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1. Introduction

For standard terminology and notion in graph theory, we follow the text-

book of Harary [3]. The non-standard will be given in this paper as
and when required.

Let G = (V,E) be a graph (finite and undirected). The distance be-
tween two vertices u and v in G, denoted by d(u, v) is the number of edges
in a shortest path (also called a graph geodesic) connecting them. We say
that a graph geodesic P is passing through a vertex v in G if v is an internal
vertex of P (i.e., v is a vertex in P , but not an end vertex of P ). v in G,
g(u, v) denotes the number of geodesics whose end vertices are u and v.
The degree of a vertex v in G is denoted by d(v).

The concept of stress of a node (vertex) in a network (graph) has been

introduced by Shimbel as a centrality measure in 1953 [6]. This centrality
measure has applications in biology, sociology, psychology, etc., (See [4, 5]). The stress of a vertex v in a graph G, denoted by str(v), is the
number of geodesics passing through it. We denote the maximum stress
among all the vertices of G by ΘG and minimum stress among all the
vertices of G by θG. Further, the concepts of stress number of a graph and
stress regular graphs have been studied by K. Bhargava, N.N.
Dattatreya, and R. Rajendra in their paper [1].

The reciprocal sum-connectivity index of a graph (see [2]) is defined as

RSC(G) =
X

uv∈E(G)

q
d(u) + d(v)

Motivated by the identity sqrt, in this paper, we introduce a new topo-
logical index called square root stress-sum index using stresses on vertices.
Further, we establish some inequalities, obtain some results and compute
stress-sum index for some standard graphs.

2. Square Root Stress-Sum Index for Graphs

Definition 2.1. The square root stress-sum index SRS(G) of a simple
graph G is defined as

SRS(G) =
X

uv∈E(G)

q
(u) + (v)(2.1)
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Observation: From the Definition 2.1, it follows that, for any graph G,

2m
p
θG ≤ SRS(G) ≤ 2m

p
ΘG,

where m is the number of edges in G.

Example 2.2. Consider the graph G given in Figure 2.1.
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Figure 2.1: A graph G

The stresses of the vertices of G are as follows:

str(v1) = str(v3) = str(v7) = str(v8) = 0,
str(v2) = 19,
str(v5) = 1,
str(v4) = str(v6) = 0.

The stress-sum index of G is:
SRS(G) =

p
(v2) + (v1) +

p
(v2) + (v3) +

p
(v2) + (v7)

+
p
(v2) + (v8) +

p
(v2) + (v4) +

p
(v2) + (v5)

+
p
(v2) + (v6) +

p
(v4) + (v5) +

p
(v5) + (v6)

=
√
19 + 0 +

√
19 + 0 +

√
19 + 0 +

√
19 + 0 +

√
19 + 0 +

√
19 + 1

+
√
19 + 0 +

√
0 + 1 +

√
1 + 0

= 2 + 6
√
19 +

√
20.

Proposition 2.3. Let N be the number of geodesics of length ≥ 2 in a
graph G. Then

0 ≤ SRS(G) ≤
√
2N(|E|− t),(2.2)

where t is the number of edges with end vertices having zero stress in G.
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Proof. If N is the number of all geodesics of length ≥ 2 in a graph
G, then by the definition of stress of a vertex, for any vertex v in G,
0 ≤ str(v) ≤ N . Hence by the Definition 2.1, we have

0 ≤ SRS(G) ≤
√
2N(|E|− t),(2.3)

where t is the number of edges with end vertices having zero stress in G.
2

Corollary 2.4. If there is no geodesic of length ≥ 2 in a graph G, then
SRS(G) = 0. Moreover, for a complete graph Kn, SRS(Kn) = 0.

Proof. If there is no geodesic of length ≥ 2 in a graph G, then N = 0.
Hence, by the Proposition 2.3, we have SRS(G) = 0.

In Kn, there is no geodesic of length ≥ 2 and so SRS(Kn) = 0. 2

Theorem 2.5. For a graph G, SRS(G) = 0 if and only if neighbours of
every vertex induce a complete subgraph of G.

Proof. Suppose that SRS(G) = 0. Then by the Definition 2.1(Eq.srs),p
(u) + (v) = 0, ∀uv ∈ E(G) and so (u) + (v) = 0, ∀uv ∈ E(G). Hence

(v) = 0, ∀v ∈ V (G). Let v ∈ V (G). We need to show that neighbours
of v induce a complete subgraph of G. If v is a pendant vertex, then
there is nothing to prove. Suppose that v is not a pendant vertex. We
claim that any two neighbouring vertices are adjacent in G. If there are
two neighbours u and w of v that are not adjacent in G, then uvw is a
graph geodesic passing through v, which implies (v) ≥ 1, a contradiction.
Hence our claim holds. Thus neighbours of v induce a complete subgraph
of G. Since v is arbitrary in V (G), the neighbours of every vertex induce a
complete subgraph of G.

Conversely, suppose that neighbours of every vertex in G induce a com-
plete subgraph ofG. Let v ∈ V (G). Since neighbours of v induce a complete
subgraph of G, any two neighbouring vertices are adjacent and so there is
no geodesic of length ≥ 2 passing through v. Since v is an arbitrary vertex
in G, by the Corollary 2.4, it follows that SRS(G) = 0. 2

Proposition 2.6. For the complete bipartite Kr,s,

SRS(Kr,s) =
rs√
2

q
s(s− 1) + r(r − 1).
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Proof. Let V1 = {v1, . . . , vr} and V2 = {u1, . . . , us} be the partite sets
of Kr,s. We have,

(vi) =
s(s− 1)
2

for 1 ≤ i ≤ r(2.4)

and

(uj) =
r(r − 1)
2

for 1 ≤ j ≤ s.(2.5)

Using 2.5 and 2.6 in the Definition 2.1, we have

SRS(Kr,s) =
P

uv∈E(G)
p
(u) + (v)

=
P
1≤i≤r, 1≤j≤r

q
(vi) + (uj)

=
P
1≤i≤r, 1≤j≤s

⎡⎣ss(s− 1)
2

+
r(r − 1)
2

⎤⎦
= rs

⎡⎣ss(s− 1)
2

+
r(r − 1)
2

⎤⎦
=

rs√
2

p
s(s− 1) + r(r − 1).

2

Proposition 2.7. If G = (V,E) is a k-stress regular graph, then

SRS(G) =
√
2k |E|.

Proof. Suppose that G is a k-stress regular graph. Then
(v) = k for all v ∈ V (G).

By the Definition 2.1, we have

SRS(G) =
P

uv∈E(G)
p
(u) + (v)

=
P

uv∈E(G)
√
k + k

=
√
2k |E|.

2

Corollary 2.8. For a cycle Cn,

SRS(Cn) =

n(n− 1)(n− 3)
4

, if n is odd;

n2(n− 2)
4

, if n is even.
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Proof. For any vertex v in Cn, we have,

(v) =

(n− 1)(n− 3)
8

, if n is odd;

n(n− 2)
8

, if n is even.

Hence Cn is

(n− 1)(n− 3)
8

-stress regular, if n is odd;

n(n− 2)
8

-stress regular, if n is even.

Since Cn has n vertices and n edges, by the Proposition 2.7, we have

SRS(Cn) = n×

s
2 · (n− 1)(n− 3)

8
, if n is odd;s

2 · n(n− 2)
8

, if n is even.

=

n

2

p
(n− 1)(n− 3), if n is odd;

n

2

p
n(n− 2), if n is even.

2

Proposition 2.9. Let T be a tree on n vertices. Then

SRS(T ) = P
uv∈J

qP
1≤i<j≤m(u) |Cu

i ||Cu
j |+

P
1≤i<j≤m(v) |Cv

i ||Cv
j |

+
P

w∈Q
qP

1≤i<j≤m(w) |Cw
i ||Cw

j |.
where J is the set of internal(non-pendant) edges in T , Q denotes the set
of all vertices adjacent to pendant vertices in T , and the sets Cv

1 , . . . , C
v
m

denotes the vertex sets of the components of T − v for an internal vertex v
of degree m = m(v).

Proof. We know that a pendant vertex in T has zero stress. Let v
be an internal vertex of T of degree m = m(v). Let Cv

1 , . . . , C
v
m be the

components of T −v. Since there is only one path between any two vertices
in a tree, it follows that,

str(v) =
P
1≤i<j≤m |Cv

i ||Cv
j |

Let J denotes the set of internal(non-pendant) edges, and P denotes
pendant edges and Q denotes the set of all vertices adjacent to pendant
vertices in T . Then using Qstress in the Definition 2.1, we have
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SRS(T ) = P
uv∈J

p
(u) + (v) +

P
uv∈P

p
(u) + (v)

=
P

uv∈J
p
(u) + (v) +

P
w∈Q

p
(w)

=
P

uv∈J
qP

1≤i<j≤m(u) |Cu
i ||Cu

j |+
P
1≤i<j≤m(v) |Cv

i ||Cv
j |

+
P

w∈Q
qP

1≤i<j≤m(w) |Cw
i ||Cw

j |.

2

Corollary 2.10. For the path Pn on n vertices

SRS(Pn) =
n−1X
i=1

p
2in− 2i2 − n.

Proof. The proof of this corollary follows by above Proposition 2.9. We
follow the proof of the Proposition 2.9 to compute the index. Let Pn be
the path with vertex sequence v1, v2, . . . , vn (shown in Figure 2.2).

u u u u u u. . . . .
v1 v2 v3 v4 vn−1 vn

Pn

Figure 2.2: The path Pn on n vertices.

We have,
str(vi) = (i− 1)(n− i), 1 ≤ i ≤ n.

Then
SRS(Pn) =

P
uv∈E(Pn)

p
(u) + (v)

=
Pn−1

i=1

p
(vi) + (vi+1)

=
Pn−1

i=1

p
(i− 1)(n− i) + (i)(n− i− 1)

=
Pn−1

i=1

√
2in− 2i2 − n.

2

Proposition 2.11. LetWd(n,m) denotes the windmill graph constructed
for n ≥ 2 and m ≥ 2 by joining m copies of the complete graph Kn at a
shared universal vertex v (a universal vertex of a graph is a vertex that is
adjacent to all other vertices of the graph). Then

SRS(Wd(n,m)) = m(n− 1)2
s
m(m− 1)

2
.

Hence, for the friendship graph Fk on 2k + 1 vertices,

SRS(Fk) = 4k
s
k(k − 1)

2
.
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Proof. Clearly the stress of any vertex other than universal vertex is
zero in Wd(n,m), because neighbours of that vertex induces a complete
subgraph of Wd(n,m). Also, since there are m copies of Kn in Wd(n,m)
and their vertices are adjacent to v, it follows that, the only geodesics

passing through v are of length 2 only. So, (v) =
m(m− 1)(n− 1)2

2
. Note

that there are m(n − 1) edges incident on v and the edges that are not
incident on v have end vertices of stress zero. Hence by the Definition 2.1,
we have

SRS(Wd(n,m)) = m(n− 1)
p
(v)

= m(n− 1)

s
m(m− 1)(n− 1)2

2

= m(n− 1)2
s
m(m− 1)

2
.

Since the friendship graph Fk on 2k+1 vertices is nothing butWd(3, k),
it follows that

SRS(Fk) = 4k
s
k(k − 1)

2
.

2

Proposition 2.12. Let Wn denote the wheel graph constructed on n ≥ 4
vertices. Then

SRS(Wn) = (n−1)×

s
(5n− 6) (n− 4)

8
+

s
(n− 2)(n− 4)

4
, if n is even;

s
(n− 1) (5n− 19)

8
+

s
(n− 1)(n− 3)

4
, if n is odd.

Proof. In Wn with n ≥ 4, there are (n− 1) peripheral vertices and one
central vertex, say v. It is easy to see that

(v) =
(n− 1)(n− 4)

2
(2.6)

Let p be a peripheral vertex. Since v is adjacent to all the peripheral
vertices in Wn, there is no geodesic passing through p and containing v.
Hence contributing vertices for (p) are the remaining peripheral vertices.
So, by denoting the cycle Wn − p (on n− 1 vertices) by Cn−1, we have
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Wn(p) =Wn−v (p)
=Cn−1 (p)

=

(n− 2)(n− 4)
8

, if n− 1 is odd;

(n− 1)(n− 3)
8

, if n− 1 is even,

=

(n− 2)(n− 4)
8

, if n is even;

(n− 1)(n− 3)
8

, if n is odd.

Let us denote the set of all radial edges in Wn by R, and the set of all
peripheral edges by Q. Note that there are (n−1) radial edges and (n− 1)
peripheral edges in Wn. Using cntr and peri in the Definition 2.1, we have
SRS(Wn) =

P
xy∈R

p
(x) + (y) +

P
xy∈Q

p
(x) + (y)

= (n− 1)
p
(v) + (p) + (n− 1)

p
2 · (p)

= (n− 1)

⎡⎢⎢⎢⎢⎣
s
(n− 1)(n− 4)

2
+
(n− 2)(n− 4)

8
, if n is even;s

(n− 1)(n− 4)
2

+
(n− 1)(n− 3)

8
, if n is odd.

+s
(n− 2)(n− 4)

4
, if n is even;s

(n− 1)(n− 3)
4

, if n is odd.

= (n− 1)×

s
(5n− 6) (n− 4)

8
+

s
(n− 2)(n− 4)

4
, if n is even;s

(n− 1) (5n− 19)
8

+

s
(n− 1)(n− 3)

4
, if n is odd.

2

Conclusion

Based on vertex degrees, a large number of topological indices have been
defined and studied by several authors. We have introduced a new topolog-
ical index for graphs called square root stress-sum index using stresses of
vertices. Further, we established some inequalities, obtained some results
and computed the stress-sum index for some standard graphs. The char-
acterizations between properties of graphs and this index will be reported
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in a subsequent paper.
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