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1144 L. Ali, M. Aslam and M. Aslam

1. Introduction and Preliminaries

The concept of involution is studied by many algebraists for algebras,
groups, rings and other structures [5, 7, 11, 12, 13, 14, 16]. Another aspect
which carries much importance in ring theory is derivation. M. Bresar and
J. Vukman [6] studied the concept of *-derivation and Jordan *-derivation
for rings. We can roughly say that a *-derivation is a derivation with
involution. In the present paper, we canonically extend the concept of *-
derivation for a class of semirings called MA-semirings introduced by Javed
et al [8]. For more on MA-semirings one can see [1, 2, 3, 4, 9, 15]. We gen-
eralize some results for *-derivations of MA-semirings established in [10]
for rings.

Now we include some definitions and preliminaries necessary for com-
pletion. An additive inverse semiring S with absorbing zero ’0’ is called an
MA-Semiring if r + r

0 ∈ Z,∀r ∈ S, where Z is the center of S and r
0
is

the pseudo inverse of r. Obviously every ring is an MA-semiring but the
following example shows that converse may not be true.

Example 1.1. [8] The set S = {0, 1, 2, 3, 4, ....} with addition ⊕ and mul-
tiplication ¯ respectively defined by a⊕b = sup{a, b} and a¯b = inf{a, b}
is an MA-semiring. In fact S is a commutative prime MA-semiring.

Such examples motivate us to generalize the results of ring theory for MA-
semirings. Throughout the paper, by a *-semiring S, we mean a *-MA-
semiring unless stated otherwise. S is prime if aRb = 0 implies that a = 0
or b = 0. S is semiprime if aRa = 0 implies that a = 0. An additive
mapping ∗ : S −→ S is involution if ∀u, v ∈ S, (u∗)∗ = u and (uv)∗ = v∗u∗.
By a *-semiring we simply mean a semiring S with involution ∗. Following
example describes a *-MA-semiring.

Example 1.2. If (R,+, ·) is an MA-Semiring, then the set R with addition
’+’ and multiplication • defined as a• b = b.a forms an MA-semiring called
the opposite MA-Semiring of R. We usually notate it as Ro.
Let (R,+, ·) be an MA-semiring andRo its opposite MA-semiring. Consider
S = R×Ro with (a, b)⊕(c, d) = (a+c, b+d) and (a, b)¯(c, d) = (a.c, b•d) =
(ac, db). Then (S,⊕,¯) forms an MA-semiring. Define ∗ : S → S by
(x, y)∗ = (y, x). Therefore ∗ defines an involution on S and (S,⊕,¯) forms
a ∗-MA-semiring or MA-semiring with involution.

S is 2-torsion free if for u ∈ S, 2u = 0 implies u = 0 and 3-torsion if
3u = 0 implies u = 0. An additive mapping d : S −→ S is said to be a
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On additive maps of MA-semirings with involution 1145

derivation if d(uv) = d(u)v+ ud(v). A *-derivation is an additive mapping
d : S −→ S such that d(uv) = d(u)v∗ + ud(v). By Jordan *-derivation, we
mean an additive mapping d : S −→ S satisfying d(u2) = d(u)u∗ + ud(u).
An additive mapping F : S → S is generalized derivation associated with a
derivation d if F (xy) = F (x)y + xd(y). We define Commutator as [u, v] =
uv + v

0
u. By Jordan product we mean u ◦ v = uv + yu for all u, v ∈ S.

Following identities will be used frequently: [u, uv] = u[u, v], [uv,w] =
u[v, w] + [u,w]v, [u, yw] = [u, v]w + v[u,w], [u, v] + [v, u] = v(u + u

0
) =

u(v+v
0
), (uv)

0
= u

0
v = uv

0
, [u, v]

0
= [u, v

0
] = [u

0
, v], u◦(v+w) = u◦v+u◦w

(see [8],[15]).

2. Main Results

Theorem 2.1. Let S be a semiprime *-semiring. If T is an additive map-
ping satisfying

T (uv) + T (u
0
)v∗ = 0,∀u, v ∈ S(2.1)

Then [T (S), S] = 0 and hence T (S) ⊆ Z(S).

Proof. In (2.1) writing uw for u, we get ∀u, v ∈ S

T (uwv) + T (u
0
w)v∗ = 0(2.2)

and wv for v in (2.2), we get T (uwv) + T (u
0
(wv)∗ = 0, which implies

T (uwv) + T (u
0
)v∗w∗ = 0(2.3)

From (2.3), put T (uwv) = T (uw)v∗, we get

T (uw)v∗ + T (u
0
)v∗w∗ = 0(2.4)

From (2.1) using T (uv) = T (u)v∗ into (4), we obtain T (u)w∗v∗ +
T (u

0
)v∗w∗ = 0, which implies T (u)w∗v∗ + T (u)

0
v∗w∗ = 0 and therefore

T (u)(w∗v∗ + v∗
0
w∗) = 0, which further gives

T (u)[w∗, v∗] = 0(2.5)

In (2.5) replacing w by w∗ and v by v∗, we obtain

T (u)[w, v] = 0(2.6)
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1146 L. Ali, M. Aslam and M. Aslam

In (2.6), replacing w by wT (u), we obtain T (u)[wT (u), v] = 0, which
implies T (u)w[T (u), v] + T (u)[w, v]T (u) = 0. Using (2.6) again, we obtain

T (u)w[T (u), v] = 0(2.7)

Replacing w by vw in (2.7), we obtain

T (u)vw[T (u), v] = 0(2.8)

Multiplying (2.7) by v
0
from the left, we obtain

v
0
T (u)w[T (u), v] = 0(2.9)

Adding (2.8) and (2.9), we obtain [T (u), v]w[T (u), v] = 0 which implies
[T (u), v]S[T (u), v] = 0. Since S is semiprime, therefore the last equation
yields [T (u), v] = 0, which gives [T (S), S] = 0 and hence T (S) ⊆ Z(S). 2

Theorem 2.2. Let S be prime *-semiring. If S admits a nontrivial *-
derivation d such that d(uv) + d(u

0
)d(v) = 0,∀u, v ∈ S, then d = 0.

Proof. By hypothesis for all u, v ∈ S, we have

d(uv) + d(u
0
)d(v) = 0(2.10)

By definition of *-derivation,from (2.10), we obtain

d(u)v∗ + ud(v) + d(u
0
)d(v) = 0(2.11)

In (2.11) replacing u by uw, we obtain d(uw)v∗+uwd(v)+d(u
0
w)d(v) =

0 and again using (2.11), we obtain d(u)d(w)v∗+xwd(v)+d(u
0
w)d(v) = 0,

which after simplification implies (d(u)d(w)+d(u
0
)d(w))v∗+(u+d(u

0
))wd(v) =

0. Using (10), we obtain (u+d(u
0
))wd(v) = 0 and therefore (u+d(u

0
))Sd(v) =

0. As S is prime, either (u + d(u
0
)) = 0 or d(v) = 0. If (u + d(u

0
)) = 0,

then u = d(u), a contradiction, which shows that d(v) = 0 and therefore
d = 0. 2

Theorem 2.3. Let S be prime *-semiring. If S admits a *-derivation d
such that d 6= I∗ and d(uv) + d(v)d(u

0
) = 0,∀u, v ∈ S, then d = 0 (where

I∗(u) = u∗)).
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On additive maps of MA-semirings with involution 1147

Proof. By the hypothesis for all u, v ∈ S

d(u, v) + d(v)d(u
0
) = 0(2.12)

In (2.12) writing uv for v, we obtain d(uuv) + d(uv)d(u
0
) = 0 which

further gives on simplification d(u)v∗(u∗ + d(u
0
)) + u(d(uv) + d(v)d(u

0
)) =

0. Using (2.12) again, we obtain d(u)v∗(u∗ + d(u
0
)) = 0, which implies

d(u)S(u∗+d(u
0
)) = 0. By the primeness of S, we have either u∗+d(u

0
) = 0

or d(u) = 0. If u∗ + d(u
0
) = 0, then d(u

0
) = u∗ = I∗(u), which implies that

d = I∗, a contradiction. Therefore we obtain d(u) = 0 and d = 0 as
required. 2

Theorem 2.4. Let S be prime *-semiring and a ∈ S. If S admits a *-
derivation d such that [d(u), a] = 0 ∀u ∈ S, then a ∈ Z(S) or d(a) = 0.

Proof. We have forall u ∈ S

[d(u), a] = 0(2.13)

In (13) replacing u by uv, we obtain [d(uv), a] = 0. On simplification,
we obtain d(u)[v∗, a] + [d(u), a]v∗ + u[d(v), a] + [u, a]d(v) = 0. Using (13),
again, we obtain

d(u)[v∗, a] + [u, a]d(v) = 0(2.14)

Replacing u by a in (2.14), we obtain d(a)[v∗, a] + [a, a]d(v) = 0 and
therefore

d(a)[v∗, a] + a(d(v)a+ d(v)a
0
) = 0(2.15)

From (2.13), replacing u by v, we obtain d(v)a = ad(v), and hence using
it in (2.15), we have d(a)[v∗, a]+a[d(v), a] = 0. Using (2.13) again, we have

d(a)[v∗, a] = 0(2.16)

Replacing v by v∗, we obtain

d(a)[v, a] = 0(2.17)

In (2.17), replacing v by vu and using it again, we obtain d(a)S[u, a] = 0.
By the primeness of S, we have d(a) = 0 or [u, a] = 0 and therefore d(a) = 0
or a ∈ Z(S). 2

Theorem 2.5. Let S be semiprime *-semiring. If S admits a *-derivation
d such that d[u, v] = 0, then d = 0 or S is commutative.
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1148 L. Ali, M. Aslam and M. Aslam

Proof. We have for all u, v ∈ S

d[u, v] = 0(2.18)

Replacing u by uv in (2.18), we obtain d[uv, v] = 0 and therefore
d[u, v]v∗ + [u, v]d(v) = 0. Using (2.18) again, we obtain

[u, v]d(v) = 0(2.19)

Replacing u by su in (2.19), we obtain [su, v]d(v) = 0 which implies
s[u, v]d(v) + [s, v]ud(v) = 0. Using (2.19) again, we obtain [s, v]ud(v) = 0
and therefore

[s, v]Rd(v) = 0(2.20)

By primeness of S, (2.20) yields either [s, v] = 0 or d(v) = 0. Now take
K = {v ∈ S : d(v) = 0} and L = {v ∈ S : [s, v] = 0,∀s ∈ S}. Clearly
S = K

S
L. We claim that either S = K or S = L. For this we can show

that either L ⊆ K or K ⊆ L. Suppose that u ∈ K \ L and v ∈ L \ K.
Clearly u + v ∈ K + L ⊆ S = K

S
L. Therefore u + v ∈ K or u + v ∈ L.

Firstly, If u + v ∈ K, then d(u + v) = 0 which implies d(u) + d(v) = 0
and therefore d(v) = 0 which means v ∈ K, a contradiction. Secondly, if
u + v ∈ L [u + v, r] = [u, r] + [v, r] = [u, r] = 0,∀r ∈ S, which implies
u ∈ L, a contradiction. Therefore, we have either L ⊆ K or K ⊆ L and
hence either S = K or S = L. This proves that that either d = 0 or S is
commutative. 2

Theorem 2.6. Let S be prime *-semiring. If S admits a *-derivation d
such that d(u ◦ v) = 0, ∀u, v ∈ S, then d = 0 or S is commutative.

Proof. For any u, v ∈ S, We have

d(u ◦ v) = 0(2.21)

In (2.21) replacing u by uv, we obtain d((uv)◦v) = 0. But d((uv)◦v) =
d(u ◦ v)v). Therefore d(u ◦ v)v) = 0 and hence d(u ◦ v)v∗+ (u ◦ v)d(v) = 0.
Using (2.21) again, we obtain

(u ◦ v)d(v) = 0(2.22)

In (2.22) replacing u by sv, we obtain ((sv) ◦ v)d(v) = 0, which implies
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(s ◦ v)Sd(v) = 0(2.23)

Since S is prime, therefore (2.23) yields either (s ◦ v) = 0 or d(v) = 0.
Let K = {v ∈ S : d(v) = 0} and L = {v ∈ S : s ◦ v = 0,∀s ∈ S}. Clearly
S = K

S
L. Our claim is that either S = K or S = L. For this we show

that either K ⊆ L or L ⊆ K. Suppose that u ∈ K \ L and v ∈ L \ K.
Clearly u+ v ∈ K+L ⊆ S = K

S
L, which implies u+ v ∈ K or u+ v ∈ L.

Firstly, If u+ v ∈ K, then d(u+ v) = d(u) + d(v) = d(v) = 0 which means
v ∈ K, a contradiction. Secondly, if u+v ∈ L, then r◦(u+v) = r◦u+r◦v =
r◦u = 0,∀r ∈ S. which means u ∈ L, a contradiction. Therefore we obtain
either L ⊆ K or K ⊆ L, which implies that either S = K or S = L. If
S = K, then d = 0. On the other hand, if S = L, then for any s, v ∈ S

s ◦ v = 0(2.24)

In (2.24) replacing s by sw, we obtain (sw) ◦ v = 0, which implies
swv + vsw = 0. Since s = s + s

0
+ s and s + s

0 ∈ Z(S) therefore last
equation becomes swv + v(s + s

0
+ s)w = 0 which gives on simplification

that s(w ◦ v) + [v, s]w = 0. Using (2.24) again, we obtain [v, s]w = 0.
Replacing w by wu, we obtain [v, s]Su = 0,. By the primeness of S, since
S 6= 0, we obtain [v, s] = 0. This proves that S is commutative. 2

Theorem 2.7. Let S be prime *-semiring. If S admits a *-derivation d
such that d(u) ◦ v = 0, ∀u, v ∈ S, then d = 0 or S is commutative.

Proof. We have for any u, v ∈ S

d(u) ◦ v = 0(2.25)

In (2.25) replacing u by uw, we obtain (d(u)w∗ + ud(w)) ◦ v = 0. Since
v+v

0 ∈ Z, v+v
0
+v = v and v

0
+v+v

0
= v

0
, after simplification we obtain

(d(u) ◦ v)w∗ + d(u)[w∗, v] + u(v ◦ d(w)) + [v, u]d(w) = 0(2.26)

Using (26), we obtain

d(u)[w∗, v] + [v, u]d(w) = 0(2.27)

Replacing u by v, (2.27), we obtain d(v)[w∗, v] + [v, v]d(w) = 0. Using
the definition of S and simplifying we obtain
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1150 L. Ali, M. Aslam and M. Aslam

d(v)[w∗, v] + v(vd(w) + v
0
d(w)) = 0(2.28)

From (2.25), we have d(w)v = v
0
d(w). Hence (2.28) becomes d(v)[w∗, v]+

v(d(w) ◦ v) = 0. Using (2.25) again, we obtain

d(v)[w∗, v] = 0(2.29)

In (2.29) replacing w by w∗, we obtain

d(v)[w, v] = 0(2.30)

Replacing w by uw in (2.30), we obtain d(v)[uw, v] = 0 which further
implies d(v)u[w, v] + [d(u), v]w = 0. Using (2.30) again, we obtain

d(v)S[w, v] = 0(2.31)

Since S is prime, therefore from (2.31), we have d(v) = 0 or [w, v] = 0. The
remaining part is same as that of Theorem 2.5. 2

Theorem 2.8. Let S be a 2-torsion free semiprime *-semiring. Suppose
that
au∗b∗ + bua = 0,∀u ∈ S, for some a, b ∈ S. Then ab = 0 = ba. Moreover
if S is prime, then either a = 0 or b = 0.

Proof. By the hypothesis

au∗b∗ + bua = 0(2.32)

In (2.32) replacing u by vbu, we obtain a(vbu)∗b∗ + bua = 0

au∗b∗v∗b∗ + bvbua = 0(2.33)

From (2.32), using au∗b∗ = bua∗ into (2.33), we obtain bua
0
v∗b∗ +

bvbua = 0 which further implies

bubva+ bvbua = 0(2.34)

In particular for v = u, we obtain 2bubua = 0,∀u ∈ S and 2-torsion
freeness of S further yields

bubua = 0(2.35)

Again from (2.32), using au∗b∗ = bua∗ into (2.35), we obtain
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On additive maps of MA-semirings with involution 1151

buau∗b∗ = 0(2.36)

In (2.35), replacing v by uav, we obtain bub(uav)a + b(uav)bua = 0.
Using (2.32), we obtain (buau∗b∗)

0
va + buavbua = 0. Using (2.36) again,

we obtain buaSbua = 0 and therefore by the semiprimeness, we obtain

bua = 0(2.37)

This implies abuab = 0. By the semiprimeness of S, we have ab = 0.
Again from (2.37), we have bauba = 0, which implies ba = 0. Hence we
conclude that ab = 0 = ba. Moreover if S is prime then (2.37) yields either
a = 0 or b = 0. 2

Theorem 2.9. Let S be a 2-torsion free semiprime *-semiring and F :
S −→ S be an additive mapping satisfying

F (uv
0
u) + F (u)v∗u∗ + uf(v)u∗ + uvf(u) = 0,∀u, v ∈ S(2.38)

associated with the Jordan *-derivation f . Then F is a Jordan *-derivation.

Proof. Replacing u by u+ w by in (2.38), we obtain

F ((u+w)v
0
(u+w))+F (u+w)v∗(u+w)∗+(u+w)f(v)(u+w)∗+(u+w)vf(u+w) = 0

which further implies
F (uv

0
u) + F (wv

0
u) + F (uv

0
w) + F (wv

0
w) + F (u)v∗u∗

+F (u)v∗w∗ + F (w)v∗w∗ + F (w)v∗w∗ + (uf(v)u∗

+wf(v)u∗)+uf(v)w∗+wf(v)w∗+uvf(u)+wvf(u)+uvf(w)+wvf(w) = 0.
Using (2.38) again we obtain
F (wv

0
u) + F (uv

0
w) + F (u)v∗w∗

+ F (w)v∗w∗ + wf(v)u∗ + uf(v)w∗ +wvf(u) + uvf(w) = 0(2.39)

In (2.39), replacing w by u2, we obtain
F (u2v

0
u) + F (uv

0
u2) + F (u)v∗u∗2 + F (u2)v∗u2∗

+ u2f(v)u∗ + uf(v)u2∗ + u2vf(u) + uvf(u2) = 0(2.40)

Replacing v by uv + vu in (2.38), we obtain
F (u(uv+vu)

0
u)+F (u)(uv+vu)∗u∗+uf(uv+vu)u∗+u((uv+vu))f(u) = 0,
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which further implies
F (u2v

0
u+ uv

0
u2) + F (u)u∗v∗u∗ + F (u)v∗u∗2

+uf(u)v∗u∗+u2f(v)u∗+uf(v)u∗2+uvf(u)u∗+u2vf(u)+uvuf(u) = 0(2.41)

From (2.40), we have
(F (u2)v∗u2∗)

0
= F (u2v

0
u) + F (uv

0
u2)

+ F (u)v∗u∗2 + u2f(v)u∗ + uf(v)u2∗ + u2vf(u) + uvf(u2)(2.42)

Using (2.42) into (2.41), we obtain F (u)u∗v∗u∗+(F (u2)v∗u∗)
0
+uf(u)v∗u∗ =

0 and therefore F (u)u∗
0
v∗u∗ + F (u2)v∗u∗ + u

0
f(u)v∗u∗ = 0, which further

implies

(F (u2) + (F (u))0u∗
0
+ u

0
f(u))v∗u∗ = 0S(2.43)

Setting F (u2) + (F (u))0u∗ + u
0
f(u) = A(u) in (2.43), we obtain

A(u)v∗u∗ = 0(2.44)

Replacing v by v∗ in (2.44), we obtain

A(u)vu∗ = 0(2.45)

which implies thatu∗A(u)Ru∗A(u) = 0. By the semiprimeness of S, we
obtain

u∗A(u) = 0(2.46)

Replacing v by u∗vA(u), we obtain A(u)u∗RA(u)u∗ = 0 and by the
semiprimeness, we get

A(u)u∗ = 0(2.47)

In (2.47) replacing u by u+ v, we obtain A(u+ v)(u+ v)∗ = 0, which
further implies (A(u) + B(u, v) + A(v))(u∗ + v∗) = 0, where B(u, v) =
F (uv + vu) + (F (u)v∗)

0
+ (F (v)u∗)

0
+ u

0
f(v) + v

0
f(u). Hence we have

A(u)u∗ + B(u, v)u∗ + A(v)u∗ + A(u)v∗ + B(u, v)v∗ + A(v)v∗ = 0. Using
(2.47) again, we obtain

B(u, v)u∗ +A(v)u∗ +A(u)v∗ +B(u, v)v∗ = 0(2.48)
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On additive maps of MA-semirings with involution 1153

In (2.48) replacing u by u
0
, we obtain B(u

0
, v)u∗

0
+A(v)u∗

0
+A(u

0
)v∗+

B(u
0
, v)v∗ = 0, which further implies B(u, v)u∗ + (A(v)u∗)

0
+ A(u)v∗ +

(B(u, v)v∗)
0
= 0 and hence

B(u, v)u∗ +A(u)v∗ = A(v)u∗ +B(u, v)v∗(2.49)

Using (2.49) into (2.48), we obtain 2(B(u, v)u∗ + A(u)v∗) = 0 and by
2-torsion freeness of S, we obtain

B(u, v)u∗ +A(u)v∗ = 0(2.50)

Multiplying (2.50) by A(u) from the right, we obtain B(u, v)u∗A(u) +
A(u)v∗A(u) = 0. Using (2.46), we obtain A(u)v∗A(u) = 0. Replacing v
by v∗, we obtain A(u)RA(u) = 0. By the semiprimeness of S, we obtain
A(u) = 0. Therefore F (u2)+(F (u))0u∗+u

0
F (u) = 0, which further implies

F (u2) = F (u)u∗ + uF (u) and this completes the proof. 2

Theorem 2.10. Let S be a 2-torsion and 3-torsion free semiprime *-semiring
and D : S −→ S be an additive mapping satisfying

D(uv
0
u) +D(u)v∗u∗ + uD(v)u∗ + uvD(u) = 0,∀u, v ∈ S(2.51)

Then D is a Jordan *-derivation.

Proof. In (2.50), replacing u by u2, we obtain

D(u2v
0
u2) +D(u2)v∗u∗2 + u2D(v)u∗2 + u2vD(u2) = 0(2.52)

In (2.51) replacing v by uvu, we obtain D(u2v
0
u2) + D(u)u∗v∗u∗2 +

uD(uvu)u∗ + u(uvu)D(u) = 0. Using (2.51) into the last equation, we
obtain D(u2v

0
u2) +D(u)u∗v∗u∗2 + u(D(u)v∗u∗ + uD(v)u∗ + uvD(u))u∗ +

u(uvu)D(u) = 0. Therefore

D(u2v
0
u2)+D(u)u∗v∗u∗2+uD(u)v∗u∗2+u2D(v)u∗2+u2vD(u)u∗+u2vuD(u) = 0

(2.53)

Since v + v
0 ∈ Z, v + v

0
+ v = v, v

0
+ v + v

0
= v

0
, therefore from (2.52)

, we have

D(u2v
0
u2) + u2D(v)u∗2 = D(u2)v∗

0
u∗2 + u2

0
vD(u2(2.54)

rvidal
Cuadro de texto
1107



1154 L. Ali, M. Aslam and M. Aslam

Using (2.54) into (2.53), we obtainD(u)u∗v∗u∗2+uD(u)v∗u∗2+u2vD(u)u∗+
u2vuD(u)+D(u2)v∗

0
u∗2+u2

0
vD(u2 = 0. This further implies u2v

0
(D(u2+

D(u)u∗
0
+ u

0
D(u)) + (D(u2) +D(u)u∗

0
+ u

0
D(u))v∗

0
u∗2 = 0 and therefore

u2v(D(u2 + D(u)u∗
0
+ u

0
D(u)) + (D(u2) + D(u)u∗

0
+ u

0
D(u))v∗u∗2 = 0.

Setting A(u) = D(u2 +D(u)u∗
0
+ u

0
D(u) into the last equation, we obtain

u2vA(u) +A(u)v∗u∗2 = 0(2.55)

In view of Theorem 2.8, we can write

A(u)u2 = 0(2.56)

u2A(u) = 0(2.57)

linearizing (2.56), we obtain

A(u+ v)(u+ v)2 = 0(2.58)

We can easily see that A(u+v) = A(u)+B(u, v)+A(v), where B(u, v) =
D(uv+vu)+(D(u))

0
v∗+(D(v))

0
u∗+u

0
D(v)+v

0
D(u). Hence (59) becomes

A(u)u2+B(u, v)u2+A(v)u2+A(u)v2+B(u, v)v2+A(v)v2+A(u)(uv+vu)
+B(u, v)(uv + vu) + A(v)(uv + vu) = 0. Using (2.56) again in the last
equation, we obtain
B(u, v)u2 +A(v)u2 +A(u)v2 +B(u, v)v2 +A(u)(uv + vu)

+B(u, v)(uv + vu) +A(v)(uv + vu) = 0(2.59)

We can easily observe that A(u
0
) = A(u) and B(u

0
, v) = (B(u, v))

0
.

Replacing u by u
0
in (2.59), we obtain

(B(u, v))
0
u2 +A(v)u2 +A(u)v2 + (B(u, v))

0
v2 +A(u)(uv + vu)

0

+B(u, v)(uv + vu) +A(v)(uv + vu)
0
= 0(2.60)

From (2.60), we have
A(v)u2 +A(u)v2 +B(u, v)(uv + vu)

= (B(u, v))u2 + (B(u, v))v2 +A(u)(uv + vu) +A(v)(uv + vu)(2.61)

Using (2.61) into (2.59), we obtain 2((B(u, v))u2+(B(u, v))v2+A(u)(uv+
vu) +A(v)(uv + vu)) = 0. Since S is 2-torsion free, therefore
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B(u, v)u2 +B(u, v)v2 +A(u)(uv + vu) +A(v)(uv + vu)) = 0(2.62)

We can easily see that A(2u) = 4A(u) and B(2u, v) = 2B(u, v). Re-
placing u by 2u in (2.62), we obtain 8B(u, v)u2+2B(u, v)v2+8A(u)(uv+
vu) + 2A(v)(uv + vu) = 0, which can also be written as 2(4B(u, v)u2 +
B(u, v)v2+4A(u)(uv+vu)+A(v)(uv+vu)) = 0. By the 2-torsion freeness
of S, we obtain

4B(u, v)u2 +B(u, v)v2 + 4A(u)(uv + vu) +A(v)(uv + vu) = 0(2.63)

Since Since v + v
0 ∈ Z, v + v

0
+ v = v, v

0
+ v + v

0
= v

0
, therefore from

(2.62), we have

B(u, v)v2 +A(v)(uv + vu)) = (B(u, v))
0
u2 + (A(u))

0
(uv + vu)(2.64)

Using (2.64) into (2.63), we obtain 4B(u, v)u2+(B(u, v))
0
u2+4A(u)(uv+

vu)+(A(u))
0
(uv+ vu) = 0. Since u+u

0
+u = u, u

0
+u+u

0
= u

0
, therefore

3B(u, v)u2 + 3A(u)(uv + vu) = 0 and hence by 3-torsion freeness of S, we
have

B(u, v)u2 +A(u)(uv + vu) = 0(2.65)

Multiplying (2.65) by A(u)u from the right and using (2.57), we obtain

A(u)uvA(u)u+A(u)vuA(u)u = 0(2.66)

In (2.66), replacing v by vu, we obtainA(u)uvuA(u)u+A(u)vu2A(u)u =
0. Using (2.56), we obtain A(u)uvuA(u)u = 0, which further implies
uA(u)uRuA(u)u = 0. By the semiprimeness of S, we obtain

A(u)u = 0(2.67)

Hence (2.65) becomes

B(u, v)u2 +A(u)vu = 0(2.68)

Multiplying (2.68) by A(u) from the right and using (2.57), we obtain
A(u)vuA(u) = 0, which implies uA(u)vuA(u) = 0 and henceuA(u)RuA(u) =
0 and by the semiprimeness, we have
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