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Abstract

In this paper, for a complex Hilbert space H with dimH ≥ 2,
we study the linear maps on B(H), the bounded linear operators on
H, that preserves projections and idempotents. As a result, we char-
acterize the linear maps on B(H) that preserves involutions in both
directions.
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1. Introduction

Linear preserver problems (LPP) is an active research topic in matrix the-
ory, operator spaces and operator algebras and has attracted the attention
of many mathematicians in the last few decades [1, 2, 5, 6] (and references
therein). In a purely algebraic point of view, Martindale in [8] started to
study multiplicative bijections on rings and proved that every multiplica-
tive bijection from a prime ring containing a nontrivial idempotent onto
an arbitrary ring is necessarily additive. This result shows that the multi-
plicative structure of a ring can determine its ring structure.

For an associative algebra A, the Jordan product on A is defined by A◦
B = 1

2(AB+BA) for all A,B ∈ A. Note that this product is commutative
which is not associative. This means that A with this product is a Jordan
algebra; see [3] for more details about these objects.

Let A and B be algebras. A mapping φ : A −→ B is Jordan multiplica-
tive if for each A,B ∈ A, it satisfies one of the following equations

φ

µ
AB +BA

2

¶
=

1

2

µ
φ(A)φ(B) + φ(B)φ(A)

¶
,(1.1)

φ(AB +BA) = φ(A)φ(B) + φ(B)φ(A),(1.2)

φ(ABA) = φ(A)φ(B)φ(A),(1.3)

It is easy to see that if φ is additive, then (1.1) and (1.2) are equivalent
and imply (1.3). Moreover, for unital algebras A,B such that φ is addi-
tive and unital, then the above three forms of Jordan multiplicativity are
equivalent.

Throughout this paper, H is a Hilbert space with dim(H) > 1, B(H) is
the C∗-algebra of all bounded linear operators acting on H. Furthermore,
the real linear space of all bounded self adjoint operators on H will be
denoted by Bs(H). One can easily observe that Bs(H) is closed under the
Jordan product. In fact, it is a special Jordan algebra over the field of real
numbers.

We remember that each self-adjoint rank one operator on H is of the
form ax⊗x for some x ∈ H and some a ∈ R and also rank one projections
are exactly of the form x⊗ x for some unit vector x ∈ H. Moreover, each
self-adjoint finite rank operator is a real linear combination of pairwise
orthogonal rank one projections. There is a natural order on the set of all
projections of B(H), namely for two projections P,Q ∈ B(H) we say P ≤ Q
if PQ = QP = P . We also say two projections P and Q are orthogonal,
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if PQ = QP = 0 and we denote it by P ⊥ Q. In addition, a conjugate
linear bijective map U on H is said to be anti-unitary if hUx,Uyi = hy, xi
for all x, y ∈ H. In the sequel, I stands for the identity operator on H. An
element T ∈ B(H) is called involution if T 2 = I. Recall that an operator S
on a Hilbert space H is quasi-unitary if SS∗ = S∗S = S + S∗.

Let dimH ≥ 2 and Ψ : B(H) −→ B(H) be a surjective linear mapping
satisfies the implication

(S◦T )2 − (S ◦ T ) = 0⇒ (Ψ(S) ◦Ψ(T ))2 − (Ψ(S) ◦Ψ(T )) = 0.
for all S, T ∈ B(H). We show that if Ψ(Bs(H)) = Bs(H), then there exist a
unitary or anti-unitary operator U on H and a constant λ with λ ∈ {−1, 1}
such that Ψ(S) = λUSU∗ for every S ∈ B(H).

2. Main Results

Suppose that H is a Hilbert space and Ψ : B(H) −→ B(H) is a linear map
which preserves projections in both directions. In other words,

P 2 = P ⇐⇒ Ψ(P )2 = Ψ(P ).(2.1)

Next, we indicate an elementary lemma which is useful in the proofs of
main results.

Lemma 2.1. Let H be a complex Hilbert space and Ψ : B(H) −→ B(H)
be a linear map that preserves projections in both directions. Then

(i) Ψ preserves the orthogonality of projections;

(ii) Ψ preserves the order of projections;

(iii) Ψ preserves rank-1 projections as well as orthogonality of rank-1 pro-
jections.

Proof. (i) Assume that P and Q are two mutually orthogonal projec-
tions. Then, both P + Q and Ψ(P ) + Ψ(Q) are orthogonal projection.
Hence, (Ψ(P ) +Ψ(Q))2 = Ψ(P ) +Ψ(Q). Consequently

Ψ(P )Ψ(Q) +Ψ(Q)Ψ(P ) = 0.(2.2)

It follows from (2.2) that Ψ(P )Ψ(Q)+Ψ(P )Ψ(Q)Ψ(P ) = 0 andΨ(Q)Ψ(P )+
Ψ(P )Ψ(Q)Ψ(P ) = 0.
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The last equations yield

Ψ(P )Ψ(Q) = Ψ(Q)Ψ(P ).(2.3)

Equations (2.2) and (2.3) imply that Ψ(P )Ψ(Q) = Ψ(Q)Ψ(P ) = 0. (ii)
Let P and Q be two projections in B(H) such that P ≤ Q. Since PQ =
QP = P , we conclude that P ⊥ (P − Q) and P ⊥ (Q − P ). The part
(i) implies Ψ(P ) ⊥ (Ψ(P ) − Ψ(Q)) and Ψ(P ) ⊥ (Ψ(Q) − Ψ(P )) and so
Ψ(P )Ψ(Q) = Ψ(Q)Ψ(P ) = Ψ(P ) which means that Ψ(P ) ≤ Ψ(Q). (iii)
Set Ψ(E) = e ⊗ e for some unit vector e ∈ H. We know that E is a
non-zero projection. Suppose contrary to our claim, that rankE ≥ 2.
Then, there exists two unit vectors f1 and f2 in H with f1 ⊥ f2 such that
E ≥ f1 ⊗ f1, E ≥ f2 ⊗ f2. It follows part (i) that the last equalities are
equivalent to

e⊗ e ≥ Ψ−1(f1 ⊗ f1) and e⊗ e ≥ Ψ−1(f2 ⊗ f2).

On the other hand, Ψ−1(f1 ⊗ f1) ⊥ Ψ−1(f2 ⊗ f2) which is a contradiction.
Thus, rankE = 1. 2

For a Banach space X , we denote the dual space of X and the set of
all finite-rank operators on X by X 0 and F (X ), respectively. Taghvi and
Hosseinzadeh in [6] proved the following theorem.

Theorem 2.2. Let X and Y be complex infinite-dimensional Banach spaces
and φ : B(X ) −→ B(Y) be a linear map. If φ preserves idempotent opera-
tors in both directions, then one of the following assertions holds.

(i) There exists a bijective bounded linear or conjugate linear operator
A : X −→ Y such that φ(T ) = ATA−1 for all T ∈ F (X );

(ii) there exists a bijective bounded linear or conjugate linear operator
A : X 0 −→ Y such that φ(T ) = AT 0A−1 for all T ∈ F (X ).

We recall that a linear map Ψ : B(H) −→ B(H) preserves idempotents
in both directions provided that

T 2 = T ⇔ Ψ(T )2 = Ψ(T ).(2.4)

Proposition 2.3. Let H be a complex Hilbert space and Ψ : B(H) −→
B(H) be a linear map that for every T ∈ B(H) satisfies equation (2.4).
Then, Ψ is injective.
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Proof. Suppose that there exists T ∈ B(H) such that Ψ(T ) = 0. Then,
Ψ(rT ) = 0 for all r ∈ R. Hence, Ψ(I−rT ) = Ψ(I) and so fromΨ(I−rT )2 =
Ψ(I)2 = Ψ(I) = Ψ(I − rT ), we can conclude that I − rT satisfies equation
(2.4) for all scalar r ∈ R. Therefore, (I − rT )2 = I − rT holds for every
scalar r ∈ R. Taking r = 1 and r = 2 successively, we get 3T = 2T. Hence,
T = 0 and thus Ψ is injective. 2

Corollary 2.4. Let H be a complex Hilbert space and Ψ : B(H) −→ B(H)
be a surjective linear map that for every projection P ∈ B(H) satisfies in
statement (2.4). Then

(i) Ψ preserves the orthogonality of projections in both directions;

(ii) Ψ preserves the order of projections in both directions;

(iii) Ψ preserves rank-1 projections as well as orthogonality of rank-1 pro-
jections in both directions;

(iv) Ψ(I) = I.

Proof. The parts (i), (ii) and (iii) follow immediately from Lemma 2.1
and Proposition 2.3. For (iv), suppose there exists T ∈ B(H) such that
Ψ(T ) = I. Since Ψ(T )2 = Ψ(T ) = I, we can conclude that T satisfies
equation (2.4). Assume now that T 6= I and consider the operator I − T .
It is easy to see I−T satisfies equation (2.4). Hence, Ψ(I−T )2 = Ψ(I−T )
and thus

Ψ(I)−Ψ(T ) = Ψ(I)2 −Ψ(I)Ψ(T )−Ψ(T )Ψ(I) +Ψ(T )2.

It follows from the above equation that

Ψ(I)− I = Ψ(I)−Ψ(I)I − IΨ(I) + I

Consequently, Ψ(I)− I = −Ψ(I) + I and therefore Ψ(I) = Ψ(T ) = I 2

Lemma 2.5. Let H be a complex Hilbert space and Ψ : B(H) −→ B(H)
be a surjective linear map that for every T ∈ B(H) satisfies equation (2.4).
Then, Ψ preserve projections in both directions.
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Proof. Let P be a projection in B(H). Then, both I−P and Ψ(I−P ) =
I −Ψ(P ) satisfy equation (2.4). Consequently, Ψ(P )2 = Ψ(P ). Since Ψ(P )
is self-adjoint, it is a projection. Hence, Ψ preserves projection in one
direction. Now let Ψ(P ) be a projection. A similar argument for Ψ−1

guaranties that Ψ preserves projections in both directions. 2

We now are ready to state one of our main result of the paper.

Theorem 2.6. Let H be a complex Hilbert space such that dimH ≥ 3
and Ψ : B(H) −→ B(H) be a surjective linear map that for every T ∈ B(H)
satisfies equation (2.4) and the equality Ψ(Bs(H)) = Bs(H). Then, there
exist a unitary or anti-unitary operator U on H such that for every T ∈
Bs(H)

Ψ(T ) = UTU∗.(2.5)

Proof. From Lemma 2.1, we know that Ψ is a bijection on the set of
all rank-1 projections and preserves orthogonality in both directions. Since
dimH ≥ 3, it follows from the Uhlhorn’s theorem in [7] that there is a
unitary or anti-unitary operator U on H such that Ψ(E) = UEU∗ for
any rank-1 projection E. Without loss of generality, we may assume that
Ψ(E) = E for every rank-1 projection E. Otherwise, we consider a map
φ(A) = U∗Ψ(A)U for all A ∈ Bs(H). Then, φ satisfies equation (2.4) and
the equality φ(E) = E holds for every rank-1 projection E. In this case,
we have Ψ(E) = E for every finite rank projection E. Let P be an infinite
rank projection. Then

P = sup {E : E ≤ P, E is a finite rank projection} .

Since Ψ preserves the order of projections in both directions, we conclude
that

Ψ(P ) = sup {F : F ≤ P , F is a finite rank projection} = P.

Hence, Ψ(P ) = P holds for every projection P . It now follows that Ψ(X) =
S for anyX ∈ Bs(H) since S is a real linear combination of eight projections
from Theorem 3 in [4] and Ψ is linear. This completes the proof. 2

As a direct consequence of Theorem (2.6), we describe te surjective
unital linear maps on B(H) that preserve involutions in both directions.

Corollary 2.7. Let H be a complex Hilbert space such that dimH ≥ 3
and Ψ : B(H) −→ B(H) be a unital surjective linear map that preserve
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involutions in both directions and Ψ(Bs(H)) = Bs(H). Then, there exist a
unitary or anti-unitary operator U on H such that Ψ(T ) = UTU∗ for all
T ∈ Bs(H).

Proof. We firstly prove that Ψ is injective. Suppose there exists T ∈
B(H) such that Ψ(T ) = 0. Then, Ψ(T + I) = I and Ψ(I − T ) = I. By our
assumptions, T + I and I − T are involutions and so 2T = T 2 + I = −2T .
Thus, T = −T which ensures us that T = 0. This means that Ψ is bijective.
If T ∈ B(H) satisfies the equation T 2 = I, then T is an involution and
hence Ψ(T ) is an involution operator. Therefore, Ψ(T )2 = Ψ(T ). A similar
argument for the reverse direction proves that Ψ satisfies equation (2.4). It
now the results follows from Theorem (2.6). 2

Here, we recall a result from [2] as follows.

Theorem 2.8. LetH be a Hilbert space with dimH > 1 and φ : Bs(H) −→
Bs(H) be a bijection. Then, the following statements are equivalent.

(i) φ(A2 ◦B) = φ(A)2 ◦ φ(B);

(ii) There exists a unitary or conjugate unitary operator U on H such
that φ(A) = UAU∗ for all A ∈ Bs(H), where ∈ {−1, 1}.

Motivated by the above result, we present the next theorem.

Theorem 2.9. LetH be a complex Hilbert space such that dimH ≥ 2 and
Ψ : B(H) −→ B(H) be a surjective linear map that for every S, T ∈ B(H)
satisfies the equation

(S ◦ T )2 = (S ◦ T )⇒ (Ψ(S) ◦Ψ(T ))2 = (Ψ(S) ◦Ψ(T )).(2.6)

If Ψ(Bs(H)) = Bs(H), then there exists a unitary or anti-unitary oper-
ator U on H and a constant λ with λ ∈ {−1, 1} such that Ψ(S) = λUSU∗

for every S ∈ B(H).

Proof. We prove that Ψ preserves operator pairs whose their Jordan
products are non-zero projections. Assume that S, T ∈ B(H) such that
S ◦ T is a non zero projection. Then, 2(S ◦ T ) satisfies equation (2.1) and
hence 2(Ψ(S) ◦Ψ(T )) fulfills equation (2.1) as well. This implies

(Ψ(S) ◦Ψ(T ))2 = Ψ(S) ◦Ψ(T ).
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In virtue of the fact that Ψ(S) ◦Ψ(T ) is self-adjoint ensures us that Ψ(S) ◦
Ψ(T ) is a projection. Consequently, Ψ preserves operator pairs whose their
Jordan products are non zero projections. Now, from Theorem 1 of [9], we
conclude that when dimH ≥ 2 there exist a unitary or anti-unitary operator
U on H and a constant λ with λ ∈ {−1, 1} such that Ψ(S) = λUSU∗ for
every S ∈ Bs(H). This finishes the proof. 2
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