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Abstract

We show some estimates and approximation results of operators
of convolution type defined on Riesz Bounded variation spaces in Rn.
We also state some embedding results that involve the collection of
generalized absolutely continuous functions.
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1. Introduction

Bounded variation spaces were introduced by C.Jordan in [1] when stud-
ied the convergence of Fourier series. Later, F.Riesz introduced in [2] the
nowadays known as the Riesz p−variation. He showed that f belongs to
the Sobolev spaces W 1,p([a.b]) if an only if

vp(f, I)
p = sup

X
k

|f(xk)− f(xk−1)|p
(xk − xk−1)p−1

<∞,(1.1)

where the supremun is taken over all the finite partitions {[xk−1, xk]}k≥1
of some interval I. The latter result is known sometimes as Medelev-Riesz
Theorem. Later on, further extensions of this result were given in the one
dimensional case. (See for example [3, 4, 5]). Also, subsequent works came
out in the multidimensional frame (See [6, 7, 4]) with a simultaneous interest
for understanding the behavior of some integral operators in this scale of
functions; maximal operators, operators of convolution type, Mellin integral
operators and so on (See [8, 12, 10, 11]). In [?] it was introduced the ϕ-
variation on the multidimensional setting following the approach of Tonelli.
Moreover, some approximation results were studied for the operators of
convolution type,

Twf(y) = (Kw ∗ f)(y), y ∈ R, w > 0,

induced by a family of approximation of identities {Kw}w>0. It turns out, in
virtue of the translation invariance nature of classical Lebesgue and Orlicz
spaces that further extensions of the result given by eq:RieszTheo facili-
tate the study of the modulus of continuity defined on bounded variation
spaces. In this note, we show some estimates for operators of convolution
type defined on the multidimensional Riesz bounded variation spaces as
introduced in [7] (See Section 2). In our opinion, this definition captures in
a more general fashion the spirit of the classical Riesz bounded variation by
means of the oscilation of an arbitrary function f : Ω 7→ R, which measures
the ”size” of the image of a given set E ⊆ R under f .

Throughout this paper we use the notation AB and BA to mean that
there exist constants c, C > 0 such that A ≤ cB and B ≤ CA respectively
for some quantities A,B. If the former and the later inequalities hold
simultaneously we write A ≈ B. We denote the oscillation of f on a set
E ⊆ R by

oscEf = sup
x∈E

f(x)− inf
x∈E

f(x).
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Observe that we can change the right part of the definition above by
supx,y∈E |f(x)− f(y)|. We denote the Sobolev space W p

1 (Ω) as the collec-
tion of functions f such that the weak derivatives Djf , 1 ≤ j ≤ n, belong
to the Lebesgue space Lp (Ω).

2. Preliminaries

Given Ω ⊆ R an open set, let f : Ω 7→ R be a measurable function.
Following the notation introduced in [7], we say that f has finite Riesz
bounded variation on Ω if

Vp(f ;Ω) := sup

⎛⎝X
Bk

oscBk
(f)p

rp−nk

⎞⎠1/p <∞,(2.1)

where the supremun is taken over all the disjoint collection of balls {Bk} of
radii rk, contained in Ω. When Vp (f ;R) <∞ we denote Vp(f) <∞ for the
sake of simplicity. Besides, if eq:RBVpRn holds we write f ∈ RBVp (Ω). In
the extreme case p = n we denote the class of n-Bounded variation function
by BVn (Ω). For further properties in this scale of functions see [13].

Observe that according to eq:RieszTheo and eq:RBVpRn, by consider-
ing Ω = I a bounded open interval we have that

vp(f, I)Vp(f, I).

Hence, the p−variation defined in R by means of the oscillation stands
as an extension of the original concept of p variation introduced by Riesz
in [2]. Another well know feature in the unidimensional frame is that if
vp(f ; I) < ∞ then f is a bounded function on I. The same phenomenon
occurs in the multidimensional case. Without loss of generality, let us
assume that Vp (f ;Ω) < ∞ for some open bounded set Ω that contains 0.
Then

kfkL∞(Ω)|Ω|1−n/p + |f(0)| <∞.

However, if Ω is not bounded f may be not a bounded function. Con-
sider f(x) =

√
x , I = (1,∞). Clearly f is not bounded in I. On the other

hand, by the Riesz-Medvedev Theorem,

vp(f ; I) = sup
J⊆I

kf 0kLp <∞, p > 2.

where the supremum is taken over all the bounded intervals J contained in
I. Not long ago, Barza and Lind stated a multidimensional Riesz-Medvedev
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type Theorem. This result gives a simple variational characterization of the
Sobolev spaces W p

1 (Ω).

Lemma 2.1 (Barza-Lind, [7]). Given Ω ⊆ R, let p > n. Then f ∈
W 1

p (Ω) if and only if f can be modified in a set of measure 0 to be contin-
uous and Vp (f ;Ω) <∞. Moreover

∇fLp(Ω) ≈ Vp (f ;Ω) .

From Lemma 2.1, if Ω is a bounded open set we have that for 1 ≤ p ≤
q <∞,

RBVq (Ω) /→ RBVp (Ω) .

This is also a straightforward consequence of the Hôlder inequality.
A well known embedding in the unidimensional frame is RBVp([a, b]) ⊂
AC([a, b]), p > 1. We recall an equivalent definition of absolute continuity
in the multidimensional setting (see [13]). We say that a function f : Ω 7→ R
is n−absolutely continuous in Ω (ACn(Ω)) if for any δ > 0 there exists ε > 0
such that for every finite disjoint collection of closed balls {Bk} contained
in Ω we have X

Bk

(oscBk
f)n < ε whenever

X
Bk

|Bk| < δ.

Proposition 2.2. Ω be an open set and p > n. Then

RBVp (Ω) ⊆ ACn (Ω) .

Proof. Given ε > 0, choose δ <
³
ε/Vp(f ;Ω)

p/n
´n/s

. We set a finite

disjoint family of balls {Bk} contained in Ω and f ∈ RBVp (Ω). Consider

s > 1 such that 1/p+ 1/s = 1/n. By the Hôlder inequality we obtainP
Bk
(oscBk

f)n ≤
µP

Bk

(oscBkf)
p

rp−nk

¶p/n ³P
Bk

rnk

´s/n
Vp(f ;Ω)

p/n
³P

Bk
|Bk|

´s/n
< ε.

Since ε > 0 is arbitrary, we conclude f ∈ ACn (Ω). 2
Observe that in the extreme value p = n, RBVp (Ω) coincides with the

bounded variation spaces BV n(Ω) introduced in [13]. Furthermore, the
following embedding also holds

Proposition 2.3. Let f be a Lipschitz function in Ω, |Ω| < ∞. Then
f ∈ RBVp (Ω).
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Proof. Let B a ball of radius rB contained in Ω, and consider x, y ∈ B,
then |f(x)− f(y)| ≤ C|x− y| implies

oscBfrB,

So, for a fixed collection {Bk} of balls contained in Ω we haveX
Bk

µ
oscBk

f

rk

¶p
rnk
X
Bk

|Bk| ≤ |Ω| <∞

. Hence Vp(f ;Ω) <∞. 2
Since oscE(f+g) ≤ oscE(f)+oscE(g), E ⊆ R, then Vp(f+g;Ω)Vp(f ;Ω)+

Vp(g;Ω). Besides, Vp(f ;Ω) = 0 if and only if f is a constant function for
all x ∈ Ω. Therefore Vp(·;Ω) is not a norm in RBVp (Ω). However, we can
endow RBVp (Ω) with a norm. The following result shows that RBVp is
closed under the multiplication of functions.

Lemma 2.4. Let f, g ∈ RBVp (Ω). Then fg ∈ RBVp (Ω).

Proof. Set a disjoint collection of balls {Bk} contained in Ω, since f, g
are bounded functions in Ω, we estimate as followsP

Bk

µ
oscBk (fg)

rk

¶p
rnk =

P
Bk

µ
supx,y∈Bk |(fg)(x)−(fg)(y)|

rk

¶p
rnk

≤PBk

µ
|kgkL∞(Ω)oscBkf+kfkL∞(Ω)oscBkg|

rk

¶p
rnk

kgkpL∞(Ω)
P

Bk

³
oscBkf

rk

´p
rnk + kfk

p
L∞(Ω)

P
Bk

³
oscBkg

rk

´p
rnk

kgkpL∞(Ω)Vp (f ;Ω)
p + kfkpL∞(Ω)Vp (g;Ω)

p ,
so

Vp (fg;Ω) kgkL∞(Ω)Vp (f ;Ω) + kfkL∞(Ω)Vp (g;Ω) .

Observe that an alternative proof can be performed by Lemma 2.1, the
product rule for weak derivatives and the Minkownski inequality. 2

Proposition 2.5. Assume Ω is an open set and 1 < p < ∞. Then the
functional defined by

·RBVp(Ω) = k · kL∞(Ω) + Vp(·;Ω)

is a norm in RBVp (Ω). Moreover, RBVp (Ω) is a Banach algebra.



1608 Lućıa Gutierrez and Oscar M. Guzmán

Proof. Clearly ·RBVp(Ω) is a norm. Let f, g ∈ RBVp (Ω), by Lemma 2.4
we have

fgRBVp(Ω) kfkL∞kgkL∞ + kgkL∞Vp(f ;Ω) + kfkL∞Vp(g;Ω)
≤ (kfkL∞ + Vp(f ;Ω)) (kgkL∞ + Vp(g;Ω)) = fRBVp(Ω)gRBVp(Ω)

2

Remark 2.6. Assume that p > n and set k·kRBVp(Ω) = k·kLp(Ω)+Vp(·;Ω).
By virtue of the Morrey inequality (see [14], Theorem 9.12) and Lemma
2.1, the norms ·RBVp(Ω) and k · kRBVp(Ω) are equivalent.

The next result is a Fatou type Lemma for Vp (·;Ω).

Proposition 2.7. Given Ω an open set, let {fk} be a sequence of bounded
functions in Ω. Assume that fk(x) → f(x), k → ∞, for every x ∈ Ω, .
Then

Vp(f ;Ω) ≤ lim inf
k→∞

Vp(fk;Ω).(2.2)

Proof. Fix a collection of disjoint balls D = {B} contained in Ω. Then

Vp(fk;D) =
X
B∈D

µ
oscB(fk)

rB

¶p
rn ≤ Vp(fk).(2.3)

On the other hand, since {fk} is a bounded sequence in every B ∈ D
and because the continuity of t 7→ tp, p > 1, we obtain

|Vp(f ;D)− Vp(fk;D)| ≤
P

B∈D |oscB(fk)p − oscB(f)
p| 1
rp−nB

→ 0,

when k →∞. So,
Vp(f ;D) ≤ lim inf

k→∞
Vp(fk;Ω),

for every collection D. Then the result follows. 2

3. Convolution Operators on RBVp (R)

In this section we prove some approximation results of Integral operators
in RBVp (R) modular. We recall the definition of approximate identities.

Definition 3.1. A family of functions {Kw}w>0 is said to be approximate
identities if:

(i) Kw ∈ L1(R) for any w > 0 and M = supw>0Kw1 <∞.
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(ii) For every w > 0, Z
R
Kw(x)x = 1.

(iii) For every δ > 0,

lim
w→∞

Z
x≥δ

Kw(x)x = 0.(3.1)

Let us consider the operator Tw given by

(Twf)(x) =

Z
R
Kw(x− y)f(y)y,

which is known as the family of convolution operators associated to {Kw}w>0.
We point out that Tw is well defined some scale of functions, for example
Lp(R) and C0(R). We assume in the next results that f ∈ RBVp(R)
endowed with the norm k · kRBVp .

Proposition 3.2. Let Tw be an operator that satisfies (i) and (ii) above.
If f ∈ RBVp (R), then

Tw : RBVp (R) /→ RBVp (R) .

Proof. We show that Vp (Twf)Vp (f) . Fix a disjoint collection of balls
F = {Bk} of radius rk. By the Definition 3.1 and by the Jensen inequality
we estimate as follows

σp (Twf ;F) =
P

Bk

µ
oscBk (Twf)

rk

¶p
rnk =

P
Bk

µ
supt,z∈Bk |Twf(t)−Twf(z)|

rk

¶p
rnk

=
P

Bk

µ
supt,z∈Bk

R
RKw(y)(f(t−y)−f(z−y))y

rk

¶p
rpk

≤PBk

µ
M
R
R |Kw(y)|oscBkf(·−y)y
rk
R
R |Kw(y)|y

¶p
rnkR

R |Kw(y)|
P

Bk

³
oscBk

f(·−y)
rk

´p
rnk yR

R |Kw(y)|y
Vp (f ;R) <∞,

which ends the proof. 2
A function f is said to be Lipchitz continuous at the point x if its upper

pointwise Lipchitz constant at x is finite, i.e.

Lf (x) := lim sup
y→x

|f(x)− f(y)|
|x− y| <∞
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Evidently, if f ∈ Lip (Ω) then f is a Lipchitz continuous function. On the
other hand, when Ω is a quasiconvex set every Lipchitz continuous function
is also a Lipchitz function (See [15], Lemma 2.2). As a consequence of the
Vitalli covering Lemma, Lf satisfies the weak estimate

|{x ∈ R : Lf (x) > t}|
µ
Vp(f)

t

¶p
, t > 0, p > n.(3.2)

cf. [7].

Corollary 3.3. Let f ∈ RBVp (R) and p > n. Then Tw is Lipchitz con-
tinuous almost everywhere.

Proof. In fact, the result |R \ {x ∈ R : L(Twf)(x) < ∞}| = 0 follows
from the weak type inequality,

|{x ∈ R : L(Twf)(x) > t}|
µ
Vp(f)

t

¶p
,(3.3)

which is interesting in its own right. The inequality (3.3) is immediate
taking into account Proposition 3.2 and (3.2). 2

Given f ∈ RBVp (R), the Vp−modulus of continuity of order α, δ > 0,
is given by

ωp(f, δ) := sup
|y|≤δ

Vp (τyf − f) ,

where (τyf)(x) = f(x− y) and x, y ∈ R.

Proposition 3.4. Let f ∈ RBVp (R). Then

lim
δ→0+

ωp(f, δ) = 0.

Proof. By Lemma 2.1, Djf ∈ Lp (R), j = 1, · · · , n. Since Lp (R) is
translation invariant we have

Vp (τyf − f)p
nX

j=1

Z
R
|τyDjf(x)−Djf(x)|px→ 0,

when |y|→ 0. So, the result follows. 2
The next result states the continuity of Tw under the p−variation.
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THEOREM 3.5. Given f ∈ RBVp (R), let {Kw}w>0 be a sequence of
aproximation of identities. Then

lim
w→∞

Vp (Twf − f) = 0.

Proof. Let F a fixed disjoint collection of balls. By the generalized
Jensen inequality we have

σp (Twf − f ;F)p =
P

Bk

µ
oscBk (

R
RKw(y)[f(·−y)−f(·)]y)

rk

¶p
rnk

≤PBk

µ
M
R
R |Kw(y)|oscBk (f(·−y)−f(·))y

rk
R
R |Kw(y)|y

¶p
rnkP

Bk

R
R |Kw(y)|oscpBk (f(·−y)−f(·))y

rp−nk

R
R |Kw(y)|yR

|y|>δ |Kw(y)|
P

Bk

µ
oscBk (f(·−y)−f(·))

rk

¶p
rnky

+
R
|y|≤δ |Kw(y)|

P
Bk

µ
oscBk (f(·−y)−f(·))

rk

¶p
rnky = I + II.

By Lemma 2.1 and by the Minkowski inequality we obtain
I ≤

R
|y|>δ |Kw(y)|V p

p (f(·− y)− f(·)) yR
|y|>δ |Kw(y)|∇(f(·− y)− f(·))pLpyR
|y|>δ |Kw(y)|∇fpLpy.

We estimate II as follows
II

R
|y|≤δ |Kw(y)|V p

p (f(·− y)− f(·)) y
ωp(f, δ)

p
R
|y|≤δ |Kw(y)|y.

from the previous estimates it follows

Vp(Twf − f,R)p∇fpLp
Z
|y|>δ

|Kw(y)|y + ωp(f, δ)
p
Z
|y|≤δ

|Kw(y)|y,

due to Proposition 3.4 and eq:Aprox-Def3 the theorem follows. 2
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