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1. Introduction

In the study non-linear operators in ordered Banach spaces having an in-
variant cone it is often convenient to make use of minorants, majorants and
the special concept of the derivatives in order to establish the existence of
non-zero fixed points. Krasnoselskii has provided in [11] many interesting
fixed point theorems stating that if such an operator is approximatively
linear at 0 and +∞, and the spectral radii of the linear approximations are
oppositely located with respect to 1, then it has a fixed point. Amann in
[2] has generalized these results for monotones operators which are strict
set-contractions.

The main goal of this paper is to study strict-set contraction in ordered
Banach spaces having an invariant cone and to give sufficient conditions on
minorants and majorants which yield the existence of at least one non-zero
fixed point ( see [4], [3], [1] and [5]). We will assume that the mapping T has
an asymptotically linear majorant h and has a minorant g which is right
differentiable at zero and existence of the fixed point is obtained under
additional conditions about the positive spectra of the derivatives. The
proofs are based on the fixed point index theory, developed in [13] (see also
the monographs [7] and [8]). In order to be more precise, let X be a Banach
space, C be a cone in X, and let T : C −→ C be a completely continuous
mapping. Recently, Mechrouk have proved in [12] that if T has a positive
right differentiable at zero minorant h : K −→ K and an asymptotically

linear positive majorant g : P −→ P satisfying θ
g0(∞)
P < 1 < λ

h0(0)
P , then T

has at least one positive nontrivial fixed point, where the constants λ
h0(0)
P

and θ
g0(∞)
P play an important role in the statement of the obtained existence

and nonexistence results and sometimes they replace the positive spectral
radius. Motivated by the above work, we consider in this paper the case
where the operator T is a strict set-contraction.

The paper is organized as follows. Section 2 gives some preliminaries.
Section 3 is devoted to prove new fixed point theorems for positive maps
having approximative minorant and majorant at 0 and∞ in specific classes
of operators. Applications to the existence of solutions to a third order
boundary value problem with mixed boundary conditions are presented in
the last section.
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2. Abstract Background

We will use extensively in this work cones and the fixed point index theory,
so let us recall some facts related to these two tools. Let X be a real
Banach space endowed with norm k . k, and let L(X) = L(X,X) be the
set of all linear continuous mapping from X into X. A nonempty closed
convex subset C of X is said to be a cone if (tC) ⊂ C for all t ≥ 0 and
C∩(−C) = {0X} . It is well known that a cone C induces a partial order in
the Banach space X. We write for all x, y ∈ X : x ¹ y if y − x ∈ C, x ≺ y
if y − x ∈ C, y 6= x and xy if y − x /∈ C. Notations º, Â and denote
respectively the reverse situations. We say that the cone C is normal with
a constant nC > 0 if for all u, v in C, u ¹ v implies kuk ≤ nC kvk .
Let C be a cone in X and let L : X → X.

Definition 2.1. The mapping L is said to be positive if L (C) ⊂ C. In this
case, a nonnegative constant µ is said to be a positive eigenvalue of L if
there exists u ∈ C {0X} such that Lu = µu.

Definition 2.2. Let A be a nonempty set and let B be an ordered set.
A map g : A −→ B is said to be a majorant of the map f : A −→ B
if f(x) ≤ g(x) for all x ∈ X. Minorant is defined by reversing the above
inequality sign.

Definition 2.3. Let C be a cone in X and L : X → X a continuous map.
L is said to be
a) positive, if L (C) ⊂ C,
b) strongly positive, if C has a nonempty interior (intC 6= ∅) and L (C {0X}) ⊂
intC,
c) increasing, if for all u, v ∈ X, u ¹ v implies Lu ¹ Lv.

Definition 2.4. Let L1, L2 : X → X be positive maps. We write L1 ¹ L2
if for all x ∈ C, L1x ¹ L2x.

Definition 2.5. Let B(X) be the set of all bounded subsets of X and
ψ : B(X) −→ R+ be a measure of non-compactness on X; that is ψ
satisfies for A, B ∈ B(X)

1. ψ(A) = 0⇐⇒ A is relatively compact on X.

2. A ⊆ B imply ψ(A) ≤ ψ(B).

3. ψ(c̄oA) = ψ(A) = ψ(A).
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4. ψ(A
S
B) = max {ψ(A), ψ(B)} .

5. for all t ∈ [0, 1], ψ(tA+ (1− t)B) ≤ tψ(A) + (1− t)ψ(B)

6. if (An)n ⊂ B(X) is a decreasing sequence of closed nonempty sets
with limψ(An) = 0, then ∩n≥1An is a nonempty compact set.

Definition 2.6. A function f : Ω ⊂ X → X is said to be a strict-set
contraction if it is continuous, bounded, and there exists a constant k ∈
[0, 1) such that ψ(f(S)) ≤ kψ(S) for all bounded sets S ⊂ Ω.

Definition 2.7 ([14]). A map g : C −→ X is said to be differentiable at
x0 ∈ C along C if there exists g0(x0) ∈ L(X) such that

lim
h∈C,h−→0

k g(x0 + h)− g(x0)− g0(x0)h k
k h k = 0.

We say that g0(x0) is the derivative of g at x0 along C, is uniquely deter-
mined.

The map g is said to be asymptotically linear along C if there exists
g0(∞) ∈ L(X) such that

lim
x∈C,kxk−→+∞

k g(x)− g0(∞)x k
k x k = 0.

Again, g0(∞) is uniquely determined and called the derivative at infinity
along C.

Lemma 2.8 ([11]). The derivative g0(ν), (ν = +∞, or x0 ∈ C), with
respect to a cone of the positive operator g is a linear positive operator.

Detailed presentation of the differentiability with respect to a cone can
be found in [11] and [14].

The main results of this paper are proved by means of the fixed point
index theory for strict-set contraction mappings develloped in [13].

Let us recall some lemmas providing fixed point index computations.
Let C be a cone in X. Let for R > 0, CR = C ∩B (0X , R) where B (0X , R)
is the open ball of radius R centred at 0X , and let ∂CR be its boundary
and consider a strict-set contraction mapping, f : CR → C.
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Lemma 2.9 ([7]). If fx 6= λx for all x ∈ ∂CR and λ ≥ 1 then i (f,CR, C) =
1.

Lemma 2.10 ([7]). If there exists e Â 0X such that x 6= fx + te for all
t ≥ 0 and all u ∈ ∂CR then i (f, CR, C) = 0.

From the two Lemma above, we conclude the following Lemma.

Lemma 2.11. If fxx for all x ∈ ∂CR then i (f, CR, C) = 1.

Lemma 2.12. If fxx for all x ∈ ∂CR then i (f, CR, C) = 0.

A detailed presentation of the fixed point index theory for strict-set
contraction mappings can be found in [13].

In all this section E is a real Banach space, K is a nontrivial cone in E
and L(E) denote the set of all linear continuous self mapping on E endowed
with the norm, kLk = sup

kuk=1
kLuk . Let C+(E) denote the subset of L(E)

consisting of all strict set-contraction positive operators. Hereafter ¹ is the
order induced by the cone K on E and we set,

LK(E) = {L ∈ L(E), L is increasing }

and
CK(E) = {L ∈ LK(E) : L is a strict-set contraction} .

Now, for L ∈ LK(E) we define the subset

ΘL
P = {θ ≥ 0 : there exists u ∈ P {0E} such that Lu º θu} .

Remark 2.13. Note that
i) 0 ∈ ΘL

P and if θ ∈ ΘL
P , then [0, θ] ⊂ ΘL

P .
ii) ΛLP ⊂ ΛLK and ΘL

P ⊂ ΘL
K .

iii) If µ is positive eigenvalue of L, then µ ∈ ΘL
P ∩ [0, k L k].

iv) If L−1 (0E) ∩K = {0E} and P ⊂ K then ΘL
P = Θ

L
K .

In all this paper, we set for L ∈ LP
K (E) ,

θLP = supΘ
L
P

The constant θLP replaces the spectral radius of L which in our case is
not necessarily an eigenvalue of L having an eigenvector in K. So, it is
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natural to ask what represents this constant with respect to the operator
L.
If L : E −→ E is a bounded linear operator, then we define, r(L), its
spectral radius by

r(L) = lim
n−→+∞

k Ln k 1n .

Lemma 2.14 gives sufficient conditions for the existence of θLP .

Lemma 2.14 ([3]). Assume L ∈ LK(E). Then the subset Θ
L
P is bounded

from above by r(L).

Lemma 2.15 ([3]). Assume that the cone K is solid, and let L ∈ CK(E)
be strongly positive and increasing. Then θLK is the unique positive eigen-
value of L.

Lemma 2.16 ([10]). Let D ⊂ E, D be a bounded set and f is uniformly
continuous and bounded from J × S into E, then

ψ(f(J × S)) = max
t∈J

ψ(f(t, S), ∀S ⊂ D.

3. Main results

Lemma 3.1. Suppose that T has a right differentiable at zero majorant
g : K −→ K such that g(0) = 0, g0(0) ∈ CK(E) satisfying r (g

0(0)) < 1 and
K is a normal cone. Then T has at least one positive fixed point.

Proof. Let us prove existence of r > 0 small enough, such that for all
t ∈ [0, 1] equation tTu = u has no solution in ∂Kr = K ∩ B (0E, r) where
B (0E, r) is the open ball of radius r centred at 0E, and let ∂Kr be its
boundary.
By the contrary suppose that for each integer n ≥ 1 there exist tn ∈ [0, 1]
and un ∈ ∂K 1

n
, such that

un = tnTun.

Note that vn = un/ kunk ∈ ∂K1 and satisfies

vn ¹
g(un)

kunk
.(3.1)

Thus, we have:
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g(un)

kunk
=

g(un)− g0(0)(un)

kunk
+

g0(0)(un)

kunk
.(3.2)

We set

Gn(un) =
g(un)− g0(0)(un)

kunk
.

Clearly
vn ¹ Gn(un) + g0(0)(vn).(3.3)

We obtain from (3.3), that is

vn ¹ Gn(un) + g0(0)(vn)

¹ Gn(un) + g0(0)(Gn(un)) +
£
g0(0)

¤2
(vn)

¹ Gn(un) + g0(0)(Gn(un)) +
£
g0(0)

¤2
(Gn(un)) +

£
g0(0)

¤3
(vn)

...

¹ In,k +
£
g0(0)

¤k
(vn)

where In,k =
kX
i=0

£
g0(0)

¤i
(Gn(un)) and we have from the normality of the

cone K

1 ≤ cK k In,k k +cK k
£
g0(0)

¤k
(vn) k

≤ cK k In,k k +cK k
£
g0(0)

¤k k
in which by letting n −→ ∞, yields 1 ≤ cK k [g0(0)]k k . Then 1 ≤ c

1
k
K k

[g0(0)]k k 1k . leading to the contradiction by letting k −→∞, 1 ≤ r (g0(0)) <
1, and proves existence of r > 0 small enough such that for all t ∈ [0, 1]
equation tTu = u has no solution in ∂Kr. For a such r > 0, we deduce from
Lemma 2.9 that

i(T,Kr,K) = 1

and T has a positive fixed point u with kuk < r. This completes the proof.
2

Arguing as in the proof of Theorem 3.1, we obtain the following result.

Lemma 3.2. Suppose that T has an asymptotically linear majorant g :
K −→ K such that g0(∞) ∈ CK(E) satisfying r(g0(∞)) < 1 and K is
normal. Then T has at least one positive fixed point.
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Theorem 3.3. Suppose that the cone K is a normal cone and T has an
asymptotically linear majorant g : K −→ K such that g0(∞) ∈ CK(E).
Suppose that T has a right differentiable at zero minorant h : K −→ K

such that h(0) = 0 and h0(0) ∈ CK(E) satisfying r (g0(∞)) < 1 < θ
h0(0)
P .

Then T has at least one positive nontrivial fixed point.

Proof. We have to prove existence of 0 < r < R such that

i(T,Kr,K) = 0 and i(T,KR,K) = 1.

In such a situation, additivity and solution properties of the fixed point
index imply that

i(T,KRKr,K) = i(T,KR,K)− i(T,Kr,K) = 1

and T has a positive fixed point u with r < kuk < R.
Let us prove existence of R > 0 Big enough, such that for all t ∈ [0, 1]

equation tTu = u has no solution in ∂KR. By the contrary suppose that
for each integer n ≥ 1 there exist tn ∈ [0, 1] and un ∈ ∂Kn such that

un = tnTun.

Note that wn = un/ kunk ∈ ∂K1 and satisfies

wn ≤
g(un)

kunk
.(3.4)

Thus, we have:

g(un)

kunk
=

g(un)− g0(∞)(un)
kunk

+
g0(∞)(un)
kunk

.(3.5)

We set

Gn(un) =
g(un)− g0(∞)(un)

kunk
.

Clearly
wn ¹ Gn(un) + g0(∞)(wn).

By the same argument used in Lemma 3.2, we obtain that:

wn ¹ Jn,k +
£
g0(∞)

¤k
(wn).

where Jn,k =
kX
i=0

£
g0(∞)

¤i
(Gn(un)) and we have from the normality of the

cone K
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1 ≤ cK k Jn,k k +cK k
£
g0(∞)

¤k
(vn) k

≤ cK k Jn,k k +cK k
£
g0(∞)

¤k k
in which by letting n −→ ∞, yields 1 ≤ cK k [g0(∞)]k k . Then 1 ≤
c
1
k
K k [g0(∞)]k k 1k . leading to the contradiction by letting k −→ ∞, 1 ≤
r (g0(∞)) < 1, and proves existence of R > 0 big enough such that for all
t ∈ [0, 1] equation tTu = u has no solution in ∂KR. For a such R > 0, we
deduce from Lemma 2.9 that

i(T,KR,K) = 1

Let e > 0 such that h0(0)(e) º θ
h0(0)
K e and let us prove existence of r > 0

small enough, such that for all t > 0 equation Tu+ te = u has no solution
in ∂Kr. By the contrary suppose that for each integer n ≥ 1 there exist
tn ∈ R+ and un ∈ ∂K 1

n
such that

un = Tun + tne.

Note that vn = un/ kunk ∈ ∂K1 and satisfies the inequality:

vn º (Tun/ kunk) º
h(un)

kunk
.(3.6)

Thus, we have

h(un)

kunk
=

h(un)− h0(0)(un)

kunk
+

h0(0)(un)

kunk
.(3.7)

We set

Hn(un) =
h(un)− h0(0)(un)

kunk
.

Then, one has

vn º Hn(un) + h0(0)(vn).(3.8)

and

vn º
tne

kunk
º tne(3.9)

We obtain
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vn º Hn(un) + h0(0)(vn)

º Hn(un) + h0(0)(Hn(un)) +
£
h0(0)

¤2
(vn)

º Hn(un) + h0(0)(Hn(un)) +
£
h0(0)

¤2
(Hn(un)) +

£
h0(0)

¤3
(vn)

...

º Hn(un) + h0(0)(Hn(un)) +
£
h0(0)

¤2
(Hn(un)) + · · ·+

£
h0(0)

¤k
(Hn(un)) +

£
h0(0)

¤k
(vn)

= In,k +
£
h0(0)

¤k
(vn).

We have from (3.9)

vn º In,k + tn
³
θ
h0(0)
K

´k
e

where In,k =
kX
i=0

£
h0(0)

¤i
(Hn(un)) and the normality of K leads to

cK k vn k≥ tn
³
θ
h0(0)
K

´k
k e k − k In,k k(3.10)

letting n→∞, we obtain

cK ≥ t
³
θ
h0(0)
K

´k
k e k

Taking in account, θ
h0(0)
K > 1, we obtain the contradiction

0E ≺ t k e k¹ cK/
³
θ
h0(0)
K

´k
→ 0E ask →∞.

Thus, we have from Lemma 2.10, i(T,Kr,K) = 0. This completes the
proof. 2

3.1. Application to second order bvp

Throughout the remainder of this paper, we apply the above results to a
second-order differential equation in Banach spaces:⎧⎪⎪⎨⎪⎪⎩

u00(t) + f(t, u(t)) = θ 0 < t < 1

u(0) =

Z 1

0
s u(s)ds u(1) = θ,

(3.11)



Fixed point theorems in the study of positive strict ... 1579

where f ∈ C[[0, 1]× P,P, θ is the zero element of E.
We consider problem (3.11) in C(J,E), with J = [0, 1]. Clearly that (C(J,E), k . kc)
is a Banach space with the norm k u kc= maxt∈J k u(t) k for u ∈ C(J,E).
We suppose that:
(H) f ∈ C[J × P,P ], and let l > 0, f(t, x) is uniformly continuous on
J × (P ∩ Sl) and there exists a constant Ll with 0 ≤ Ll <

5
2 such that

ψ(f(t, S)) ≤ Llψ(S), ∀t ∈ J, S ⊂ P ∩ Sl,

where Sl = {u ∈ E, k u k< r} and here ψ denotes the Kuratowski measure
of non-compactness on S.

Tt is easy to see that the problem (3.11) has a solution u = u(t) if and
only if u is a solution of the operator equation

Tu(x) =

Z 1

0
H(t, s) f(s, u(s)) ds,(3.12)

where H(t, s) is the Green’s function associated with (3.11) given by

H(t, s) = G(t, s) +
6

5
(1− t)

Z 1

0
τ G(s, τ)dτ,(3.13)

where

G(t, s) =

(
t (1− s) t ≤ s,
s (1− t) s ≤ t.

(3.14)

Let e(x) = x(1− x), ∀x ∈ [0, 1]. We may prove the following Lemma.

Lemma 3.4. The Green’s function G(t, s) possesses the following proper-
ties:

1 G(t, s) ≥ 0, ∀t, s ∈ [0, 1].

2 e(t) e(s) ≤ G(t, s) ≤ e(t) ≤ ē = max[0,1] e(t) =
1
4 .

3 G(t, s) ≤ e(s), ∀t, s ∈ [0, 1].

4 Let δ ∈ (0, 12), Jδ = [δ, 1− δ], then

G(t, s) ≥ δG(τ, s), ∀t ∈ Jδ ∀τ, s ∈ [0, 1].

Proposition 3.5. Assume that (H) hold. Then for t, s ∈ [0, 1], we have:
1

10
e(t) e(s) ≤ H(t, s) ≤ 8

5
e(s) ≤ 2

5
= BH , ∀t, s ∈ [0, 1].
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Proof.

H(t, s) ≥ 6

5
(1− t)

Z 1

0
τ G(s, τ) dz

≥ 6

5
(1− t)

Z 1

0
τ e(s) e(τ) dz

=
6

5
t(1− t)e(s)

Z 1

0
τ e(τ) dz

=
6

5

1

12
e(t)e(s)

=
1

10
e(t)e(s).

In other hand, since G(t, s) ≤ e(s), we have:

H(t, s) ≤ G(t, s) +
6

5
(1− t)

Z 1

0
τ e(s) dz

≤ e(s) +
6

5
e(s)

Z 1

0
τ e(s) e(τ) dz

=
8

5
e(s).

2

Proposition 3.6. Assume that (H) hold. Then for t ∈ Jδ, τ, s ∈ [0, 1], we
have:

H(t, s) ≤ δ H(τ, s).

Proof.

H(t, s) ≥ δ G(τ, s) +
6

5

Z 1

0
G(s, τ) τ dz

≥ δ G(τ, s) +
6δ

5

Z 1

0
G(s, τ) τ dz

≥ δ G(τ, s) +
6δ

5
(1− τ)

Z 1

0
G(s, v) v dv

≥ δ H(τ, s), ∀ τ, s ∈ [0, 1].

2

Let Q and K denote two cones such that: Let the set

Q = { u ∈ C(J, E), u(t) =≥ θ, t ∈ J}
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and
K = { u ∈ Q, u(t) ≥ δu(s), t ∈ Jδ, s ∈ [0, 1]}.

It is easy to see that K is a cone of C(J, E). We will make use of the
following Lemma:

Lemma 3.7. Suppose that (H) holds and Ll < (BH)
−1. Then for each

l > 0, T is a strict-set contraction on Q∩Bl, that is there exists a constant
γl = BH Ll, such that

ψ(T (S)) ≤ γlψ(S), ∀S ⊂ Q ∩Bl,

where Bl = {u ∈ C(J, E), k u kc≤ l} .

Proof. By (H), f is uniformly continuous on J× (P ∩Sl). From Lemma
2.16, we obtain

ψ(f(J × S)) = max
t∈J

ψ(f(t, S) ≤ Llψ(S).

Since f is uniformly continuous and bounded on S ⊂ Q ∩ Bl, then T is
continuous and bounded from Q ∩Bl into Q. 2

Lemma 3.8. Suppose that (H) holds. Then T (K) ⊂ K and T : K −→ K
is a strict-set contraction.

Proof. We have from Lemma 3.6 that

min
t∈Jδ

Tu(t) = min
t∈Jδ

Z 1

0
H(t, s) f(s, u(s)) ds

≥ δ

Z 1

0
H(τ, s) f(s, u(s)) ds

= Tu(τ), ∀τ ∈ J.

Therefore, Tu ∈ K and T (K) ⊂ K.
Furthermore, we have

ψ(T (S(t))) = ψ

µZ 1

0
H(t, τ) f(τ, S(τ)) dτ

¶
≤ ψ

µZ 1

0

2

5
f(τ, S(τ)) dτ

¶
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≤ 2

5
ψ

µZ 1

0
f(τ, S(τ)) dτ

¶
≤ 2

5
ψ

µZ 1

0
max
t∈J

f(τ, S(τ)) dτ

¶
=

2

5
ψ (f(J, S))

≤ 2

5
Llψ (S)

= γlψ (S) .

This prove that T : K −→ K is a strict-set contraction. 2

We also consider the associated linear eigenvalue problem⎧⎪⎪⎨⎪⎪⎩
u00(t) + u(t) = µ u(t) 0 < t < 1

u(0) =

Z 1

0
s u(s)ds = u(1) = θ,

(3.15)

Lemma 3.9. The linear eigenvalue problem (3.15) has a unique positive
eigenvalue µ > 0.

Proof. Let the set

X = { u ∈ C1(J,E), u(0) =

Z 1

0
s u(s)ds u(1) = θ}

be equipped with the norm defined for u ∈ X by k u kX= sup
t∈J

k u0(t) k and
KX = K ∩X isaconeonX.
ConsidertheoperatorL:X→ X defined for u ∈ X by

Lu(x) =

Z 1

0
H(t, s)u(s) ds,(3.16)

where H is the green’s function defined in (3.13).
Clearly that µ > 0 is a positive eigenvalue of (3.15) if and only if µ−1 > 0
is a positive eigenvalue of L. In view of Lemma 2.15, let us prove that
L(KX ) ⊂ int(KX). To this end, consider the set

O = {u ∈ KX , u > θ in (0, 1), u0(0) > θ, u0(1) < θ}.



Fixed point theorems in the study of positive strict ... 1583

We have O ⊂ KX and the complement of a set OX is Oc, such that

Oc = F1 ∪ F2 ∪ F3,

where

F1 = {u ∈ X, ∃x0 ∈ [0, 1] with u(x0) ≤ θ},

F2 = {u ∈ X, u0(0) ≤ θ},

F3 = {u ∈ X, u0(1) ≥ θ}.

In the fact F1, F2 and F3 are closed sets on X. To this aim let (un)n ⊂
F1, tending to u in X and (xn)n ⊂ [0, 1] tending to x in [0, 1], with
u0(xn) ≤ θ. We distinguish the following cases

• x ∈]0, 1[; in such situation u(x) = lim
n→+∞

un(xn) ≤ θ and u ∈ F1.

• x = 0; in this case we obtain

u0(0) = lim
n→+∞

un(xn)

xn
≤ θ, and u ∈ F2.

• x = 1; in this case we obtain

u0(1) = lim
n→+∞

u0n(xn)

xn − 1
≥ θ and u ∈ F3.

Therefore O is an open subset of X.
On the other hand, let u ∈ KX\{θ} and v = Lu, clearly v > θ on (0, 1),
and we have

v0(t) =
Z 1

0

∂G

∂t
(t, s)u(s) ds =

Z 1

0
(
s3

5
−6
5
s)u(s) ds+

Z 1

t
u(s)ds, ∀t ∈ [0, 1].

Then

1. v0(0) =
Z 1

0
(
s3

5
− 6
5
s+ 1)u(s) ds > θ

2. v0(1) =
Z 1

0
(
s3

5
− 6
5
s)u(s) ds < θ.

That is,

L(KX ) ⊂ O ⊂ int(KX).
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Finally, lemma 2.15 guarantees existence of a unique positive eigenvalue of
L and we have µ−1 = θKX . 2

Let introduce the following notations

f0 =lim sup
u→0

µ
max
0≤t≤1

f(t, u)

u

¶
f∞ =lim sup

u→∞

µ
max
0≤t≤1

f(t, u)

u

¶
Theorem 3.10. The problem (3.11) admits a positive solution whenever
one of the following conditions:

f∞ < µ < f0(3.17)

Proof. Let L : E −→ E be the operator defined by (3.16). It is easy to
see that L is an increasing and strict set contraction operator.

Since L (K) ⊂ KX , it follows from iv) Remark 2.13 that

µ−1 = θLK

where KX is the cone defined in the proof of Lemma 3.9.

Let F : K → K, the Nemytskii operator defined for u ∈ K by Fu(x) =
f(x, u(x)). We present the proof of Theorem 3.10 in the case where (3.17)
holds. Hypothesis (3.17) implies that there exists > 0, small enough such
that

(µ + )u−Hu ≤ Fu ≤ (µ − )u+ c for all u ∈ K

where Hu(x) = max
©
f(x, u(x))− f0u(x), 0

ª
. So, we get:

αLu− LHu ≤ Tu ≤ β Lu+BHc for all u ∈ K,

where BH =
2
5 , α = (µ + ) and β = (µ − ) .

We introduce the following notation:

h(u) = αLu− LHu, g(u) = β Lu+ cM

So we have
h(u) ≤ Tu ≤ g(u) for all u ∈ K

Using the fact that H(u) = ◦ (kuk) near 0, we may show that h0(0) is
the derivative of h along K at zero, and g0(0) is the derivative of g along
K at ∞ such that

1

β
g0(∞)[u] = 1

α
h0(0)[u] = Lu, ∀u ∈ K.
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With this aim, let u ∈ K, there exists ω > 0 such that

°°h(u)− h0(0)[u]
°° = kLHuk ≤ ω kHuk .(3.18)

Therefore, we have:

lim
u∈K, kuk−→0

kh(u)− h0(∞)[u]k
kuk ≤ ω lim

kuk−→0

kHuk
kuk .

This means that

lim
u∈K, kuk−→0

kh(u)− h0(0)[u]k
kuk = 0.

Therefore, we have:

lim
u∈K, kuk−→+∞

kg(u)− g0(∞)[u]k
kuk = lim

kuk−→+∞

cM

kuk .

Clearly that h0(0), g0(∞) ∈ CK(E) and θ
h0(0)
P = αµ−1 and r(g0(∞)) =

βµ−1. So from the choice of α, and β, we have

r(g0(∞)) < 1 < θ
h0(0)
P .

We deduce from the Theorem 3.3 existence results for positive solution
to the bvp (3.11) . 2
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