Unit groups of group algebras of abelian groups of order 32

Suchi Bhatt
M. M. M. University of Technology, India
and
Harish Chandra
M. M. M. University of Technology, India
Received: August 2020. Accepted : April 2021

Abstract

Let F be a finite field of characteristic $p>0$ with $q=p^{n}$ elements. In this paper, a complete characterization of the unit groups $U(F G)$ of group algebras $F G$ for the abelian groups of order 32, over finite field of characteristic $p>0$ has been obtained.

Key words: Group algebras, Unit groups, Jacobson radical.
Mathematics Subject Classification (2010): 16S34, 17B30.

1. Introduction

Let $F G$ be the group algebra of a group G over a field F. Suppose $U(F G)$ be the group of all invertible elements of the group algebra $F G$, called unit group of $F G$. In this paper, we study the unit groups of group algebra for abelian groups of order 32. Suppose $V(F G)$ be the normalized unit group, $\omega(G)$ be the augmentation ideal of $G, J(F G)$ is the Jacobson radical of the group algebra and $V=1+J(F G)$. It is known fact that $U(F G) \cong$ $V(F G) \times F^{*}$. An element $g \in G$ is called p-regular if $(p, o(g))=1$, where Char $F=p>0$. Notation used in this paper are same as in [2]. Our problem is based on the Witt-Berman theorem [6, Ch.17, Theorem 5.3], which states that the number of non-isomorphic simple $F G$-modules is equal to the number of F-conjugacy classes of p-regular elements of G. Problem of finding unit groups of group algebras generated a considerable interest in recent decade and can be easily seen in [5, 7, 8, 10, 13-15]. Recently in $[1,12]$, Sahai and Ansari have characterized the unit groups of group algebras of groups of orders 16 and 20 . Let G be a group of order 32, we have seven non-isomorphic abelian groups $C_{32}, C_{16} \times C_{2}, C_{8} \times C_{4}$, $C_{8} \times C_{2}^{2}, C_{4}^{2} \times C_{2}, C_{4} \times C_{2}^{3}$ and C_{2}^{5}. Here, we have obtained the structure of the unit groups of the group algebras for all these groups over any finite field of characteristics $p>0$. We denote $G L(n, F)$ the general linear group of degree n over $F, M(n, F)$ the algebra of all $n \times n$ matrices over $F, C h a r F$ the characteristic of F, C_{n} is the cyclic group of order n and $F^{*}=F \backslash\{0\}$.

2. Preliminaries

Following are the important results which we have used frequently.
Lemma 1. [4, Proposition 1.2] The number of simple components of $F G / J(F G)$ is equal to the number of cyclotomic F-classes in G.

Lemma 2. [3, Lemma 2.1] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then $U\left(F C_{p}^{k}\right)=C_{p}^{n\left(p^{k}-1\right)} \times C_{p^{n}-1}$.

Lemma 3. [9, Lemma 2.3] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{p^{k}}\right) \cong \begin{cases}C_{p}^{n(p-1)} \times C_{p^{n}-1} & \text { if } k=1 \\ \prod_{s=1}^{k} C_{p^{s}}^{h_{s}} \times C_{p^{n}-1}, & \text { otherwise }\end{cases}
$$

where $h_{k}=n(p-1)$ and $h_{s}=n p^{k-s-1}(p-1)^{2}$ for all $s, 1 \leq s<k$.

Lemma 4. [11] Let G be a group and R be a commutative ring. Then the set of all finite class sums forms an R-basis of $\zeta(R G)$, the center of $R G$.

Lemma 5. [11] Let $F G$ be a semisimple group algebra. If G^{\prime} denotes the commutator subgroup of G, then

$$
F G=F G_{e_{G^{\prime}}} \oplus \Delta\left(G, G^{\prime}\right)
$$

where $F G_{e_{G^{\prime}}} \cong F\left(G / G^{\prime}\right)$ is the sum of all commutative simple components of $F G$ and $\Delta\left(G, G^{\prime}\right)$ is the sum of all the others.

3. Main Results

Theorem 1. Let F be a finite field of characteristic $p>0$, having $q=p^{n}$ elements and $G \cong C_{32}$.

1. If $p=2$. Then,

$$
U\left(F C_{32}\right) \cong C_{32}^{n} \times C_{16}^{n} \times C_{8}^{2 n} \times C_{4}^{4 n} \times C_{2}^{8 n} \times C_{2^{n}-1}
$$

2. If $p \neq 2$. Then,
$U\left(F C_{32}\right) \cong \begin{cases}C_{p^{n}-1}^{32}, & \text { if } q \equiv 1 \bmod 32 ; \\ C_{p^{n}-1}^{2} \times C_{p^{2 n}-1}^{15}, & \text { if } q \equiv-1 \bmod 32 ; \\ C_{p^{8 n}-1}^{2} \times C_{p^{4 n}-1}^{2} \times C_{p^{2 n}-1}^{3} \times C_{p^{n}-1}^{2}, & \text { if } q \equiv 3,-5,11,-13 \bmod 32 ; \\ C_{p^{8 n}-1}^{2} \times C_{p^{4 n}-1}^{2} \times C_{p^{2 n}-1}^{2} \times C_{p^{n}-1}^{4}, & \text { if } q \equiv-3,5,-11,13 \bmod 32 ; \\ C_{p^{n}-1}^{2} \times C_{p^{4 n}-1}^{4} \times C_{p^{2 n}-1}^{7}, & \text { if } q \equiv 7 \bmod 32 ; \\ C_{p^{n}-1}^{8} \times C_{p^{2 n}-1}^{4} \times C_{p^{4 n}-1}^{4}, & \text { if } q \equiv-7 \bmod 32 ; \\ C_{p^{n}-1}^{2} \times C_{p^{2 n}-1}^{15}, & \text { if } q \equiv 15 \bmod 32 ; \\ C_{p^{n}-1}^{16} \times C_{p^{2 n}-1}^{8}, & \text { if } q \equiv-15 \bmod 32 .\end{cases}$

Proof. The presentation of C_{32} is given by

$$
C_{32}=<a \mid a^{32}=1>
$$

1. If $p=2$, then $|F|=q=2^{n}$. Since $G \cong C_{32} \cong C_{2^{5}}$, therefore using

Lemma 3, we have

$$
U\left(F C_{32}\right) \cong C_{32}^{n} \times C_{16}^{n} \times C_{8}^{2 n} \times C_{4}^{4 n} \times C_{2}^{8 n} \times C_{2^{n}-1}
$$

2. If $p \neq 2$, then p does not divides $\left|C_{32}\right|$, therefore by Maschke's theorem, $F C_{32}$ is semisimple over F. Hence by Wedderburn decomposition theorem and by Lemma 5, we have

$$
F C_{32} \cong\left(\bigoplus_{i=1}^{r} M\left(n_{i}, D_{i}\right)\right)
$$

where for each i, $n_{i} \geq 1$ and Di's are finite field extensions of F. Since group is abelian, therefore dimension constraint gives $n_{i}=1$, for every i. It is clear that C_{32} has 32 conjugacy classes. Now for any $k \in N, x^{q^{k}}=x, \forall x \in \zeta\left(F C_{32}\right)$ if and only $C_{i}^{q^{t}}=\widehat{C_{i}}$, for all $1 \leq i \leq 32$. It exists if and only if $32 \mid q^{k}-1$ or $32 \mid q^{k}+1$. If $D_{i}^{*}=<y_{i}>$ for all i, $1 \leq i \leq r$, then $x^{q^{k}}=x, \forall x \in \zeta\left(F C_{32}\right)$ if and only if $y_{i}^{q^{k}}=1$, which holds if and only if $\left[D_{i}: F\right] \mid k$, for all $1 \leq i \leq r$. Hence the least number t such that $32 \mid q^{k}-1$ or $32 \mid q^{k}+1$,

$$
t=\text { l.c. } m .\left\{\left[D_{i}: F\right] \mid 1 \leq i \leq r\right\} .
$$

Therefore all conjugacy classes of C_{32} are p-regular and $m=32$. By observation we have following possibilities for q :
(a) If $q \equiv 1 \bmod 32$, then $t=1$;
(b) If $q \equiv-1 \bmod 32$, then $t=2$;
(c) If $q \equiv 3,-5,11,-13 \bmod 32$, then $t=8$;
(d) If $q \equiv-3,5,-11,13 \bmod 32$, then $t=8$;
(e) If $q \equiv 7 \bmod 32$, then $t=4$;
(f) If $q \equiv-7 \bmod 32$, then $t=4$;
(g) If $q \equiv 15 \bmod 32$, then $t=2$;
(h) If $q \equiv-15 \bmod 32$, then $t=2$.

Now we will find T and the number of p-regular F-conjugacy classes, denoted by c. By Lemma 4, $\operatorname{dim}_{F}\left(\zeta\left(F C_{32}\right)\right)=32$, therefore $\sum_{i=1}^{r}\left[D_{i}\right.$: $F]=32$. We have the following cases:

1. If $q \equiv 1 \bmod 32$, then $T=\{1\} \bmod 32$. Thus p-regular F-conjugacy classes are the conjugacy classes of C_{32} and $c=32$. Hence $F C_{32} \cong F^{32}$.
2. If $q \equiv-1 \bmod 32$, then $T=\{1,-1\} \bmod 32$. Thus p-regular F conjugacy classes are $\{1\},\left\{a^{16}\right\},\left\{a^{ \pm i}\right\}, 1 \leq i \leq 15$ and $c=17$. Hence $F C_{32} \cong F^{2} \oplus F_{2}^{15}$.
3. If $q \equiv 3,-5,11,-13 \bmod 32$, then $T=\{1,3,9,11,17,19,25,27\} \bmod 32$.

Thus p-regular F-conjugacy classes are $\{1\},\left\{a, a^{3}, a^{9}, a^{11}, a^{17}, a^{19}, a^{25}, a^{27}\right\}$, $\left\{a^{2}, a^{6}, a^{18}, a^{22}\right\},\left\{a^{4}, a^{12}\right\},\left\{a^{5}, a^{7}, a^{13}, a^{15}, a^{21}, a^{23}, a^{29}, a^{31}\right\},\left\{a^{8}, a^{24}\right\}$, $\left\{a^{10}, a^{14}, a^{26}, a^{30}\right\},\left\{a^{16}\right\},\left\{a^{20}, a^{28}\right\}$ and $c=9$. Hence $F C_{32} \cong F_{8}^{2} \oplus$ $F_{4}^{2} \oplus F_{2}^{3} \oplus F^{2}$.
4. If $q \equiv-3,5,-11,13 \bmod 32$, then $T=\{1,5,9,13,17,21,25,29\} \bmod 32$.

Thus p-regular F-conjugacy classes are $\{1\},\left\{a, a^{5}, a^{9}, a^{13}, a^{17}, a^{21}, a^{25}, a^{29}\right\}$, $\left\{a^{2}, a^{10}, a^{18}, a^{26}\right\},\left\{a^{4}, a^{20}\right\},\left\{a^{3}, a^{7}, a^{11}, a^{15}, a^{19}, a^{23}, a^{27}, a^{31}\right\},\left\{a^{8}\right\}$, $\left\{a^{6}, a^{14}, a^{22}, a^{30}\right\},\left\{a^{16}\right\},\left\{a^{24}\right\},\left\{a^{12}, a^{28}\right\}$ and $c=10$. Hence $F C_{32} \cong$ $F_{8}^{2} \oplus F_{4}^{2} \oplus F_{2}^{2} \oplus F^{4}$.
5. If $q \equiv 7 \bmod 32$, then $T=\{1,7,17,23\} \bmod 32$. Thus, p-regular F conjugacy classes are $\{1\},\left\{a, a^{7}, a^{17}, a^{23}\right\},\left\{a^{2}, a^{14}\right\},\left\{a^{3}, a^{5}, a^{19}, a^{21}\right\}$, $\left\{a^{4}, a^{28}\right\},\left\{a^{6}, a^{10}\right\},\left\{a^{8}, a^{24}\right\},\left\{a^{9}, a^{15}, a^{25}, a^{31}\right\},\left\{a^{11}, a^{13}, a^{27}, a^{29}\right\}$, $\left\{a^{12}, a^{20}\right\},\left\{a^{16}\right\},\left\{a^{18}, a^{30}\right\},\left\{a^{22}, a^{26}\right\}$ and $c=13$. Hence $F C_{32} \cong$ $F^{2} \oplus F_{4}^{4} \oplus F_{2}^{7}$.
6. If $q \equiv-7 \bmod 32$, then $T=\{1,9,17,25\} \bmod 32$. Thus, p-regular F conjugacy classes are $\{1\},\left\{a, a^{9}, a^{17}, a^{25}\right\},\left\{a^{2}, a^{18}\right\},\left\{a^{3}, a^{11}, a^{19}, a^{27}\right\}$, $\left\{a^{4}\right\},\left\{a^{6}, a^{22}\right\},\left\{a^{5}, a^{13}, a^{21}, a^{29}\right\},\left\{a^{7}, a^{15}, a^{23}, a^{31}\right\},\left\{a^{8}\right\},\left\{a^{10}, a^{26}\right\}$, $\left\{a^{12}\right\},\left\{a^{16}\right\},\left\{a^{14}, a^{30}\right\},\left\{a^{20}\right\},\left\{a^{24}\right\},\left\{a^{28}\right\}$ and $c=16$. Hence $F C_{32} \cong F^{8} \oplus F_{2}^{4} \oplus F_{4}^{4}$.
7. If $q \equiv 15 \bmod 32$, then $T=\{1,15\} \bmod 32$. Thus, p-regular F-conjugacy classes are $\{1\},\left\{a, a^{15}\right\},\left\{a^{2}, a^{30}\right\},\left\{a^{3}, a^{13}\right\},\left\{a^{4}, a^{28}\right\},\left\{a^{5}, a^{11}\right\},\left\{a^{6}, a^{26}\right\}$, $\left\{a^{7}, a^{9}\right\},\left\{a^{8}, a^{24}\right\},\left\{a^{10}, a^{22}\right\},\left\{a^{12}, a^{20}\right\},\left\{a^{14}, a^{18}\right\},\left\{a^{17}, a^{31}\right\},\left\{a^{19}, a^{29}\right\}$, $\left\{a^{21}, a^{27}\right\},\left\{a^{23}, a^{25}\right\},\left\{a^{16}\right\}$ and $c=17$. Hence, $F C_{32} \cong F^{2} \oplus F_{2}^{15}$.
8. If $q \equiv-15 \bmod 32$, then $T=\{1,17\} \bmod 32$. Thus, p-regular F conjugacy classes are $\{1\},\left\{a, a^{17}\right\},\left\{a^{2}\right\},\left\{a^{30}\right\},\left\{a^{3}, a^{19}\right\},\left\{a^{4}\right\},\left\{a^{28}\right\}$, $\left\{a^{5}, a^{21}\right\},\left\{a^{6}\right\},\left\{a^{26}\right\},\left\{a^{7}, a^{23}\right\},\left\{a^{8}\right\},\left\{a^{24}\right\},\left\{a^{9}, a^{25}\right\},\left\{a^{10}\right\},\left\{a^{22}\right\}$, $\left\{a^{11}, a^{27}\right\},\left\{a^{13}, a^{29}\right\},\left\{a^{15}, a^{31}\right\},\left\{a^{12}\right\},\left\{a^{20}\right\},\left\{a^{16}\right\},\left\{a^{14}\right\},\left\{a^{18}\right\}$ and $c=24$. Hence, $F C_{32} \cong F^{16} \oplus F_{2}^{8}$. Thus our result follows.

Theorem 2. Let F be a finite field of characteristic $p>0$ having $q=p^{n}$ elements and $G \cong C_{16} \times C_{2}$.

1. If $p=2$. Then, $U\left(F\left[C_{16} \times C_{2}\right]\right) \cong C_{16}^{n} \times C_{8}^{n} \times C_{4}^{2 n} \times C_{2}^{20 n} \times C_{2^{n}-1}$.
2. If $p \neq 2$. Then,
$U\left(F\left[C_{16} \times C_{2}\right]\right) \cong\left\{\begin{array}{lll}C_{p^{n}-1}^{32}, & \text { if } & q \equiv 1 \bmod 16 ; \\ C_{p^{n}-1} \times C_{p^{2 n}-1}^{14}, & \text { if } & q \equiv-1 \bmod 16 ; \\ C_{p^{n}-1}^{4} \times C_{p^{2 n}-1}^{6} \times C_{p^{4 n}-1}^{4}, & \text { if } q \equiv 3,-5 \bmod 16 ; \\ C_{p^{n}-1}^{8} \times C_{p^{2 n}-1}^{4} \times C_{p^{4 n}-1}^{4}, & \text { if } q \equiv-3,5 \bmod 16 ; \\ C_{p^{n}-1}^{4} \times C_{p^{2 n}-1}^{44}, & \text { if } q \equiv 7 \bmod 16 ; \\ C_{p^{n}-1}^{16} \times C_{p^{2 n}-1}^{8}, & \text { if } q \equiv-7 \bmod 16 .\end{array}\right.$

Proof. The presentation of $G \cong C_{16} \times C_{2}$ is given by

$$
C_{16} \times C_{2}=<a, b \mid a^{16}=b^{2}=1, a b=b a>.
$$

1. If $p=2$, then $F G$ is non-semisimple and $|F|=q=2^{n}$. It is well known that $U(F G) \cong V(F G) \times F^{*}$ and $|V(F G)|=2^{31 n}$ as $\operatorname{dim}_{F} J(F G)=31$. Obviously exponent of $V(F G)$ is 16. Suppose $V(F G) \cong C_{16}^{l_{1}} \times C_{8}^{l_{2}} \times C_{4}^{l_{3}} \times C_{2}^{l_{4}}$ such that $2^{31 n}=16^{l_{1}} \times 8^{l_{2}} \times 4^{l_{3}} \times 2^{l_{4}}$. Now we will compute l_{1}, l_{2}, l_{3} and l_{4}. Set $W_{1}=\left\{\gamma_{1} \in \omega(G): \gamma_{1}^{2}=\right.$ 0 and there exists $\beta \in \omega(G)$, such that $\left.\gamma_{1}=\beta^{8}\right\}$, $W_{2}=\left\{\gamma_{2} \in \omega(G)\right.$: $\gamma_{2}^{2}=0$ and there exists $\beta \in \omega(G)$, such that $\left.\gamma_{2}=\beta^{4}\right\}$ and $W_{3}=$ $\left\{\gamma_{3} \in \omega(G): \gamma_{3}^{2}=0\right.$ and there exists $\beta \in \omega(G)$, such that $\left.\gamma_{3}=\beta^{2}\right\}$. Now if $\gamma=\sum_{j=0}^{1} \sum_{i=0}^{15} \alpha_{16 j+i} a^{i} b^{j} \in \omega(G)$, then $\sum_{i=0}^{15} \alpha_{2 i+j}=0$, for $j=0,1$. Also $\gamma^{2}=\sum_{j=0}^{7} \sum_{i=0}^{3} \alpha_{8 i+j}^{2} a^{2 j}, \gamma^{4}=\sum_{j=0}^{3} \sum_{i=0}^{7} \alpha_{4 i+j}^{4} a^{4 j}$ and $\gamma^{8}=\sum_{j=0}^{1} \sum_{i=0}^{15} \alpha_{2 i+j}^{8} a^{8 j}$. Let $\beta=\sum_{j=0}^{1} \sum_{i=0}^{15} \beta_{16 j+i} a^{i} b^{j}$, such that $\gamma_{1}=\beta^{8}$. Now applying condition $\gamma_{1}^{2}=0$ and by direct computation we have $\alpha_{i}=0$, for all $i \neq 0,8$ and $\alpha_{0}=\alpha_{8}$. Thus $W_{1}=\left\{\alpha_{0}\left(1+a^{8}\right), \alpha_{0} \in F\right\},\left|W_{1}\right|=2^{n}$ and $l_{1}=n$. Similarly, applying the conditions $\gamma_{2}=\beta^{4}$ and $\gamma_{2}^{2}=0$, we have $\alpha_{i}=0$, for all $i \neq 0,4$ and $\alpha_{0}=\alpha_{4}$. Thus $W_{2}=\left\{\alpha_{0}\left(1+a^{4}\right), \alpha_{0} \in F\right\},\left|W_{2}\right|=2^{n}$ and $l_{2}=n$. Again, applying the conditions $\gamma_{3}=\beta^{8}$ and $\gamma_{3}^{2}=0$. We have $\alpha_{i}=0$, for all $i \neq 0,2,8,10$ and $\alpha_{0}=\alpha_{8}, \alpha_{2}=\alpha_{10}$. Thus $W_{3}=\left\{\left(\alpha_{0}+\alpha_{2} a^{2}\right)\left(1+a^{8}\right), \alpha_{0}, \alpha_{2} \in F\right\}, l_{3}=2 n$ and $l_{4}=20 n$. Hence $V(F G) \cong C_{16}^{n} \times C_{8}^{n} \times C_{4}^{2 n} \times C_{2}^{20 n}$ and hence the result.
2. If $p \neq 2$, then $|F|=p^{n}$. Using the similar arguments as in Theorem $1, F\left[C_{16} \times C_{2}\right]$ is semisimple and we have $m=16, \sum_{i=1}^{r}\left[D_{i}: F\right]=32$. By observation we have following possibilities for q :
(a) If $q \equiv 1 \bmod 16$, then $t=1$;
(b) If $q \equiv-1 \bmod 16$, then $t=2$;
(c) If $q \equiv 3,-5 \bmod 16$, then $t=4$;
(d) If $q \equiv-3,5 \bmod 16$, then $t=4$;
(e) If $q \equiv 7 \bmod 16$, then $t=2$;
(f) If $q \equiv-7 \bmod 16$, then $t=2$.

Hence we have the following cases:

1. If $q \equiv 1 \bmod 16$, then $T=\{1\} \bmod 16$. Thus, p-regular F-conjugacy classes are the conjugacy classes of $C_{16} \times C_{2}$ and $c=32$. Hence $F\left[C_{16} \times\right.$ $\left.C_{2}\right] \cong F^{32}$.
2. If $q \equiv-1 \bmod 16$, then $T=\{1,-1\} \bmod 16$. Thus, p-regular F conjugacy classes are $\{1\},\{b\},\left\{a^{8}\right\},\left\{a^{ \pm i}\right\}$, where $1 \leq i \leq 7,\left\{a^{8} b\right\}$, $\left\{a^{j} b, a^{-j} b\right\}$, where $1 \leq j \leq 7$ and $c=18$. Hence $F\left[C_{16} \times C_{2}\right] \cong F^{4} \oplus$ F_{2}^{14}.
3. If $q \equiv 3,-5 \bmod 16$, then $T=\{1,3,9,11\} \bmod 16$. Thus, p-regular F-conjugacy classes are $\{1\},\{b\},\left\{a, a^{3}, a^{-7}, a^{-5}\right\}$, $\left\{a^{-1}, a^{-3}, a^{5}, a^{7}\right\},\left\{a^{2}, a^{6}\right\},\left\{a^{-2}, a^{-6}\right\},\left\{a^{ \pm 4}\right\},\left\{a^{8}\right\},\left\{a b, a^{3} b\right.$, $\left.a^{-7} b, a^{-5} b\right\},\left\{a^{-1} b, a^{-3} b, a^{5} b, a^{7} b\right\},\left\{a^{2} b, a^{6} b\right\},\left\{a^{-2} b, a^{-6} b\right\},\left\{a^{ \pm 4} b\right\}$, $\left\{a^{8} b\right\}$ and $c=14$. Hence $F\left[C_{16} \times C_{2}\right] \cong F_{2}^{6} \oplus F_{4}^{4} \oplus F^{4}$.
4. If $q \equiv-3,5 \bmod 16$, then $T=\{1,5,9,13\} \bmod 16$. Thus, p-regular F-conjugacy classes are $\{1\},\{b\},\left\{a, a^{5}, a^{-3}, a^{-7}\right\}$, $\left\{a^{-1}, a^{-5}, a^{3}, a^{7}\right\},\left\{a^{2}, a^{-6}\right\},\left\{a^{-2}, a^{6}\right\},\left\{a^{4}\right\},\left\{a^{-4}\right\},\left\{a^{8}\right\}$, $\left\{a b, a^{5} b, a^{-3} b, a^{-7} b\right\},\left\{a^{-1} b, a^{-5} b, a^{3} b, a^{7} b\right\},\left\{a^{2} b, a^{-6} b\right\},\left\{a^{-2} b, a^{6} b\right\}$, $\left\{a^{4} b\right\},\left\{a^{-4} b\right\},\left\{a^{8} b\right\}$ and $c=16$. Hence $F\left[C_{16} \times C_{2}\right] \cong F_{2}^{4} \oplus F_{4}^{4} \oplus F^{8}$.
5. If $q \equiv 7 \bmod 16$, then $T=\{1,7\} \bmod 16$. Thus, p-regular F-conjugacy classes are $\{1\},\{b\},\left\{a, a^{7}\right\},\left\{a^{3}, a^{5}\right\},\left\{a^{-1}, a^{-7}\right\},\left\{a^{-3}, a^{-5}\right\},\left\{a^{ \pm 2}\right\}$, $\left\{a^{ \pm 6}\right\},\left\{a^{ \pm 4}\right\},\left\{a^{8}\right\},\left\{a b, a^{7} b\right\},\left\{a^{3} b, a^{5} b\right\},\left\{a^{-1} b, a^{-7} b\right\},\left\{a^{-3} b, a^{-5} b\right\}$, $\left\{a^{ \pm 2} b\right\},\left\{a^{ \pm 6} b\right\},\left\{a^{ \pm 4} b\right\},\left\{a^{8} b\right\}$ and $c=18$. Hence $F\left[C_{16} \times C_{2}\right] \cong F_{2}^{14} \oplus$ F^{4} 。
6. If $q \equiv-7 \bmod 16$, then $T=\{1,9\} \bmod 16$. Thus, p-regular F-conjugacy classes are $\{1\},\{b\},\left\{a, a^{-7}\right\},\left\{a^{3}, a^{-5}\right\},\left\{a^{-1}, a^{7}\right\},\left\{a^{-3}, a^{5}\right\},\left\{a^{2}\right\}$, $\left\{a^{-2}\right\},\left\{a^{6}\right\},\left\{a^{-6}\right\},\left\{a^{4}\right\},\left\{a^{-4}\right\},\left\{a^{8}\right\},-\left\{a b, a^{-7} b\right\},\left\{a^{3} b, a^{-5} b\right\},\left\{a^{-1} b, a^{7} b\right\}$, $\left\{a^{-3} b, a^{5} b\right\},\left\{a^{2} b\right\},\left\{a^{-2} b\right\},\left\{a^{6} b\right\},\left\{a^{-6} b\right\},\left\{a^{4} b\right\},\left\{a^{-4} b\right\},\left\{a^{8} b\right\}$ and $c=24$. Hence $F\left[C_{16} \times C_{2}\right] \cong F_{2}^{8} \oplus F^{16}$. Thus we have the result.

Theorem 3. Let F be a finite field of characteristic $p>0$ having $q=p^{n}$ elements and $G \cong C_{8} \times C_{4}$.

1. If $p=2$. Then,

$$
U\left(F\left[C_{8} \times C_{4}\right]\right) \cong C_{8}^{n} \times C_{4}^{5 n} \times C_{2}^{18 n} \times C_{2^{n}-1} .
$$

2. If $p \neq 2$. Then,

$$
U\left(F\left[C_{8} \times C_{4}\right]\right) \cong\left\{\begin{array}{lll}
C_{p^{n}-1}^{32}, & \text { if } & q \equiv 1 \bmod 8 ; \\
C_{p^{n}-1}^{4} \times C_{p^{2 n}-1}^{14}, & \text { if } & q \equiv-1 \bmod 8 ; \\
C_{p^{n}-1}^{4} \times C_{p^{2 n}}^{14}, & \text { if } & q \equiv 3 \bmod 8 ; \\
C_{p^{n}-1}^{16} \times C_{p^{2 n}-1}^{8}, & \text { if } & q \equiv-3 \bmod 8 .
\end{array}\right.
$$

Proof. The presentation of $G \cong C_{8} \times C_{4}$ is given by

$$
C_{8} \times C_{4}=<a, b \mid a^{8}=b^{4}=1, a b=b a>.
$$

1. If $p=2$, then $F G$ is non-semisimple and $|F|=q=2^{n}$. It is well known that $U(F G) \cong V(F G) \times F^{*}$ and $|V(F G)|=2^{31 n}$ as $\operatorname{dim}_{F} J(F G)=31$. Obviously exponent of $V(F G)$ is 8 . Suppose $V(F G) \cong C_{8}^{l_{1}} \times C_{4}^{l_{2}} \times C_{2}^{l_{3}}$ such that $2^{31 n}=8^{l_{1}} \times 4^{l_{2}} \times 2^{l_{3}}$. Now we will compute l_{1}, l_{2} and l_{3}. Set $W_{1}=\left\{\alpha \in \omega(G): \alpha^{2}=0\right.$ and there exists $\beta \in$ $\omega(G)$, such that $\left.\alpha=\beta^{4}\right\}, W_{2}=\left\{\gamma \in \omega(G): \gamma^{2}=0\right.$ and there exists $\beta \in$ $\omega(G)$, such that $\left.\gamma=\beta^{2}\right\}$.
If $\alpha=\sum_{j=0}^{3} \sum_{i=0}^{7} \alpha_{8 j+i} a^{i} b^{j} \in \omega(G)$, then $\sum_{i=0}^{7} \alpha_{4 i+j}=0$, for $j=$ $0,1,2,3$. Let $\beta=\sum_{j=0}^{3} \sum_{i=0}^{7} \beta_{8 j+i} a^{i} b^{j}$ such that $\alpha=\beta^{4}$. Now applying condition $\alpha^{2}=0, \alpha=\beta^{4}$ and by direct computation, we have $\alpha_{i}=0$, for all $i \neq 0,4$ and $\alpha_{0}=\alpha_{4}$. Thus $W_{1}=\left\{\alpha_{0}\left(1+a^{4}\right), \alpha_{0} \in F\right\}$. Therefore $\left|W_{1}\right|=2^{n}$ and $l_{1}=n$. Similarly, applying the conditions $\gamma=\beta^{2}, \gamma^{2}=0$ and by direct computation, we have $\left|W_{2}\right|=2^{5 n}$, $l_{2}=5 n$ and $l_{3}=18 n$. Hence $V(F G) \cong C_{8}^{n} \times C_{4}^{5 n} \times C_{2}^{18 n}$ and hence the result.
2. If $p \neq 2$, then $|F|=p^{n}$. Using the similar arguments as in Theorem $1, F\left[C_{8} \times C_{4}\right]$ is semisimple and we have $m=8, \sum_{i=1}^{r}\left[D_{i}: F\right]=32$. By observation we have following possibilities for q :
(a) If $q \equiv 1 \bmod 8$, then $t=1$;
(b) If $q \equiv-1 \bmod 8$, then $t=2$;
(c) If $q \equiv 3 \bmod 8$, then $t=2$;
(d) If $q \equiv-3 \bmod 8$, then $t=2$.

Hence we have the following cases: -

1. If $q \equiv 1 \bmod 8$, then $T=\{1\} \bmod 8$. Thus, p-regular F-conjugacy classes are the conjugacy classes of $C_{8} \times C_{4}$ and $c=32$. Hence $F\left[C_{8} \times\right.$ $\left.C_{4}\right] \cong F^{32}$.
2. If $q \equiv-1 \bmod 8$, then $T=\{1,-1\} \bmod 8$. Thus, p-regular F-conjugacy classes are $\{1\},\left\{b^{2}\right\},\left\{b, b^{3}\right\},\left\{a^{ \pm 1}\right\},\left\{a^{ \pm 2}\right\},\left\{a^{ \pm 3}\right\},\left\{a^{4}\right\},\left\{a b, a^{-1} b^{3}\right\}$, $\left\{a^{2} b, a^{-2} b^{3}\right\},\left\{a^{3} b, a^{-3} b^{3}\right\},\left\{a^{4} b, a^{4} b^{3}\right\},\left\{a^{-3} b, a^{3} b^{3}\right\},\left\{a^{-2} b, a^{2} b^{3}\right\},\left\{a^{-1} b, a b^{3}\right\}$, $\left\{a b^{2}, a^{-1} b^{2}\right\},\left\{a^{-2} b^{2}, a^{2} b^{2}\right\},\left\{a^{3} b^{2}, a^{-3} b^{2}\right\},\left\{a^{4} b^{2}\right\}$ and $c=18$. Hence $F\left[C_{8} \times C_{4}\right] \cong F^{4} \oplus F_{2}^{14}$.
3. If $q \equiv 3 \bmod 8$, then $T=\{1,3\} \bmod 8$. Thus, p-regular F-conjugacy classes are $\{1\},\left\{b^{2}\right\},\left\{b, b^{3}\right\},\left\{a, a^{3}\right\},\left\{a^{2}, a^{-2}\right\},\left\{a^{-1}, a^{-3}\right\},\left\{a^{4}\right\}$, $\left\{a b, a^{3} b^{3}\right\},\left\{a^{2} b, a^{-2} b^{3}\right\},\left\{a^{-1} b, a^{-3} b^{3}\right\},\left\{a^{4} b, a^{4} b^{3}\right\},\left\{a b^{3}, a^{3} b\right\},\left\{a^{2} b^{3}, a^{-2} b\right\}$, $\left\{a^{-1} b^{3}, a^{-3} b\right\},\left\{a b^{2}, a^{3} b^{2}\right\},\left\{a^{2} b^{2}, a^{-2} b^{2}\right\},\left\{a^{-1} b^{2}, a^{-3} b^{2}\right\},\left\{a^{4} b^{2}\right\}$ and $c=18$. Hence $F\left[C_{8} \times C_{4}\right] \cong F^{4} \oplus F_{2}^{14}$.
4. If $q \equiv-3 \bmod 8$, then $T=\{1,5\} \bmod 8$. Thus, p-regular F-conjugacy classes are $\{1\},\{b\},\left\{b^{2}\right\},\left\{b^{3}\right\},\left\{a, a^{-3}\right\},\left\{a^{2}\right\},\left\{a^{-2}\right\},\left\{a^{-1}, a^{3}\right\},\left\{a^{4}\right\}$, $\left\{a b, a^{-3} b\right\},\left\{a^{2} b\right\},\left\{a^{-2} b\right\},\left\{a^{-1} b, a^{3} b\right\},\left\{a^{4} b\right\},\left\{a b^{2}, a^{-3} b^{2}\right\},\left\{a^{2} b^{2}\right\}$, $\left\{a^{-2} b^{2}\right\},\left\{a^{-1} b^{2}, a^{3} b^{2}\right\},\left\{a^{4} b^{2}\right\},\left\{a b^{3}, a^{-3} b^{3}\right\},\left\{a^{2} b^{3}\right\},\left\{a^{-2} b^{3}\right\},\left\{a^{-1} b^{3}, a^{3} b^{3}\right\}$, $\left\{a^{4} b^{3}\right\}$ and $c=24$. Hence $F\left[C_{8} \times C_{4}\right] \cong F^{16} \oplus F_{2}^{8}$.
Thus we have the result.

Theorem 4. Let F be a finite field of characteristic $p>0$ having $q=p^{n}$ elements and $G \cong C_{8} \times C_{2} \times C_{2}$.

1. If $p=2$. Then,

$$
U\left(F\left[C_{8} \times C_{2} \times C_{2}\right]\right) \cong C_{8}^{n} \times C_{4}^{n} \times C_{2}^{26 n} \times C_{2^{n}-1}
$$

2. If $p \neq 2$. Then,

$$
U\left(F\left[C_{8} \times C_{2} \times C_{2}\right]\right) \cong\left\{\begin{array}{lll}
C_{p^{n}-1}^{32}, & \text { if } & q \equiv 1 \bmod 8 ; \\
C_{p^{n}-1}^{8} \times C_{p^{2 n}-1}^{12}, & \text { if } & q \equiv-1 \bmod 8 ; \\
C_{p^{n}-1}^{8} \times C_{p^{2 n}}^{12}, & \text { if } & q \equiv 3 \bmod 8 ; \\
C_{p^{n}-1}^{16} \times C_{p^{2 n}-1}^{8}, & \text { if } & q \equiv-3 \bmod 8 .
\end{array}\right.
$$

Proof. The presentation of $G \cong C_{8} \times C_{2} \times C_{2}$ is given by
$C_{8} \times C_{2} \times C_{2}=<a, b, c \mid a^{8}=b^{2}=c^{2}=1, a b=b a, b c=c b, a c=c a>$.

1. If $p=2$, then $F G$ is non-semisimple and $|F|=q=2^{n}$. It is well known that $U(F G) \cong V(F G) \times F^{*}$ and $|V(F G)|=2^{31 n}$ as $\operatorname{dim}_{F} J(F G)=31$. Obviously exponent of $V(F G)$ is 8 . Suppose $V(F G) \cong C_{8}^{l_{1}} \times C_{4}^{l_{2}} \times C_{2}^{l_{3}}$ such that $2^{31 n}=8^{l_{1}} \times 4^{l_{2}} \times 2^{l_{3}}$. Now we will compute l_{1}, l_{2} and l_{3}. Set $W_{1}=\left\{\alpha \in \omega(G): \alpha^{2}=0\right.$ and there exists $\beta \in$ $\omega(G)$, such that $\left.\alpha=\beta^{4}\right\}, W_{2}=\left\{\gamma \in \omega(G): \gamma^{2}=0\right.$ and there exists $\beta \in$ $\omega(G)$, such that $\left.\gamma=\beta^{2}\right\}$.
Let $\alpha=\sum_{k=0}^{1} \sum_{j=0}^{1} \sum_{i=0}^{7} \alpha_{8(j+2 k)+i} a^{i} b^{j} c^{k} \in \omega(G)$ and
$\beta=\sum_{k=0}^{1} \sum_{j=0}^{1} \sum_{i=0}^{7} \beta_{8(j+2 k)+i} a^{i} b^{j} c^{k}$ such that $\alpha=\beta^{4}$. Now applying the conditions $\alpha^{2}=0, \alpha=\beta^{4}$ and by direct computation, we have $\alpha_{i}=0$, for all $i \neq 0,4$ and $\alpha_{0}=\alpha_{4}$. Thus $W_{1}=\left\{\alpha_{0}\left(1+a^{4}\right), \alpha_{0} \in F\right\}$. Therefore $\left|W_{1}\right|=2^{n}$ and $l_{1}=n$. Similarly, applying the conditions $\gamma=\beta^{2}, \gamma^{2}=0$ and by direct computation, we have $\alpha_{i}=0$, for all $i \neq 0,2$ and $\alpha_{0}=\alpha_{2}$. Thus $W_{2}=\left\{\alpha_{0}\left(1+a^{2}\right), \alpha_{0} \in F\right\}$. Therefore $\left|W_{2}\right|=2^{n}, l_{2}=n$ and $l_{3}=26 n$. Hence $V(F G) \cong C_{8}^{n} \times C_{4}^{n} \times C_{2}^{26 n}$ and hence the result follows.
2. If $p \neq 2$, then $|F|=p^{n}$. Using the similar arguments as in Theorem $1, F\left[C_{8} \times C_{2} \times C_{2}\right]$ is semisimple and $m=8, \sum_{i=1}^{r}\left[D_{i}: F\right]=32$. Here the number of p-regular F-conjugacy classes, denoted by w. By observation we have following possibilities for q :
(a) If $q \equiv 1 \bmod 8$, then $t=1$;
(b) If $q \equiv-1 \bmod 8$, then $t=2$;
(c) If $q \equiv 3$ mod 8 , then $t=2$;
(d) If $q \equiv-3 \bmod 8$, then $t=2$.

Now we have the cases:

1. If $q \equiv 1 \bmod 8$, then $T=\{1\} \bmod 8$. Thus, p-regular F-conjugacy classes are the conjugacy classes of $C_{8} \times C_{2} \times C_{2}$ and $w=32$. Hence $F\left[C_{8} \times C_{2} \times C_{2}\right] \cong F^{32}$.
2. If $q \equiv-1 \bmod 8$, then $T=\{1,7\} \bmod 8$. Thus, p-regular F-conjugacy classes are $\{1\},\left\{a, a^{7}\right\},\left\{a^{2}, a^{6}\right\},\left\{a^{3}, a^{5}\right\},\left\{a^{4}\right\},\{b\},\{c\},\left\{a b, a^{7} b\right\}$, $\left\{a^{2} b, a^{6} b\right\},\left\{a^{3} b, a^{5} b\right\},\left\{a^{4} b\right\},\left\{a c, a^{7} c\right\},\left\{a^{2} c, a^{6} c\right\},\left\{a^{3} c, a^{5} c\right\},\left\{a^{4} c\right\}$, $\{b c\},\left\{a b c, a^{7} b c\right\},\left\{a^{2} b c, a^{6} b c\right\},\left\{a^{3} b c, a^{5} b c\right\},\left\{a^{4} b c\right\}$ and $w=20$. Hence $F\left[C_{8} \times C_{2} \times C_{2}\right] \cong F^{8} \oplus F_{2}^{12}$.
3. If $q \equiv 3 \bmod 8$, then $T=\{1,3\} \bmod 8$. Thus, p-regular F-conjugacy classes are $\{1\},\left\{a, a^{3}\right\},\left\{a^{2}, a^{6}\right\},\left\{a^{5}, a^{7}\right\},\left\{a^{4}\right\},\{b\},\{c\},\left\{a b, a^{3} b\right\}$, $\left\{a^{2} b, a^{6} b\right\},\left\{a^{5} b, a^{7} b\right\},\left\{a^{4} b\right\},\left\{a c, a^{3} c\right\},\left\{a^{2} c, a^{6} c\right\},\left\{a^{5} c, a^{7} c\right\},\left\{a^{4} c\right\}$, $\{b c\},\left\{a b c, a^{3} b c\right\},\left\{a^{2} b c, a^{6} b c\right\},\left\{a^{5} b c, a^{7} b c\right\},\left\{a^{4} b c\right\}$ and $w=20$. Hence $F\left[C_{8} \times C_{2} \times C_{2}\right] \cong F^{8} \oplus F_{2}^{12}$.
4. If $q \equiv-3 \bmod 8$, then $T=\{1,5\} \bmod 8$. Thus, p-regular F-conjugacy classes are $\{1\},\left\{a, a^{5}\right\},\left\{a^{2}\right\},\left\{a^{6}\right\},\left\{a^{3}, a^{7}\right\},\left\{a^{4}\right\},\{b\},\{c\},\left\{a b, a^{5} b\right\}$, $\left\{a^{2} b\right\},\left\{a^{6} b\right\},\left\{a^{3} b, a^{7} b\right\},\left\{a^{4} b\right\},\left\{a c, a^{5} c\right\},\left\{a^{2} c\right\},\left\{a^{6} c\right\},\left\{a^{3} c, a^{7} c\right\}$, $\left\{a^{4} c\right\},\{b c\},\left\{a b c, a^{5} b c\right\},\left\{a^{2} b c\right\},\left\{a^{6} b c\right\},\left\{a^{3} b c, a^{7} b c\right\},\left\{a^{4} b c\right\}$ and $w=24$. Hence $F\left[C_{8} \times C_{2} \times C_{2}\right] \cong F^{16} \oplus F_{2}^{8}$.
Thus we have the result.

Theorem 5. Let F be a finite field of characteristic $p>0$ having $q=p^{n}$ elements and $G \cong C_{4}^{2} \times C_{2}$.

1. If $p=2$. Then,

$$
U\left(F\left[C_{4}^{2} \times C_{2}\right]\right) \cong C_{4}^{3 n} \times C_{2}^{25 n} \times C_{2^{n}-1}
$$

2. If $p \neq 2$. Then,

$$
U\left(F\left[C_{4}^{2} \times C_{2}\right]\right) \cong \begin{cases}C_{p^{n}-1}^{32}, & \text { if } q \equiv 1 \bmod 4 \\ C_{p^{n}-1}^{8} \times C_{p^{2 n}-1}^{12}, & \text { if } q \equiv-1 \bmod 4\end{cases}
$$

Proof. The presentation of $G \cong C_{4}^{2} \times C_{2}$ is given by

$$
C_{4}^{2} \times C_{2}=<a, b, c \mid a^{4}=b^{4}=c^{2}=1, a b=b a, b c=c b, a c=c a>.
$$

1. If $p=2$, then $F G$ is non-semisimple and $|F|=q=2^{n}$. It is well known that $U(F G) \cong V(F G) \times F^{*}$ and $|V(F G)|=2^{31 n}$ as $\operatorname{dim}_{F} J(F G)=31$. Obviously exponent of $V(F G)$ is 4 . Suppose $V(F G) \cong C_{4}^{l_{1}} \times C_{2}^{l_{2}}$ such that $2^{31 n}=4^{l_{1}} \times 2^{l_{2}}$. Now we will compute l_{1} and l_{2}. Set $W=\left\{\alpha \in \omega(G): \alpha^{2}=0\right.$ and there exists $\beta \in$ $\omega(G)$, such that $\left.\alpha=\beta^{2}\right\}$. If $\alpha=\sum_{k=0}^{1} \sum_{j=0}^{3} \sum_{i=0}^{3} \alpha_{4(j+4 k)+i} a^{i} b^{j} c^{k} \in$ $\omega(G)$, then $\sum_{i=0}^{3} \alpha_{2(j+2 k)+i}=0$, for $j=0,1,2,3$ and $k=0,1$. Let $\beta=\sum_{k=0}^{1} \sum_{j=0}^{3} \sum_{i=0}^{3} \beta_{4(j+4 k)+i} a^{i} b^{j} c^{k}$ such that $\alpha=\beta^{2}$. Now applying the conditions $\alpha^{2}=0, \alpha=\beta^{2}$ and by direct computation, we have $\alpha_{i}=0$, for all $i \neq 0,2,8,10$ and $\alpha_{0}=\alpha_{2}$. Thus $W=$ $\left\{\alpha_{0}\left(1+a^{2}\right)+\left(\alpha_{8}+\alpha_{10} a^{2}\right) b^{2}, \alpha_{0}, \alpha_{8}, \alpha_{10} \in F\right\}$. Therefore $|W|=2^{3 n}$, $l_{1}=3 n$ and $l_{2}=25 n$. Hence $V(F G) \cong C_{4}^{3 n} \times C_{2}^{25 n}$ and the result follows.
2. If $p \neq 2$, then $|F|=p^{n}$. Using the similar arguments as in Theorem 1, $F\left[C_{4}^{2} \times C_{2}\right]$ is semisimple and $m=4, \sum_{i=1}^{r}\left[D_{i}: F\right]=32$. By observation we have following possibilities for q :
(a) If $q \equiv 1 \bmod 4$, then $t=1$;
(b) If $q \equiv-1 \bmod 4$, then $t=2$.

Now we have the cases:

1. If $q \equiv 1 \bmod 4$, then $T=\{1\} \bmod 4$. Thus, p-regular F-conjugacy classes are the conjugacy classes of $C_{4}^{2} \times C_{2}$ and $w=32$. Hence $F\left[C_{4}^{2} \times\right.$ $\left.C_{2}\right] \cong F^{32}$.
2. If $q \equiv-1 \bmod 4$, then $T=\{1,3\} \bmod 4$. Thus, p-regular F-conjugacy classes are $\{1\},\left\{a, a^{3}\right\},\left\{a^{2}\right\},\left\{b, b^{3}\right\},\left\{b^{2}\right\},\{c\},\left\{a b, a^{3} b^{3}\right\},\left\{a b^{2}, a^{3} b^{2}\right\}$, $\left\{a b^{3}, a^{3} b\right\},\left\{a^{2} b, a^{2} b^{3}\right\},\left\{a^{2} b^{2}\right\},\left\{b c, b^{3} c\right\},\left\{b^{2} c\right\},\left\{a b c, a^{3} b^{3} c\right\},\left\{a b^{2} c, a^{3} b^{2} c\right\}$, $\left\{a b^{3} c, a^{3} b c\right\},\left\{a^{2} b c, a^{2} b^{3} c\right\},\left\{a^{2} b^{2} c\right\},\left\{a c, a^{3} c\right\},\left\{a^{2} c\right\}$ and $w=20$. Hence $F\left[C_{4}^{2} \times C_{2}\right] \cong F^{8} \oplus F_{2}^{12}$. Thus we have the result.

Theorem 6. Let F be a finite field of characteristic $p>0$ having $q=p^{n}$ elements and $G \cong C_{4} \times C_{2}^{3}$.

1. If $p=2$. Then,

$$
U\left(F\left[C_{4} \times C_{2}^{3}\right]\right) \cong C_{4}^{n} \times C_{2}^{29 n} \times C_{2^{n}-1}
$$

2. If $p \neq 2$. Then,

$$
U\left(F\left[C_{4} \times C_{2}^{3}\right]\right) \cong \begin{cases}C_{p^{n}-1}^{32}, & \text { if } q \equiv 1 \bmod 4 \\ C_{p^{n}-1}^{16} \times C_{p^{2 n}-1}^{8}, & \text { if } q \equiv-1 \bmod 4\end{cases}
$$

Proof. The presentation of $G \cong C_{4} \times C_{2}^{3}$ is given by
$C_{4} \times C_{2}^{3}=<a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a b=b a, b c=c b, d c=c d, a d=d a>$.

1. If $p=2$, then $F G$ is non-semisimple and $|F|=q=2^{n}$. It is well known that $U(F G) \cong V(F G) \times F^{*}$ and $|V(F G)|=2^{31 n}$ as $\operatorname{dim}_{F} J(F G)=31$. Obviously exponent of $V(F G)$ is 4 . Suppose $V(F G) \cong C_{4}^{l_{1}} \times C_{2}^{l_{2}}$ such that $2^{31 n}=4^{l_{1}} \times 2^{l_{2}}$. Now we will compute l_{1} and l_{2}. Set
$W=\left\{\alpha \in \omega(G): \alpha^{2}=0\right.$ and there exists $\beta \in \omega(G)$, such that $\left.\alpha=\beta^{2}\right\}$.
Let $\alpha=\sum_{s=0}^{1} \sum_{k=0}^{1} \sum_{j=0}^{1} \sum_{i=0}^{3} \alpha_{4(j+2(k+2 s))+i} a^{i} b^{j} c^{k} d^{s} \in \omega(G)$ and $\beta=\sum_{s=0}^{1} \sum_{k=0}^{1} \sum_{j=0}^{1} \sum_{i=0}^{3} \beta_{4(j+2(k+2 s))+i} a^{i} b^{j} c^{k} d^{s}$ such that $\alpha=\beta^{2}$. Now applying the conditions $\alpha^{2}=0, \alpha=\beta^{2}$ and by direct computation, we have $\alpha_{i}=0$, for all $i \neq 0,2$ and $\alpha_{0}=\alpha_{2}$. Thus $W=\left\{\alpha_{0}\left(1+a^{2}\right), \alpha_{0} \in F\right\}$. Therefore $|W|=2^{n}, l_{1}=n$ and $l_{2}=29 n$. Hence $V(F G) \cong C_{4}^{n} \times C_{2}^{29 n}$ and the result follows.
2. If $p \neq 2$, then $|F|=p^{n}$. Using the similar arguments as in Theorem $1, F\left[C_{4} \times C_{2}^{3}\right]$ is semisimple and $m=4, \sum_{i=1}^{r}\left[D_{i}: F\right]=32$. By observation we have following possibilities for q :
(a) If $q \equiv 1 \bmod 4$, then $t=1$;
(b) If $q \equiv-1 \bmod 4$, then $t=2$.

Now have the following cases:

1. If $q \equiv 1 \bmod 4$, then $T=\{1\} \bmod 4$. Thus, p-regular F-conjugacy classes are the conjugacy classes of $C_{4} \times C_{2}^{3}$ and $w=32$. Hence $F\left[C_{4} \times\right.$ $\left.C_{2}^{3}\right] \cong F^{32}$.
2. If $q \equiv-1 \bmod 4$, then $T=\{1,3\} \bmod 4$. Thus, p-regular F-conjugacy classes are $\{1\},\left\{a, a^{3}\right\},\left\{a^{2}\right\},\{b\},\{c\},\{d\},\left\{a b, a^{3} b\right\},\left\{a^{2} b\right\},\left\{a c, a^{3} c\right\}$, $\left\{a^{2} c\right\},\left\{a d, a^{3} d\right\},\left\{a^{2} d\right\},\{b c\},\{c d\},\{b d\},\left\{a b c, a^{3} b c\right\},\left\{a^{2} b c\right\},\left\{a c d, a^{3} c d\right\}$, $\left\{a^{2} c d\right\},\left\{a b d, a^{3} b d\right\},\left\{a^{2} b d\right\},\{b c d\},\left\{a b c d, a^{3} b c d\right\},\left\{a^{2} b c d\right\}$ and $w=24$. Hence $F\left[C_{4} \times C_{2}^{3}\right] \cong F^{16} \oplus F_{2}^{8}$.
Hence we have the result.

Theorem 7. Let F be a finite field of characteristic $p>0$ having $q=p^{n}$ elements and $G \cong C_{2}^{5}$.

1. If $p=2$. Then, $U\left(F\left[C_{2}^{5}\right]\right) \cong C_{2}^{31 n} \times C_{2^{n}-1}$.
2. If $p \neq 2$. Then,
$U\left(F\left[C_{2}^{5}\right]\right) \cong C_{p^{n}-1}^{32}$, if $q \equiv 1 \bmod 2$.
Proof. The presentation of $G \cong C_{2}^{5}$ is given by $C_{2}^{5}=<a, b, c, d, e \mid a^{2}=$ $b^{2}=c^{2}=d^{2}=e^{2}=1, a b=b a, b c=c b, d c=c d, e d=d e, e a=a e>$.
3. If $p=2$, then $F G$ will be non-semisimple in this case and $|F|=$ $q=2^{n}$. Since $G \cong C_{2}^{5}$, therefore by Lemma 2 , we have $U(F G) \cong$ $C_{2}^{31 n} \times C_{2^{n}-1}$.
4. If $p \neq 2$, then $|F|=p^{n}$. Using the similar arguments as in Theorem $1, F\left[C_{2}^{5}\right]$ is semisimple and $m=2, \sum_{i=1}^{r}\left[D_{i}: F\right]=32$. By observation we have $q \equiv 1 \bmod 2$ and $t=1$.

Hence $q \equiv 1 \bmod 2$, implies $T=\{1\} \bmod 2$. Thus, p-regular F-conjugacy classes are the conjugacy classes of C_{2}^{5} and $w=32$. Therefore, $F\left[C_{2}^{5}\right] \cong F^{32}$ and we have the result.

References

[1] S. F. Ansari and M. Sahai, "Unit groups of group algebras of groups of order 20", Quaestiones Mathematicae, vol. 44, no. 4, pp. 503-511, 2021.
[2] S. Bhatt and H. Chandra, "Structure of unit group of $\mathrm{F}_{\mathrm{p}^{\mathrm{n}}} \mathrm{D}_{60}$ ", Asian-European Journal of Mathematics, vol. 14, no. 5, Art, ID. 2150075, 2021.
[3] L. Creedon, "The unit group of small group algebras and the minimum counter example to the isomorphism problem", International Journal of Pure and Applied Mathematics, vol. 49, no. 4, pp. 531-537, 2008.
[4] R. A. Ferraz, "Simple components of the center of $\mathrm{F} \mathrm{G} / \mathrm{J}(\mathrm{F} \mathrm{G})$ ", Communications in Algebra, vol. 36, no. 9, pp. 3191-3199, 2008.
[5] G. Karpilovsky, Unit groups of classical rings. Oxford: Clarendon Press, 1988.
[6] G. Karpilovsky, Group Representations: Introduction to group representations and characters, vol. 1-B. Amsterdam: North-Holland, 1992.
[7] M. Khan, "Structure of the unit group of FD10", Serdica Mathematical Journal, vol. 35, no. 1, pp. 15-24, 2009.
[8] M. Khan, R. K. Sharma, and J.B. Srivastava, "The Unit Group of FS_{4}," Acta Mathematica Hungarica, vol. 118, no. 1-2, pp. 105-113, 2008.
[9] N. Makhijani, R. K. Sharma, and J. B. Srivastava, "The unit group of algebra of circulant matrices", International Journal of Group Theory, vol. 3, no. 4, pp. 13-16, 2014.
[10] N. Makhijani, R. K. Sharma, and J. B. Srivastava, "The unit group of $\mathrm{F}_{\mathrm{q}}\left[\mathrm{D}_{30}\right]$ ", Serdica Mathematical Journal, vol. 41,no. 2-3, pp.185-198, 2015.
[11] C. P. Milies, and S. K. Sehgal, An introduction to group rings. Dordrecht: Kluwer Academic Publishers, 2002.
[12] M. Sahai and S. F. Ansari, "Unit groups of finite group algebras of Abelian groups of order at most 16 ", Asian-European Journal of Mathematics, vol. 14, no. 03, Art. ID. 2150030, 2021.
[13] R. K. Sharma, J. B. Srivastava, and M. Khan, "The unit group of F A4", Publicationes Mathematicae Debrecen, vol. 71, no.1-2, pp.21-26, 2007.
[14] G. Tang and Y. Gao,"The unit group of F G of group with order 12", International journal of pure and applied mathematics, vol. 73, pp. 143-158, 2011.
[15] G. Tang, Y. Wei and Y. Li, "Unit groups of group algebras of some small groups", Czechoslovak Mathematical Journal, vol. 64, pp. 149-157, 2014.

Suchi Bhatt

Department of Mathematics and Scientific Computing, M. M. M. University of Technology,

Gorakhpur
India
e-mail: 1995suchibhatt@gmail.com
and

Harish Chandra

Department of Mathematics and Scientific Computing, M. M. M. University of Technology,

Gorakhpur
India
e-mail: hcmsc@mmmut.ac.in
Corresponding author

