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1. Introduction

In this work, firstly, we prove the existence of solutions for an iterated
fractional boundary value problem(

−CDα
1−

³
φp
³
Dβ
0+u (t)

´´
+ λf (t, u(t)) = 0, 0 < t < 1

u(i) (0) = Dβ+i
0+ u (1) = 0 , i = 0, 1, ..., n− 1,

(1.1)

then, we obtain Lyapunov type inequalities for the corresponding problem

(
−CDα

b−

³
φp
³
Dβ
a+u (t)

´´
+ χ(t)φp (u(t)) = 0, a < t < b

u(i) (a) = Dβ+i
a+ u (b) = 0 , i = 0, 1, ..., n− 1,

(1.2)

where n − 1 < α, β ≤ n, n ≥ 2, CDα
b− and Dβ

a+ refer to the right Caputo
derivative and the left Riemann—Liouville derivative respectevely, φp(s) =
s |s|p−2 , p > 2, φ−1p = φq,

1
p +

1
q = 1 and χ : [a, b] → R is a continuous

function.
The problems generated by equations involving both left and right

fractional derivatives, arise in the study of Euler—Lagrange equations for
fractional problems of calculus of variations, see [4,14,15]. Recently, this
type of problems has been considered by many authors, see [1,2,3,5,6, 7,8,9,10,12,16].

Concerning the Lyapunov inequality and its generalizations, it has been
shown to be very useful in different problems, such as oscillation, asymp-
totic theory, disconjugacy and eigenvalue problems. For results on Lya-
punov inequality one may suggest the papers [7,10,11,17].

The paper is organized as follows. In Section 2, we briefly recall some
essential definitions and lemmas on fractional calculus to be used later. Our
results are formulated and proved in Sections 3 and 4. The main results
are Theorem 2, which establishes existence of solution for the eigenvalue
problem for left and right fractional differential equation 1.1, and Theorem
t-lyapunov where, we obtain a new Lyapunov type inequality for problem
1.2.

2. Basic results

In this section, we recall some essential definitions and preliminary facts
that will be used in the sequel and can be found in [13,18,19].

Definition 1. The left and right fractional integrals of order α > 0 of a
function g ∈ L1 [a, b] are defined respectively by



Lyapunov-type inequality for higher order left and right ... 1033

Iαa+g (t) =
1

Γ (α)

Z t

a
(t− s)α−1 g (s) ds,

Iαb−g (t) =
1

Γ (α)

Z b

t
(s− t)α−1 g (s) ds.

Definition 2. The left and right Riemann-Liouville fractional derivatives
of order n − 1 < α ≤ n, n ≥ 1 of a function g ∈ ACn [a, b] are defined
respectively by

Dα
a+g (t) =

dn

dtn

³
In−αa+ g

´
(t),

Dα
b−g (t) = (−1)n dn

dtn

³
In−αa+ g

´
(t).

Definition 3. The left and right Caputo fractional derivatives of order
n− 1 < α ≤ n, n ≥ 1 of a function g ∈ ACn [a, b] are defined respectively
by

CDα
a+g(t) = In−αd− g(n)(t),

CDα
b−g(t) = (−1)n In−αd− g(n)(t).

With respect to the composition rule of fractional operators, we mention
the following.

Proposition 4. Let α ∈ (n− 1, n] and f ∈ L1 [a, b] . Then

IαCa+ Dα
a+f (t) = f (t)−

n−1X
k=0

f (k) (a)

k!
(t− a)k ,(2.1)

IαCb− Dα
b−f (t) = f (t)−

n−1X
k=0

(−1)k f (k) (b)
k!

(b− t)k .(2.2)

Next, we cite Schaefer’s fixed point theorem:

Theorem 5. [19]. Let T be a continuous and compact mapping of a Ba-
nach space X into itself, such that the set

{x∈ X : x = µTx for some 0 ≤ µ ≤ 1} is bounded. Then T has a fixed
point.
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3. Existence of solutions

In this section, we prove the existence of solutions for the eigenvalue prob-
lem 1.1.

First, we begin by solving the following linear fractional problem:(
Dβ
0+u (t) + y(t) = 0, 0 < t < 1

u(i) (0) = 0 , i = 0, 1, ..., n− 1.(3.1)

Lemma 1. For n− 1 < β ≤ n, n ≥ 2, the solution of problem 1.3 is given
by

u (t) = − 1

Γ (β)

Z t

0
(t− s)β−1y (s) ds.(3.2)

Proof. We get (3.2) by applying (2.1) in (3.1) and using the boundary
conditions u(i) (0) = 0, i = 0, 1, ..., n− 1. 2

Now, we transform the boundary value problem to an integral equation.

Lemma 2. A function u is a solution of the linear boundary value problem
1.1 if and only if u satisfies the integral equation

u(t) = 1
(Γ(α))q−1Γ(β)

R t
0(t− s)β−1φq

³R 1
s (r − s)α−1λf (r, u(r)) dr

´
ds.

Proof. Applying the operator Iα1− on both sides of the differential
equation in 1.1 and using (2.2) together with the boundary conditions

Dβ−i
0+ u (1) = 0, i = 0, 1, ..., n − 1, then the boundary value problem 1.1

reduces to the following problem(
Dβ
0+u (t)− φq

³
1

Γ(α)

R 1
t (s− t)α−1λf (s, u(s)) ds

´
= 0

u(i) (0) = 0 , i = 0, 1, ..., n− 1.
Now, equation e-ID-1 yields

u(t) = 1
Γ(β)

R t
0(t− s)β−1φq

³
1

Γ(α)

R 1
s (r − s)α−1λf (r, u(r)) dr

´
ds.

From which we obtain the required result. 2
Define the integral operator T : E → E by

Tu(t) = 1
Γ(β)

R t
0(t− s)β−1φq

³
1

Γ(α)

R 1
s (r − s)α−1λf (r, u(r)) dr

´
ds,

where the Banach space E = C [0, 1] is endowed with the norm

kuk = t ∈ [0, 1]max |u (t)| .
Now, we are in a position to establish the existence of nontrivial solution

for the fractional boundary value problem 1.1.
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Theorem 3. Suppose that f (t, 0) 6= 0 and there exist nonnegative func-
tions h ∈ L1 [0, 1] and ψ ∈ C [0,+∞), with ψ nondecreasing, such that

|f (t, x)| ≤ h (t)ψ (|x|) .Then problem 1.1 has at least one nontrivial
solution for all λ > 0.

Proof. We are going to use the Schaefer’s fixed point Theorem to prove
the result. So fix λ > 0. The following properties hold

(i) T maps bounded sets into bounded sets. Let u ∈ Bδ = {u ∈ E, kuk < δ} ,
δ > 0, then we have

|Tu (t)| ≤ 1

(Γ (α))q−1 Γ (β)

Z t

0
(t− s)β−1φq

µZ 1

s
(r − s)α−1 |λf (r, u(r))| dr

¶
ds

≤ λq−1

(Γ (α))q−1 Γ (β)

µZ 1

0
h (r)ψ (|u(r)|) dr

¶q−1

≤

³
λψ (δ) khkL1[0,1]

´q−1
(Γ (α))q−1 Γ (β)

< +∞.

Hence, T (Bδ) is uniformly bounded.

(ii) T (Bδ) is equicontinuous. For 0 ≤
t1 < t2 ≤ 1, we have

|Tu (t2)− Tu (t1)|

≤ 1

(Γ (α))q−1 Γ (β)

µZ t1

0

³
(t2 − s)β−1 − (t1 − s)β−1

´
φq

¶
µZ 1

s
(r − s)α−1 |λf (r, u(r))| dr

¶
ds

+

Z t2

t1
(t2 − s)β−1φq

µZ 1

s
(r − s)α−1 |λf (r, u(r))| dr

¶
ds

¶

≤

³
λψ (δ) khkL1[0,1]

´q−1
(Γ (α))q−1 Γ (β)

µZ t1

0

³
(t2 − s)β−1 − (t1 − s)β−1

´
ds

+

Z t2

t1
(t2 − s)β−1ds

¶
→ 0, as t1 → t2.

From Arzelà—Ascoli Theorem, we deduce that the operator T is com-
pact.
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(iii) Let Ω = Bδ, δ > 0, then for u ∈ Ω, such that u = µTu, 0 < µ < 1, we
obtain

|u (t)| ≤ |Tu (t)| ≤
¡
λψ(δ)khkL1[0,1]

¢q−1
(Γ(α))q−1Γ(β)

,which implies that the set of solutions

is uniformly bounded.
So, all assumptions of Schaefer’s Theorem are fulfilled, consequently T

has a fixed point in Ω which, since f(t, 0) 6≡ 0, is a nontrivial solution of
problem 1.1 in E. 2

4. Lyapunov inequality

In this section, we are going to establish the Lyapunov inequality for the
fractional problem 1.2

Theorem 1. (Lyapunov type inequality). Let u be a nontrivial solution of

problem 1.2, then the inequality
R b
a |χ(r)| dr ≥

Γ(α+1)(Γ(β))p−1

(b−a)(p−1)β+α−1
³
β(p−1)−1

p−2

´p−2
,

holds, where p > 2 and (p− 1)β ≥ 1.

Proof. From the properties of the Caputo derivative showed in Propo-
sition 4 and the boundary conditions Dβ+i

a+ u (b) = 0, i = 0, 1, ..., n − 1, we
obtain

IαCb− Dα
b−

³
φp
³
Dβ
0+u (t)

´´
= φp

³
Dβ
0+u (t)

´
.(4.1)

Now, by applying the operator Iαb− on both sides of the differential
equation in 1.2 and using (4.1), we get

φp
³
Dβ
0+u (t)

´
= 1

Γ(α)

R b
t (s− t)α−1χ(s)φp (u(s)) ds, thus, we have¯̄̄³

Dβ
0+u (t)

´¯̄̄p−1
≤ 1

Γ (α)

Z b

t
|χ(s)| |u(s)|p−1 (s− t)α−1ds.(4.2)

Also, from the boundary conditions u(i) (a) = 0, i = 0, 1, ..., n−1, yields
u(t) = Iβa+D

β
a+u (t) , so, we have |u (t)| ≤

1
Γ(β)

R t
a(t−s)β−1

¯̄̄
Dβ
0+u (s)

¯̄̄
ds.By

using Hölder inequality on the integral of the right-hand side of the above
inequality, we obtain

|u (t)| ≤ 1

Γ (β)

µZ t

a
(t− s)

(β−1)(p−1)
p−2 ds

¶p−2
p−1

µZ t

a

¯̄̄
Dβ
a+u (s)

¯̄̄p−1
ds

¶ 1
p−1

=
1

Γ (β)

µ
p− 2

β (p− 1)− 1(t− a)
(p−1)β−1

p−2

¶p−2
p−1

µZ t

a

¯̄̄
Dβ
a+u (s)

¯̄̄p−1
ds

¶ 1
p−1

,
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then,

|u (t)|p−1 ≤ 1

(Γ (β))p−1

µ
p− 2

β (p− 1)− 1(t− a)
(p−1)β−1

p−2

¶p−2 Z t

a

¯̄̄
Dβ
a+u (s)

¯̄̄p−1
ds.

(4.3)
Substituting (4.2) in (4.3) yields

|u (t)|p−1 ≤ 1
Γ(α)(Γ(β))p−1

µ
p−2

β(p−1)−1(t− a)
(p−1)β−1

p−2

¶p−2
R t
a

R b
s |χ(r)| |u(r)|

p−1 (r − s)α−1drds,
then, by interchanging the order of integration, we get

|u (t)|p−1 ≤ 1

Γ (α) (Γ (β))p−1

µ
p− 2

β (p− 1)− 1(t− a)
(p−1)β−1

p−2

¶p−2
µZ t

a
|χ(r)| |u(r)|p−1

Z r

a
(r − s)α−1dsdr

+

Z b

t
|χ(r)| |u(r)|p−1

Z t

a
(r − s)α−1dsdr

!

=
1

Γ (α) (Γ (β))p−1

µ
p− 2

β (p− 1)− 1(t− a)
(p−1)β−1

p−2

¶p−2
Z t

a
|χ(r)| |u(r)|p−1 (r − a)α

α
dr

+

Z b

t
|χ(r)| |u(r)|p−1 (r − a)α − (r − t)α

α
dr

!

≤ 1

Γ (α+ 1) (Γ (β))p−1

µ
p− 2

β (p− 1)− 1(t− a)
(p−1)β−1

p−2

¶p−2
Z b

a
|χ(r)| |u(r)|p−1 (r − a)αdr.

Therefore, we obtain kukp−1 ≤ 1
Γ(α+1)(Γ(β))p−1

µ
p−2

β(p−1)−1(b− a)
(p−1)β−1

p−2

¶p−2
R b
a |χ(r)| kuk

p−1 (b− a)αdr. Thus

1≤ (b−a)(p−1)β+α−1
Γ(α+1)(Γ(β))p−1

³
p−2

β(p−1)−1

´p−2 R b
a |χ(r)| dr, which yields the required re-

sult. 2

Example 2. Consider the following problem⎧⎪⎨⎪⎩ −
CD

3
2

1−

µ
φp

µ
D

7
4

0+u (t)

¶¶
+ λf (t, u (t)) = 0, 0 < t < 1

u (0) = u0 (0) = D
7
4

0+u (1) = D
11
4

0+u (1) = 0,
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where f (t, x) = 1+arctanx√
1+t

.

Obviosly, we have f(t, 0) = 1√
1+t

= 0 and

|f (t, x)| ≤ h (t)ψ (|x|) , where h (t) = 1√
1+t
∈ L1 [0, 1] and ψ (x) = 1 +

arctanx.
From Theorem 8 we conclude that for all λ > 0, this problem admits

at least one solution.
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