-increasing and 7;-decreasing) fuzzy closed
set containing A. Moreover A; < H™(A) < H?(A) and where 4; stands
for the 7;-closure of A in (X, 71,72,<),i = 1,2. Further A is 7;-decreasing
(respectively T;-increasing) fuzzy closed if and only if A = H™(A) = H!(A).
Clearly, O (A) (respectively OL(A), O%(A)) is the largest 7;-increasing (re-
spectively 7;-decreasing, both 7;-increasing and 7;-decreasing) fuzzy open
set contained in A. Moreover OY(A) < OM(A) < A? and 0%(A) < O4(A),
where A? denotes the 7;-interior of A in (X, 7y,7,<),7 # j. If A and B
are two 71 fuzzy subsets of a fuzzy bitopological ordered space (X, 71, 72, <
),i # j such that A < B, then O™(A) < O{(B) < B?. Q(O"(X)) (re-
spectively Q(O4(X)), Q(O!(X))) denotes the collection of all 7;-increasing
(respectively 7;-decreasing, both 7;-increasing and 7;-decreasing) fuzzy open
subsets of a fuzzy bitopological ordered space (X, 11, 72, <).

Definition 2.5. A mapping f : (X,71,72,<) — (X*,7f,75,<*) from a
fuzzy bitopological ordered space (X, 11,72, <) to another fuzzy bitopolog-
ical ordered space (X*,7{,15,<*) is called a pairwise fuzzy I-continuous
(respectively a pairwise fuzzy D-continuous, a pairwise fuzzy B-continuous)
mapping if f~1(G) € QO (X)) (respectively f~1(G) € Q(OYX)), f1(G) €
Q(O(X)), whenever G is a T} -fuzzy open subset of (X*, 75,75, <*),i = 1,2.

It is evident that every pairwise fuzzy z-continuous mapping is pair-
wise fuzzy continuous for x = I, D, B and that every pairwise fuzzy B-
continuous mapping is both pairwise fuzzy I-continuous and pairwise fuzzy
D- continuous.

Example 2.6. Let X = {a,b,c} and A and p are fuzzy sets defined as
follows:

Aa) = 0.3, A(b) = 0.4, Ae)=0.5

p(a) = 0.7, w(b) = 0.8, w(c) =0.9.
Let = {0,\, 1}, 70 = {0, i, 1} and <= {(a, a), (b, ), (¢, c), (a,b), (b,c), (a,c)}.
Clearly (X, 11,72,<) is a fuzzy bitopological ordered space. Let f be the
identity mapping from (X, 11,72, <) onto itself. \ is T- fuzzy open and p
is To-fuzzy open.
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Butf~Y(\)(a) = A(f(a)) = A(a) = 0.3 which is neither a 71- increasing
nor a T1- decreasing fuzzy open set.

Also f~Y(u)(a) = p(f(a)) = u(a) = 0.7 which is neither a To- increas-
ing nor a To-decreasing fuzzy open set. Thus f is not pairwise fuzzy x
continuous for x = I, D, B. However f is fuzzy continuous.

Example 2.7. Let X = {a,b,c} = X* and \ and u are fuzzy sets defined
as follows:

AMa) = 0.3, A(b) = 0.4, Ae) = 0.5

p(a) = 0.7, wu(b) = 0.8, p(c) =0.9

Let m = {Oa A, 1} = Tika T2 = {Oa L,y 1} = 7_2* and <= {(a’ a)7 (b7 b)a (C> C)? (CL, C)}
<*={(a,a),(b,b),(c,c),(a,b),(b,c),(a,c)}. Clearly (X,T1,712,<) and

(X*, 7,13, <*) are fuzzy bitopological ordered spaces. Let g be the identity
mapping from (X, 7,12, <) onto (X*, 7, 75,<*). g is not pairwise fuzzy
B-continuous. However g is a pairwise fuzzy D-continuous mapping. The
following example supports that a pairwise fuzzy I-continuous mapping

need not be a pairwise fuzzy B-continuous mapping.

Example 2.8. Let X = {a,b,c} = X*. Let i, = {0,(0.3,0.4,0.5), 1}, 7 =
{0,(0,0, 0.5),1}, = = {0,(0.7,0.8,0.9),1},75 = {0,(0,0.2,0.9),1} and
<= {(a,a), (b,b), (c,c), (a,b),(b,c), (a,c)} =<*. Clearly (X, 11,72, <) and
(X*,7f,3,<*) are fuzzy bitopological ordered spaces. Define

h: (X,m,72,<) — (X*, 77,5, <*) by h(a) = b,h(b) = a and h(c) = c.
h is pairwise fuzzy I-continuous but not a pairwise fuzzy B-continuous
mapping.

Thus we have the following diagram:
For a mapping f : (X, 711,72, <) — (X*, 77,75, <*), where P — @Q (respec-

tively P < Q) represents P implies @ but () need not imply P (respectively
P and @ are independent of each other).
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The following Theorem characterizes pairwise fuzzy I-continuous map-
ping.

Theorem 2.9. For a mapping f : (X, 71,72, <) — (X*, 7f, 75, <), the fol-
lowing statements are equivalent :

(1) f is pairwise fuzzy I-continuous.

(2) f(HLA)) < (f(A);) for any fuzzy subset A < X, i=1,2.

(3) HL{(f~Y(B)) < f~Y(B); for any fuzzy subset B < X*,i=1,2.

(4) For every 7} fuzzy closed subset K of (X*,75,75,<), f 1K) isam
decreasing fuzzy closed subset of (X, 11,72,<), 1= 1,2.

Proof. (1) (2). Since X*\ (f(A)); (A)) -fuzzy open in X* and f is
pairwise fuzzy I-continuous, then f~(X\ ( \ )) ) is a 7;- increasing fuzzy
open set in X. Then X \ FUXN\(F(A)) is a 7- decreasmg fuzzy closed

subset of X. Since X\ f~H(X\(f(A))) = f 1(f(A))1, so f7H(f(A));is a7-
decreasing fuzzy closed subset of X. Since A < f~1(f(A)); and is the small-
est 7;-decreasing fuzzy closed set containing A, then H(A) < f=1(f(A))s,
FUH{(A)) < f(F7H(F(A))i) < (F(A))i. Thus f(H](A)) < (F(A))s.

(2) = (). Let 4 = f*l(B). Then F(A) =
i B))

< H < =
(f( )i < 7 1( ) Thus H(f~(B)) <

(3)= (4). H\(f~Y(K)) < f YK); for any 7/-fuzzy closed set K of
(X*,75,75,<). Thus f~(K) is a 7;-decreasing fuzzy closed set in
(X, 11,72, <) whenever K is a 7*-fuzzy closed set in (X*, 77, 75, <).
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(4)=(1). Let G be a 7}-fuzzy open set in (X*, 75,75, <). Then f~1(X\(G))

is a 7;-decreasing fuzzy closed set in (X, 71,72, <), since X*\ (G) is a fuzzy
closed set in (X*,7,75,<). But X\ (f71(Q)) = f~4(X\ (G)). Thus
X\ (f71@)) is a 7;-decreasing fuzzy closed set in (X, 71,72, <). So f~1(G)
is a 7;-increasing fuzzy open set in (X, 71,79, <). Thus f is pairwise fuzzy
I-continuous. O

The following two theorems characterize pairwise fuzzy D-continuous
mapping and pairwise fuzzy B-continuous mapping, whose proofs are sim-

ilar to as that of the above Theorem 2.9.

Theorem 2.10. For a mapping f : (X, 11,72,<) — (X*, 71,75, <¥), the
following statements are equivalent :

(1) f is pairwise fuzzy D-continuous.

(2) f(H™(A)) < (f(A)); for any fuzzy subset A < X, i=1,2.

(3) HM™(f~Y(B)) < f~Y(B); for any fuzzy subset B < X*,i=1,2.

(4) For every 7}-fuzzy closed subset K of (X*,7f,75,<), f~YK) is a
Ti-increasing fuzzy closed subset of (X, 11,72,<), i =1,2.

Theorem 2.11. For a mapping f : (X,711,72,<) — (X*, 7, 15,<), the
following statements are equivalent :

(1) f is pairwise fuzzy B-continuous.

(2) f(H[(A)) < (f(A))i for any A< X, i=1,2.

(3) HY(f~Y(B)) < f~Y(B); for any B < X*,i=1,2.

(4) For every 7/-fuzzy closed subset K of (X*,7f,75,<), f~*(K) is both
Ti-increasing and T;-decreasing fuzzy closed subset of (X, 11,72, <), 1 =1,2.

Theorem 2.12. Let f: (X, 71,72,<1) — (Y,v1,v2,<2) and g : (Y, v1,v2, <o
) — (Z,m1,1m2,<3) be any two mappings. Then

(1) gof:(X,m,7m2,<1) — (Z,m1,m2,<3) is pairwise fuzzy x-continuous
forx=1,D,B.

(2) gof:(X,1,7m2,<1) — (Z,m1,m2,<3) is pairwise fuzzy x-continuous
and g is pairwise fuzzy continuous for x = I, D, B.

(3) gof:(X,m,7m2,<1) — (Z,m1,m2,<3) is pairwise fuzzy x-continuous
and g is pairwise fuzzy y-continuous for z,y € {I, D, B}.

3. Pairwise fuzzy I-open, pairwise fuzzy D-open and pairwise
fuzzy B-open mappings

Definition 3.1. A mapping f : (X, 71,72, <) — (X*,7f,75,<*) from a
fuzzy bitopological ordered space (X, 71,72, <) to another fuzzy bitopo-
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logical ordered space (X, 1{,15,<*) is called a pairwise fuzzy I-open (re-
spectively a pairwise fuzzy D-open, a pairwise fuzzy B-open) mapping if
f(G) € UOM(X™)) (respectively f(G) € Q(O}(X¥)), f(G) € QO (X)),

whenever G is a 1;-fuzzy open subset of (X, 1,72,<),1=1,2.

It is evident that every pairwise fuzzy xz-open mapping is a pairwise
fuzzy open mapping for x = I, D, B and that every pairwise fuzzy B-open
mapping is both pairwise fuzzy I-open and pairwise fuzzy D-open.

The following example shows that a pairwise fuzzy D-open mapping need
not be a pairwise fuzzy B-open mapping.

Example 3.2. Let (X, 7,72,<) be a fuzzy bitopological ordered space
and f be a mapping as in Example 2.6. Then f is a pairwise fuzzy open
mapping but f is not pairwise fuzzy z-open for x = I, D, B.

Example 3.3. Let X, X", 71,72, 7], 75, < and <* be as in Example 2.7.
Let 6 be the identity mapping from (X, 11,72, <) onto (X*, 71,75, <*). 0 is
pairwise fuzzy D-open but not a pairwise fuzzy B-open mapping.

The following example shows that a pairwise fuzzy I-open mapping
need not be a pairwise fuzzy B-open mapping.

Example 3.4. Let X, X", 71,70, 7{, 75, < and <* be as in Example 2.8.
Let : (X, 71,79, <) — (X*,7f,75,<*) by w(a) = b,n(b) = a and 7(c) = c.
m is a pairwise fuzzy I-open mapping but not a pairwise fuzzy B-open
mapping.

Thus we have the following diagram:

For a mapping f : (X,71,7,<) — (X*,7{,75,<%), where P — Q
(respectively P < @) represents P implies @) but @ need not imply P
(respectively P and @ are independent of each other).
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Before characterizing pairwise fuzzy I-open (respectively pairwise fuzzy
D-open, pairwise fuzzy B-open) mapping, we establish the following useful
Lemma.

Lemma 3.5. Let A be any fuzzy subset of a fuzzy bitopological ordered
space (X, T1,T2,<). Then

(1) X\ H{(A) = 0M™(X \ A),i=1,2.

(2) X\ H™(A) = O4(X \ A),i=1,2.

(3) X\ HY(A) = O¥(X \ A),i=1,2.

Proof. (1) X\ H!(A) = X\ (A{F : F is a 7;-decreasing fuzzy closed

subset of X containing A}

= V(X \ F: F is a 1;-decreasing fuzzy closed subset of X containing A}

= V(G : G is a 7;- increasing fuzzy open subset of X contained in X \ A}

=O0M"(X \ A).

The proofs for (2) and (3) are analogous to that of (1) and so omitted. O
The following Theorem characterizes pairwise fuzzy I-open mappings.

Theorem 3.6. For any mapping f : (X, 11,72, <) — (X*, 7,75, <*), the
following statements are equivalent :

(1) f is pairwise fuzzy I-open mapping.

(2) f(A?)) < OM(f(A)) for any fuzzy subset A < X,i=1,2.

(3) (f71(B))? < f~HO™(B)) for any fuzzy subset B < X*,i = 1,2.

(4) f~Y(HYB)) < H{(f~1(B)) for any fuzzy subset B < X*,i = 1,2.

Proof. (1)(3) . Since (f~1(B))¢ is 7; fuzzy open in X and f is pairwise
fuzzy I- open, then f((f~(B))9) is a m-increasing fuzzy open set in X*.

Also f((f~1(B))?) < f((f71(B)) < B. Then f((f~!(B)); < O*(B) since
O7"(B) is the largest 7;-increasing fuzzy open set contained in B. Therefore
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(f71(B))¢ < f7H(OM(B)).

(3)(4). ReplacinngyX\Bin (3), we get, (fH(X\B))? < f 1(0;H(X\

B)). Since f~1(X\B) = X\(f~1(B)), then (X\(f~1(B)))? < f~HO(X\

B)). Now X \ (H{(f"'(B))) = Oj"(X \ f~1(B)) g (X\ (f71(B))7 <
HO(X\B)) = 71X\ (H/(B))) = X\(f ; /(B))) using the above

[~ \ '
Lemma 3.5. Therefore f~1(HY(B)) < H{(f~1(B)
(4)(3). All the steps in (3)(4) are reversible.
(3)(2). Replacing B by f(A) in (3), we get (£ (F(A)¢ < £ (OF(F(A))).
Since A? < (f~1(f(A)))?, then we have A? < f~1(O"™(f(A))). This implies
that £(A9) < F(f~H(OF(f(A)))) < OM(F(A)). Hence (A2)) < OM(F(A)).
(2)(1) Let G be any 7; fuzzy open subset of X. Then f(G) = f(G?) <
O"(f(G)). So f(G) is a 7 increasing fuzzy open set in X*. Therefore f
is a pairwise fuzzy I- open mapping. O

The following two Theorems give characterizations for pairwise fuzzy
D-open mapping and pairwise fuzzy B-open mapping, whose proofs are
similar to as that of the above Theorem 3.6.

Theorem 3.7. For any mapping f : (X, 11,72, <) — (X*, 7,75, <*), the
following statements are equivalent :

(1) f is pairwise fuzzy D-open.

(2) f((A9)) < OL(f(A)) for any fuzzy subset A < X, i =1,2.

(3) (f~4(B))? < f~Y(OUB)) for any fuzzy subset B < X*, i =1,2.

(4) f~Y(H™(B)) < H™(f~1(B)) for any fuzzy subset B < X*, i =1,2.

Theorem 3.8. For any mapping f : (X, 71,72,<) — (X*, 7,75, <¥), the
following statements are equivalent :

(1) f is pairwise fuzzy B-open.

(2) f((A9)) < OL(f(A)) for any fuzzy subset A < X,i=1,2.

(3) (f~1(B))? < f~YHOYB)) for any fuzzy subset B < X* i =1,2.

(4) f~Y(HY(B)) < H)(f~Y(B)) for any fuzzy subset B < X* i =1,2.

Theorem 3.9. Let f: (X, 71,72,<1) — (Y,11,10,<2) and g : (Y,v1,v2, <o
) — (Z,m1,m2,<3) be any two mappings. Then

(i) go f : (X,71,712,<1) — (Z,m1,1m2,<3) Is pairwise fuzzy x-open if f is
pairwise fuzzy open and g is pairwise fuzzy x-open for x =1, D, B.

(ii)) go f : (X, 11,72,<1) — (Z,m1,1m2,<3) is pairwise fuzzy x-open if both
f and g are pairwise fuzzy x-open for x = I, D, B.

(iii) go f : (X, 11,72, <1) — (Z,m1,m2, <3) is pairwise fuzzy x-open if f is
pairwise fuzzy y- open and g is pairwise fuzzy x- open for z,y € {I, D, B}.

Proof. Omitted. O
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4. Pairwise fuzzy I- closed, pairwise fuzzy D- closed and pair-
wise fuzzy B- closed mappings

Definition 4.1. A mapping f : (X, 71,72, <) — (X*,7f,75,<*) from a
fuzzy bitopological ordered space (X, 11,72, <) to another fuzzy bitopolog-
ical ordered space (X*, 1y, 75,<*) is called a pairwise fuzzy I-closed (re-
spectively a pairwise fuzzy D-closed, a pairwise fuzzy B-closed) mapping if
F(G) € QUH(X)) (respectively f(G) € QHL(X™), [(G) € QUHY(X)),
whenever G is a 1;-fuzzy open subset of (X, 11,72, 7), where Q(H™(X™))
(respectively Q(H!(X*)), Q(H?(X*)) is the collection of all T;-increasing
(respectively T;-decreasing, both T;- increasing and T;-decreasing) closed
fuzzy subsets of (X*, 11, 75,<*),i = 1,2. It is evident that every pairwise
fuzzy x- closed mapping is a pairwise fuzzy closed mapping forx =1,D, B
and every pairwise fuzzy B-closed mapping is both pairwise fuzzy I-closed
and pairwise fuzzy D-closed. The following example shows that a pairwise
fuzzy closed mapping need not be pairwise fuzzy x- closed mapping for

z=1,D,B.

Example 4.2. Let (X, 71,72,<) be a fuzzy bitopological ordered space
and f be a mapping as in Example 2.6. Then f is a pairwise fuzzy closed
mapping, f is not pairwise x- closed for x = I, D, B.

The following example shows that a pairwise fuzzy I-closed mapping need
not be a pairwise fuzzy B- closed mapping.

Example 4.3. Let X, X* 7, 7,7, 75,< and <* be as in Example 3.3.
Let 0 be the identity mapping from (X, 11,72, <) onto (X*, 7y, 75, <*). 0 is

pairwise fuzzy I- closed but not a pairwise fuzzy B-closed mapping.

The following example shows that a pairwise fuzzy I-closed mapping
need not be a pairwise fuzzy B- closed mapping.

Example 4.4. Let X, X*, 11, 7,7{,75,<,<* and ¢ be as in Example 3.4.
¢ is a pairwise fuzzy D-closed mapping but not a pairwise fuzzy B-closed

mapping.

Thus we have the following diagram:
For a mapping f : (X, 71,7, <) — (X*, 7,75, <*), where P — @Q (respec-
tively P ¢ @) represents P implies @) but @ need not imply P (respectively
P and @ are independent of each other).
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Theorem 4.5. Let f : (X, 71,72, <) — (X*, 7,75, <*) be any mapping.

Then f is pairwise fuzzy I-closed if and only if H"(f(A)) < f((A);) for
every A< X,i=1,2.

Proof.

Necessity. Since f is pairwise fuzzy I-closed, then f(A); is a 7;-increasing
fuzzy closed subset of X and f(A) < f(A);. Therefore H™(f(A)) < f(A);
since H"(f(A)) is the smallest 7;-increasing fuzzy closed set in X* contain-

ing f(A).

Sufficency. Let F' be any fuzzy 7;-closed subset of X*. Then f(F) <
HP(f(F)) < f(F); = f(F). Thus f(F) = H"(f(F)). So f(F) is a
T;-increasing fuzzy closed subset of X*. Therefore f is a pairwise fuzzy
I-closed mapping. O

The following two Theorems characterize pairwise fuzzy D-closed map-

ping and pairwise fuzzy B-closed mapping.

Theorem 4.6. Let f : (X, 71,72, <) — (X* 71,75, <*) be any mapping.
Then f is pairwise fuzzy I closed if and only if HL(f(A)) < f(A); for every
A< X,i=1,2

Proof. Omitted. O

Theorem 4.7. Let f : (X, 11,72, <) — (X* 71,75, <*) be any mapping.
Then f is pairwise fuzzy B-closed if and only if H?(f(A)) < f(A); for every
A< X,i=1,2.
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Proof. Omitted. O

Theorem 4.8. . Let f : (X, 71,72, <) — (X*,77,75,<*) be a pairwise
fuzzy bijection mapping. Then

(1) f is pairwise fuzzy I-open if and only if f is pairwise fuzzy D- closed.
(2) f is pairwise fuzzy I-closed if and only if f is pairwise fuzzy D-open.
(3) f is pairwise fuzzy B-open if and only if f is pairwise fuzzy B-closed.

Proof.

Necessity. Let F' be any 7;-fuzzy closed subset of X. Then f(X \ F) is
a 7;-increasing fuzzy open subset of X* since f is a pairwise fuzzy I-open
mapping and X \ F is a 7; fuzzy open subset of X. Since f is a pair-
wise fuzzy bijection, then we have f(X \ F) = X*\ (f(F)). So f(F) is
a 7, -decreasing fuzzy closed subset of X*. Therefore f is pairwise fuzzy
D-closed.

Sufficiency. Let G be any 7;-fuzzy open subset of X. Then f(X \ G) is a
T;-decreasing fuzzy closed subset of X™ since f is a pairwise fuzzy D-closed
mapping and X \ G is a 7;-fuzzy closed subset of X. Since f is a pairwise
fuzzy bijection, then we have f(X \ G) = X \ (f(G)). So f(G) is a 74~
decreasing fuzzy open subset of X*. Therefore f is a pairwise fuzzy I-open
mapping.

The proofs for (2) and (3) are similar to that of (1). O

Theorem 4.9. Let f: (X, 71,72, <1) — (Y,v1,v9,<2) and g : (Y, v1,v2, <o
) — (Z,m1,m2,<3) be any two mappings. Then

(1) gof : (X,11,72,<1) — (Z,m1,1m2,<3) is pairwise fuzzy x- closed if f is
pairwise fuzzy closed and g is pairwise fuzzy x- closed for x = I, D, B.

(2) gof : (X, 11,72,<1) — (Z,m,m2, <3) Is pairwise fuzzy x- closed if both
f and g are pairwise fuzzy x- closed for x =1, D, B.

(3) gof : (X,711,72,<1) — (Z,m1,1m2,<3) Is pairwise fuzzy x- closed if f is
pairwise fuzzy y-closed and g is pairwise fuzzy x- closed for z,y € {I, D, B}.

Theorem 4.10. Let f : (X, 71,72, <) — (X*,71,75,<*) be a pairwise
fuzzy bijection mapping. Then the following statements are equivalent :
(1) f is a pairwise fuzzy I- open mapping.

(2) f is a pairwise fuzzy D- closed mapping.

(3) =1 is a pairwise fuzzy I- continuous.
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Theorem 4.11. Let f : (X, 71,72, <) — (X*, 71,75, <*) be a pairwise
fuzzy bijection mapping. Then the following statements are equivalent :
(1) f is a pairwise fuzzy D- open mapping.

(2) f is a pairwise fuzzy I- closed mapping.

(3) =1 is a pairwise fuzzy D- continuous.

Theorem 4.12. Let f : (X, 71,72, <) — (X*,71,75,<*) be a pairwise
fuzzy bijection mapping. Then the following statements are equivalent :
(1) f is a pairwise fuzzy B- open mapping.

(2) f is a pairwise fuzzy B- closed mapping.

(3) =1 is a pairwise fuzzy B- continuous.

Theorem 4.13. Let f : (X,7,72,<) — (X*,71,75,<*) be a pairwise
fuzzy I-closed mapping and B, C are two fuzzy subsets of X*. Then

(1) if U is a 1;-fuzzy open neighbourhood of f~1(B), then there exists a
r¥-decreasing fuzzy neighbourhood V' of B such that f~1(B) < f~1(V) <
Ui=1,2,

(2) if f~Y(B) and f~(C) have disjoint 7;-fuzzy neighbourhoods, then
f~1(B) and f~1(C) have disjoint T;-decreasing fuzzy open neighbourhoods,
i=1,2.

Proof. (1) Let U be a 7;-fuzzy open neighbourhood of f~1(B). Take
X*\V = f(X\U). Since f is a pairwise fuzzy I- closed mapping and X \ U
is a 7-fuzzy closed set, then X*\ V = f(X \ U) is a 7/-increasing fuzzy
closed subset of X*. Thus V is a 7;-decreasing fuzzy open subset of X*.
Since f~1(B) < U, then X*\V = f(X\U) < f(f Y(X x\B)) < X*\ B.
So B < V. Thus V is a 7;-decreasing fuzzy open neighbourhood of B.
Further X \ U < f~Y(f(X\U)) = fY(X *\V) = X\ (f5%V)). Thus
By < i (vV) U

(2) Omitted. O

fuzzy D-closed mapping and B, C' are two fuzzy subsets of X*. Then

(1) if U is a 1;-fuzzy open neighbourhood of f~1(B), then there exists a
7*- decreasing fuzzy neighbourhood V of B such that f~Y(B) < f~%(V) <
Ui=1,2,

(2) if f7Y(B) and f~(C) have disjoint 7;-fuzzy neighbourhoods, then
f~Y(B) and f~1(C) have disjoint 7;- increasing fuzzy open neighbourhoods,
i=1,2.

Theorem 4.14. Let f : (X,71,72,<) — (X* 7{,75,<*) be a pairwise
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Theorem 4.15. Let f : (X, 71,72, <) — (X*,71,75,<*) be a pairwise
fuzzy B-closed mapping and B, C' are two fuzzy subsets of X*. Then

(1) if U is a 1;-fuzzy open neighbourhood of f~1(B), then there exists a
7. - fuzzy open neighbourhood V' of B which is both 7} -increasing and ;-
decreasing such that f~Y(B) < f~Y(V) < U,i=1,2.

(2) if f71(B) and f~(C) have disjoint 7;-fuzzy neighbourhoods, then
f~YB) and f~1(C) have disjoint 7;-fuzzy open neighbourhoods which is
both 7;-increasing and ;" -decreasing i = 1, 2.
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