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1. Introduction

Fractional differential equations arise from a variety of applications includ-
ing in various fields of science and engineering. In particular, problems
concerning qualitative analysis of the positivity of such solutions for frac-
tional differential equations (FDE) have received the attention of many
authors, see [1,2,3,4,5,6, 8, 9, 13, 14, 15, 16] and the references therein.

Recently, Zhang in [16] investigated the existence and uniqueness of
positive solutions for the nonlinear fractional differential equation

{ Doz (t) = f(t,z(t)), 0 <t <1,
z(0) =0,

where D? is the standard Riemann Liouville fractional derivative of order
0<a<l1,and f:][0,1] x [0,00) — [0,00) is a given continuous function.
By using the method of the upper and lower solution and cone fixed-point
theorem, the author obtained the existence and uniqueness of a positive
solution.

The nonlinear fractional differential equation boundary value problem

{ D% (t) + f(t,z(t)) =0, 0 <t <1,
z(0)==xz(1) =0,

has been investigated in [2], where 1 < o < 2, and f : [0, 1] x[0, 00) — [0, 00)
is a given continuous function. By means of some fixed-point theorems on
cone, some existence and multiplicity results of positive solutions have been
established.

In [9], Matar discussed the existence and uniqueness of the positive
solution of the following nonlinear fractional differential equation

where {¢D%z (t) = is the standard Caputo fractional derivative of order

l1<a<2 and f:]0,1] x [0,00) — [0,00) is a given continuous function.

By employing the method of the upper and lower solutions and Schauder

and Banach fixed point theorems, the author obtained positivity results.
The nonlinear fractional differential equation

{ ODeg(t) = (t) = f(t,2(t) +C D* gtz (), 0 <t <T,
z(0)=6; >0, 2 (0) =6y >0,
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has been investigated in [4], where 1 < a <2, g, f : [0,T] x [0, 00) — [0, 00)
are given continuous functions, g is non-decreasing on x and 03 > ¢ (0,6;).
By employing the method of the upper and lower solutions and Schauder
and Banach fixed point theorems, the authors obtained positivity results.

Ahmad and Ntouyas in [1] studied the existence and uniqueness of so-
lutions to the following boundary value problem

DY (Du(t) — g (t,w)) = f(t,w), ¢ € [1,8],

u(t) =¢(t), tel—rl],
DPu(l) =n €R,

where D{ and Df are the Caputo-Hadamard fractional derivatives, 0 <
a, < 1. By employing the fixed point theorems, the authors obtained
existence and uniqueness results.

In this paper, we are interested in the analysis of qualitative theory of
the problems of the positive solutions to fractional differential equations.
Inspired and motivated by the works mentioned above and the papers [1]-
[6], [8], [9], [13]-[16] and the references therein, we concentrate on the posi-
tivity of solutions for the nonlinear Caputo-Hadamard fractional differential
equation

(1.1) { or(t) = f(t,z(t)) + DS gtz (t), 1 <t <T,
' (1) =6, >0, 2/ (1) =6 > 0,

where 1 < a < 2, g,f : [1,T] x [0,00) — [0,00) are given continuous
functions, g is non-decreasing on z and 03 > g (1,6;). To show the existence
and uniqueness of the positive solution, we transform (1.1) into an integral
equation and then by the method of upper and lower solutions and use
Schauder and Banach fixed point theorems.

This paper is organized as follows. In section 2, we introduce some nota-
tions and lemmas, and state some preliminaries results needed in later sec-
tion. Also, we present the inversion of (1.1) and the Banach and Schauder
fixed point theorems. For details on Banach and Schauder theorems we
refer the reader to [12]. In Section 3, we give and prove our main results
on positivity, and we provide an example to illustrate our results.

2. Preliminaries

Let X = C ([1,T]) be the Banach space of all real-valued continuous func-
tions defined on the compact interval [1,T], endowed with the maximum
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norm. Define the subspace A = {x € X : 2(t) >0, t € [1,T]} of X. By a
positive solution z € X, we mean a function z(t) > 0,1 <t <T.

Let a,b € R such that b > a. For any = € [a, b], we define the upper-
control function U(t,z) = sup{f(t,\) : a < A < z}, and lower-control
function L(t,z) = inf{f (¢, A) : * < A < b}. Obviously, U(¢,z) and L(¢, z)
are monotonous non-decreasing on the argument x and L(t,z) < f(t,z) <
U(t,z).

We introduce some necessary definitions, lemmas and theorems which
will be used in this paper. For more details, see [7, 10, 11].

Definition 2.1 ([7]). The Hadamard fractional integral of order a > 0
for a continuous function x : [1,+00) — R is defined as

o (t) = ﬁ/j (logé)alzn(s)%, o> 0.

Definition 2.2 ([7]). The Caputo-Hadamard fractional derivative of or-
der a > 0 for a continuous function z : [1,+00) — R is defined as

o 1 t t\ot ds
liL'(t)— m/l (lOg;) ) (ZL’)(S)?,TL—l <oa<n,

where §" = (t%)n, n € N.

Lemma 2.3 ([7]). Let n—1<a<n,n €N and x € C"([1,T]). Then
(DYIie) (t) = (1),

n—1 )
(TpDr) (1) = 2(t) = T fay(logt)"

Lemma 2.4 ([7]). For all 4> 0 and v > —1,

1t t\ L yds  T(v+1) .
m/l (log g) (log s) PRy (logt)**".

The following lemma is fundamental to our results.

Lemma 2.5. Let 2 € C* ([1,7]),2? and %% exist, then x is a solution of
(1.1) if and only if

o(6) =00+ (62— g (1L, 0) logt + [ 95,2 (5) 2

(2.1) + ﬁ /1t <1og E>a1 Fs ()L
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Proof. Let = be a solution of (1.1). First we write this equation as
TEDfe (1) = I7 (f(h2()) + Df g (ba (1)), 1<t <T.

From Lemma 2.3, we have
x(t) —z(1) — 2'(1) logt
= IPDY g (o (1) + P f (¢, = (t))
=TI 'DY g (ta (1) + I9 £ (8, (1))
=TI} (g (t,x (t) — g (L, (1)) + I f(t, (1)) X
= [1g(s,2(s) % =g (1,2 (1) logt + 5y Ji (log 1) f(s,2(s))

« g

)

then, by using the initial conditions, we obtain (2.1).
Conversely, suppose x satisfies (2.1). By Lemma 2.3, we observe that

fa(t) =Df (91+<e2— (1,60) logt+ [{ g (s, (s)) %=
+1y i (log £)" 7 f(s,(s)) %
=Df (6h + (02 — g (1,01)) logt)
DYy (12 () + DYTF (0, 2(0)
=D g (t,a (1)) + f(t ().

Moreover, the initial conditions x (1) = 6; and 2/(1) = 6 hold. This
completes the proof. O

Definition 2.6. Let 2*, 2, € A, a < x, < z* < b, satisfy

Dga* (t) — DY g (t, 2% (1) > Ut,z*(t), 1 <t <T,
z* (1) > 01, 2 (1) > 64,

or
2 () 2 0+ (B2 — g (L6) ot + [ g(s,a” ()
1 t et ds
— log — * —, 1<t<T
i ) (oe2) Vet @S 1<
and

S, (t) — DY g (t, e (1) < L(t,x4(t), 1 <t <T,
Ty (1) < 01, 2 (1) < 62,

or
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ds

20 (6) < 01+ (02— g (1,00 logt + [ (5,2, (5)) &

1 t t\ ! ds
— [ (1ogZ)  L(s,z.(s)=2, 1<t<T.
i ) (oss) Hemen 1<

Then the functions xz* and xz, are called a pair of upper and lower
solutions for the equation (1.1).

Lastly in this section, we state the fixed point theorems which enable
us to prove the existence and uniqueness of a positive solution of (1.1).

Definition 2.7. Let (X, ||.||) be a Banach space and ® : X — X. The
operator ® is a contraction operator if there is an A € (0,1) such that
z,y € X imply

|z — Py[| < Al =yl

Theorem 2.8 (Banach [12]). Let C be a nonempty closed convex sub-
set of a Banach space X and ® : C — C be a contraction operator. Then
there is a unique x € C with &z = .

Theorem 2.9 (Schauder [12]). Let C be a nonempty closed convex sub-
set of a Banach space X and ® : C — C be a continuous compact operator.
Then ® has a fixed point in C.

3. Main results

In this section, we consider the results of existence problem for many cases
of the FDE (1.1). Moreover, we introduce the sufficient conditions of the
uniqueness problem of (1.1).

To transform equation (2.1) to be applicable to Schauder fixed point,
we define an operator ® : 4 — X by

(Pz) (t) =01+ (02 — g (1,01)) logt + /ltg (s,z(s)) %
(3.1) +ﬁ/j (log§>a_ f(s,x(s))%, te LT,

where the figured fixed point must satisfy the identity operator equation
bx = x.
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Theorem 3.1. Assume that x* and x, are upper and lower solutions of
(1.1). Then the FDE (1.1) has at least one solution x € X satisfying
r.(f) < 2(t) < 2*(t), t € [L.T).

Proof. LetC={rec A:x.(t) <z(t) <z*(t), t € [1,T]}, endowed with
the norm ||z| = maxcp 7y |2(t)], then we have |lz| < b. Hence, C is a
convex, bounded and closed subset of the Banach space X. Moreover, the
continuity of g and f imply the continuity of the operator ® on C defined
by (3.1). Now, the continuity of g and f on [1,7] x C also imply that there
exist positive constants ¢y and ¢4 such that

max{ f(t,z(t)) : t € [1,T], = € C} < ¢y,
and
max{g(t,z(t)) : t € [1,T], z € C} < ¢y.
Then . ;
[(®2) (O] <160+ (62 — g (1, 6:)) og ] + [y |g (5, 2 ()] 5
a— S
o (g 1) (s, a(s))| £
1 [e%
<0+ (02 + co + ) log T + ST
where ¢g = |g (1,61)|. Thus,
cr (logT)"

dxll <0 7] logT .
[z < 61+ (02 + co + ¢g) log T + Fla 1)

Hence, ®(C) is uniformly bounded. Next, we prove the equicontinuity
of ®(C). Let x € C, then for any t1,ts € [1,T], t2 > t1, we have

() (t2) — (B2) (1))
< (62 + co) (log t — log 1) + | [{? g(s, 2(5)) % — [{" g(s,2(s)) 2
+ ety 12 (og 2) 7 fs,2(s) % — wy Ji* (log ) (s, (s)) &
< (62 + co) (log 22) + [{2 |g(s, (s))] 2

ety it ((log )" = (log 2)* ) | £(s, 2(s))] £

oty 2 (log ) £ (s, w(s))] 42

< (02 + co+ ¢g) (log 2 ) + rpaby (log t2)” — (log t1)").

As t; — to the right-hand side of the previous inequality is independent
of x and tends to zero. Therefore, ®(C) is equicontinuous. The Arzele-
Ascoli Theorem implies that ® : C — X is compact. The only thing to
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apply Schauder fixed point is to prove that ®(C) C C. Let = € C, then by
hypotheses, we have
(®z) () = 614 (02 —g(1,61))] 0gt+ Jig(s,z(s) %
-1 (s )ds

+riay Ji (log £)°

(1, ))logt+f1( "(s) &
) U s, ())ds
(1
)

<01+ (02— 9(1,00) logt + [ g (5,07 ()
iy i (log 1)U (s, 2%(s ))df
<z*

and
(®2) (1) = 61+ (02 —g(

1

t
> 01+ (02 —g(1,01))logt + f1 (s,zx(5)) %
ey Ji (log 1) L(t,o(s) %
> 01+ (02 — g (1,01))logt + [{ g (5,74 (5)) %
ey Ji (log 1) Lt () &

Hence, z.(t) < (®x) (t) < z*(t), t € [1,T], that is, ®(C) C C. According
to Schauder fixed point theorem, the operator ® has at least one fixed point
x € C. Therefore, the FDE (1.1) has at least one positive solution z € X
and x.(t) < z(t) < z*(t), t € [1,T]. O

Next, we consider many particular cases of the previous theorem.

Corollary 3.2. Assume that there exist continuous functions ki, ko,k3 and
k4 such that

0 < ki(t) < g(t,x(t)) < ka(t) < oo, (t,z(t)) € [1,T] x [0, +00),
(3.2) 02 > k1(1), 02 > ka(1),

(3.3) 0 < ks(t) < f(t,2(t)) < ka(t) < 00, (t,2(t)) € [1,T] x [0, +00).

Then, the FDE (1.1) has at least one positive solution z € X. Moreover,

91+(92—k‘1( ) logt+/ k‘l Iakg()
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< x(t)
t ds
(3.4) < 01 + (02 — ka(1)) log ¢ +/1 a(s) >+ Toha(t).
Proof. By the given assumption (3.3) and the definition of control
function, we have k3(t) < L(t,z) < U(t,x) < kyq(t), (¢t,2(t)) € [1,T] X [a, b].
Now, we consider the equations

55) DYa(t) = ka(t) + D 'ka (t), @(1) = 01, 2/(1) = 0,
’ ?.f(t) = k4(t) + ’D?ilkg (t), x(l) = 91, .1:’(1) = 92.

Obviously, Equations (3.5) are equivalent to

2(t) =01+ (02— k1(1)logt + [ k1(s)% + Tks(t),
a(t) =01+ (02— ka(1)) logt + [} ka(s)L + I¥ka(t).

Hence, the first implies

2(t) — 01 — (02 — k(1)) log ¢ — /lt kl(«?)% = Ik3(t) < I7'(L(t, x(1))),

and the second implies

t ds
2(t) = 01 = (02— ka(D)log t = [ ka(s)Z = Tikat) 2 T (U t,2(1)

S

which are the upper and lower solutions of Equations (3.5), respectively.
An application of Theorem 3.1 yields that the FDE (1.1) has at least one
solution = € X and satisfies Equation (3.4). O

Corollary 3.3. Assume that (3.2) holds and 0 < o < k(t) = limg_,o0 f(¢,2) <
oo fort € [1,T). Then the FDE (1.1) has at least a positive solution x € X.

Proof. By assumption, if z > p > 0, then 0 < [f(¢,2) — k(t)| < o for
any ¢t € [1,T]. Hence, 0 < k(t) — o < f(t,x) < k(t) + o for t € [1,T] and
p <z < 4oo. Nowif max{f(t,z):te[1,T], x <p} <v,then k(t) — o <
ft,z) < k(t)+o+vforte[l,T], and 0 < z < +o00. By Corollary 3.3,
the FDE (1.1) has at least one positive solution z € X satisfying

01+ (02 — by (1) log ¢ + [{ka(s) 2 + T¢k(t) — Goed”

s

< a(t) H
<01+ (02— ko (1)) logt + [{ ha(s) L + Tfth(t) + Ll

Corollary 3.4. Assume that 0 < o < f(t,z(t)) < vz(t) +n < oo for
t € [1,T], and o, n and ~y are positive constants. Then, the FDE (1.1) has
at least one positive solution x € C ([1,4]), where 1 <0 < T.
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Proof. Consider the equation

(3.6) { fa(t) — Dtll_lg

t,x ()+77,1<t<T
(1)=0; >0, :L‘,()

(t ))

=0

Equation (3.6) is equivalent to integral equation

z(t) = 01+ (02—g (0791)1) logt+ [{ g(s,z(s)) &
ey i (log £)* (yae(s) + 1) &
=01 + (02— g (1,01)) logt +1ffg(s,x(s))%
10 - S

+EAY + ey i (log )7 a(s) %,

Let w and ¢ be positive real numbers. Choose an appropriate § € (1,7)

such that 0 < Wagfl) < ¢ <1 and

- log )"
g o+ 2231
> (1=0)7 (4 B o+ ) o3+ T
Then if 1 <¢ < 4§, the set B, = {x € X : |2(t)] <w, 1 <t <J} is convex,
closed, and bounded subset of C' ([1, d]). The operator F' : B, — B,, given
by
(Fz)(t) = 61+ (02— g(1,01))logt+ [{g(s,z(s)) L

logt)” a—1 s
+q£(ag+ti) + iy i (log £) ()%,

is compact as in the proof of Theorem 3.1. Moreover,

1 (logd)® v (logd)”
MNa+1) T(a+1)

[(Fx) (t)] <01+ (02 + co+cg) logd +

If x € B, then

(Fz) (#)] < (1 - 9)w+ dw = w,

that is |[Fz| < w. Hence, the Schauder fixed theorem ensures that the
operator F' has at least one fixed point in By, and then Equation (3.6) has
at least one positive solution x*(t), where 1 < ¢ < §. Therefore, if t € [1, ]
one can asserts that

ds
s

2 () = 01+ (Bs— g (191))10gt+/ (s,2%(s)) &

+711§10(;it)1) + FZa) /1t <log§)a_1 x*(S)%.
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The definition of control function implies
Ut 2(8)) < 7a* () +n = Dia(t) — DY (1,27(1))

then x* is an upper positive solution of the FDE (1.1). Moreover, one can
consider

xqo=9y+wQ—g@ﬁﬂﬂ%t+A:”&““»%§+%£%%§

as a lower positive solution of Equation (1.1). By Theorem 3.1, the FDE
(1.1) has at least one positive solution z € C'([1,4]), where 1 < § < T and
x4 (t) < z(t) < z*(t). O

The last result is the uniqueness of the positive solution of (1.1) using
Banach contraction principle.

Theorem 3.5. Assume that x* and x, are upper and lower solutions of
(1.1) and there exist positive constants 1 and o such that

9ty (t) —g(t,z () < Billy — =,
|f(t,y () — [tz (1) < Bally — 2|,

fort € [1,T] and z,y € X. If

Bo (logT)*

(3.7) P1log T + Tla+1)

<1,

then the FDE (1.1) has a unique positive solution z € C.

Proof.  From Theorem 3.1, it follows that the FDE (1.1) has at least
one positive solution in C. Hence, we need only to prove that the operator
defined in (3.1) is a contraction on C. In fact, for any x,y € C, we have
(@) (t) — (Py) ()] < ﬁ@&f@b—g@y@m%
+iay 1 (log )7 | F(s,2(5) = f(s,u(s))| %
log T)*
< (BrlogT + BLET) o — g

Hence, the operator ® is a contraction mapping by (3.7). Therefore,
the FDE (1.1) has a unique positive solution z € C. O
Finally, we give an example to illustrate our results.
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Example 3.6. We consider the nonlinear fractional differential equation

H tltat bt
(3.8) Dia(t) - Df 5158 = o4 (6 + QHE&)) l<t<e,
z(1) =1, /(1) =1,

where 61 = 0y = 1, T = ¢, g(t,o) = 35 and f(to) = o (e + 5%5).

Since g is non-decreasing on x,

and

for (t,x) € [1,T] x [0,4+00), hence by any of the above Corollaries, the
equation (3.8) has a positive solution which verifies x, (t) < z (t) < z*(t)
where
6 6
(logt)s 1 (logt)s

*(t)=1+logt + ~22 and x, () = 1 +logt + ~——22
x* (t) + log +F(11/5)an Ty (t) + log +2F(11/5)

are respectively the upper and lower solutions of (3.8). Also, we have

Bo (logT)“

B1logT + Tla+ 1)

~0.344 < 1,

then by Theorem 3.5, the equation (3.8) has a unique positive solution
which is bounded by x, and x*.
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