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1. Introduction and Preliminaries

The concept of involution is studied by many algebraists for algebras,
groups, rings and other structures [5, 7, 11, 12, 13, 14, 16]. Another aspect
which carries much importance in ring theory is derivation. M. Bresar and
J. Vukman [6] studied the concept of *-derivation and Jordan *-derivation
for rings. We can roughly say that a *-derivation is a derivation with
involution. In the present paper, we canonically extend the concept of *-
derivation for a class of semirings called MA-semirings introduced by Javed
et al [8]. For more on MA-semirings one can see [1, 2, 3, 4, 9, 15]. We gen-
eralize some results for *-derivations of MA-semirings established in [10]
for rings.

Now we include some definitions and preliminaries necessary for com-
pletion. An additive inverse semiring S with absorbing zero ’0’ is called an
MA-Semiring if r + r € ZNr € S, where Z is the center of S and r’ is
the pseudo inverse of r. Obviously every ring is an MA-semiring but the
following example shows that converse may not be true.

Example 1.1. [8] The set S ={0,1,2,3,4,....} with addition & and mul-
tiplication ® respectively defined by a®b = sup{a,b} and a®b = inf{a,b}
is an MA-semiring. In fact S is a commutative prime MA-semiring.

Such examples motivate us to generalize the results of ring theory for MA-
semirings. Throughout the paper, by a *-semiring S, we mean a *-MA-
semiring unless stated otherwise. S is prime if aRb = 0 implies that a =0
or b = 0. S is semiprime if aRa = 0 implies that ¢ = 0. An additive
mapping * : S — S is involution if Yu,v € S, (v*)* = v and (uv)* = v*u*.
By a *-semiring we simply mean a semiring S with involution *. Following
example describes a *-MA-semiring.

Example 1.2. If(R,+,-) is an MA-Semiring, then the set R with addition
'+’ and multiplication e defined as a b = b.a forms an MA-semiring called
the opposite MA-Semiring of R. We usually notate it as R°.

Let (R, +, ) be an MA-semiring and R° its opposite MA-semiring. Consider
S = Rx R° with (a,b)®(c,d) = (a+c¢,b+d) and (a,b)©(c,d) = (a.c,bed) =
(ac,db). Then (S,®,®) forms an MA-semiring. Define * : S — S by
(z,y)* = (y,x). Therefore % defines an involution on S and (S, ®, ®) forms
a x-MA-semiring or MA-semiring with involution.

S is 2-torsion free if for v € S, 2u = 0 implies v = 0 and 3-torsion if
3u = 0 implies v = 0. An additive mapping d : S — S is said to be a
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derivation if d(uv) = d(u)v + ud(v). A *-derivation is an additive mapping
d:S — S such that d(uv) = d(u)v* + ud(v). By Jordan *-derivation, we
mean an additive mapping d : S — S satisfying d(u?) = d(u)u* + ud(u).
An additive mapping F' : S — S is generalized derivation associated with a
derivation d if F(zy) = F(x)y + zd(y). We define Commutator as [u,v] =
wv 4+ v'u. By Jordan product we mean uov = uv + yu for all u,v € S.

Following identities will be used frequently: [u,uv] = ulu,v], [uv,w] =
ulv, w] + [u, wlv, [u,yw] = [u,v]w + v[u,w], [u,v] + [v,u] = vuw+u) =
u(v+2), (w) =v'v=uw', [u,v] = [u,v] = [u,v], uo(v+w) = uov+uow
(see [8],[15]).

2. Main Results

Theorem 2.1. Let S be a semiprime *-semiring. If T' is an additive map-
ping satisfying

(2.1) T(uv) +T(u')v* = 0,Yu,v € S
Then [T'(S),S] = 0 and hence T'(S) C Z(5S).
Proof. In (2.1) writing uw for u, we get Yu,v € S
(2.2) T (uwv) + T(u'w)v* =0
and wv for v in (2.2), we get T'(uwv) + T'(u (wv)* = 0, which implies
(2.3) T(uwv) + T(u )v*w* =0
From (2.3), put T(uwv) = T(uw)v*, we get

(2.4) T (uw)v* + T(u Yv*w* = 0

From (2.1) using T(uwv) = T(u)v* into (4), we obtain T'(u)w*v* +
T(u )v*w* = 0, which implies T'(u)w*v* + T'(u) v*w* = 0 and therefore
T(u)(w*v* + v*'w*) = 0, which further gives

(2.5) T(w)[w*,v*] = 0

In (2.5) replacing w by w* and v by v*, we obtain

(2.6) T(u)[w,v] =0


rvidal
Cuadro de texto
1099


1100 L. Ali, M. Aslam and M. Aslam

In (2.6), replacing w by wT'(u), we obtain T'(u)[wT (u),v] = 0, which
implies T'(u)w[T (u), v] + T'(u)[w,v]T(u) = 0. Using (2.6) again, we obtain
(2.7) T(uw)w|T(u),v] =0

Replacing w by vw in (2.7), we obtain

(2.8) T(uw)vw[T (u),v] =0

Multiplying (2.7) by v’ from the left, we obtain

(2.9) v T(w)w[T(w),v] =0

Adding (2.8) and (2.9), we obtain [T'(u), v]w[T'(u),v] = 0 which implies
[T'(u),v]S[T(u),v] = 0. Since S is semiprime, therefore the last equation
yields [T'(u),v] = 0, which gives [T'(S), S] = 0 and hence T'(S) C Z(S). O

Theorem 2.2. Let S be prime *-semiring. If S admits a nontrivial *-
derivation d such that d(uv) + d(u')d(v) = 0,Yu,v € S, then d = 0.

Proof. By hypothesis for all u,v € S, we have
(2.10) d(uw) + d(u))d(v) =0

By definition of *-derivation,from (2.10), we obtain

(2.11) d(u)v* + ud(v) + d(u)d(v) = 0

In (2.11) replacing u by uw, we obtain d(uw)v*+uwd(v)+ ( ‘w)d(v) =
0 and again using (2.11), we obtain d(u)d(w)v* + zwd(v) +d(u w)d(v) = 0,
which after simplification implies (d(u)d(w)+d(u )d(w))v* —i—(u—i—d(u/)) d(v) =
0. Using (10), we obtain (u+d(u))wd(v) = 0 and therefore (u+d(u ))S (v )
0. As S is prime, either (u + d(u')) = 0 or d(v) = 0. If (u+d(u)) =
then u = d(u), a contradiction, which shows that d(v) = 0 and therefore
d=0. O

Theorem 2.3. Let S be prime *-semiring. If S admits a *-derivation d
such that d # I'* and d(uwv) + d(v)d(u') = 0,Yu,v € S, then d = 0 (where
I*(u) = u*)).
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Proof. By the hypothesis for all u,v € §
(2.12) d(u,v) 4 d(v)d(u') =0

In (2.12) writing uv for v, we obtain d(uuv) 4+ d(uv)d(u') = 0 which
further gives on simplification d(u)v*(u* + d(u')) + u(d(wv) + d(v)d(u')) =
0. Using (2.12) again, we obtain d(u)v*(u* + d(u')) = 0, which implies
d(u)S(u*4d(u')) = 0. By the primeness of S, we have either u*+d(u') = 0
or d(u) = 0. If u* +d(u') = 0, then d(u') = u* = I*(u), which implies that
d = I*, a contradiction. Therefore we obtain d(u) = 0 and d = 0 as
required. O

Theorem 2.4. Let S be prime *-semiring and a € S. If S admits a *-
derivation d such that [d(u),a] = 0 Yu € S, then a € Z(S) or d(a) = 0.

Proof. We have forall u € S

(2.13) [d(u),a] =0

In (13) replacing u by wwv, we obtain [d(uv),a] = 0. On simplification,
we obtain d(u)[v*,a] + [d(u), alv* + u[d(v),a] + [u,a]d(v) = 0. Using (13),
again, we obtain

(2.14) d(u)[v*, a] + [u,ald(v) =0

Replacing u by a in (2.14), we obtain d(a)[v*,a] + [a,a]d(v) = 0 and
therefore
(2.15) d(a)[v*,a] + a(d(v)a + d(v)a') = 0

From (2.13), replacing u by v, we obtain d(v)a = ad(v), and hence using
it in (2.15), we have d(a)[v*, a] +a[d(v), a] = 0. Using (2.13) again, we have
(2.16) d(a)[v*,a] =0

Replacing v by v*, we obtain

(2.17) d(a)v,a] =0

In (2.17), replacing v by vu and using it again, we obtain d(a)S[u, a] = 0.
By the primeness of S, we have d(a) = 0 or [u, a] = 0 and therefore d(a) = 0
ora€ Z(S). O

Theorem 2.5. Let S be semiprime *-semiring. If S admits a *-derivation
d such that du,v] =0, then d =0 or S is commutative.


rvidal
Cuadro de texto
1101


1102 L. Ali, M. Aslam and M. Aslam

Proof. We have for all u,v € S
(2.18) dlu,v] =0

Replacing w by wv in (2.18), we obtain d[uv,v] = 0 and therefore
d[u, v]v* + [u,v]d(v) = 0. Using (2.18) again, we obtain

(2.19) [u,v]d(v) =0

Replacing u by su in (2.19), we obtain [su,v]d(v) = 0 which implies
slu,v]d(v) + [s,v]ud(v) = 0. Using (2.19) again, we obtain [s, v]ud(v) = 0
and therefore

(2.20) [s,v]Rd(v) =0

By primeness of S, (2.20) yields either [s,v] = 0 or d(v) = 0. Now take
K={veS:dv)=0}}and L ={v e S:][sv] =0,Vs €S} Clearly
S = K|L. We claim that either S = K or S = L. For this we can show
that either L C K or K C L. Suppose that v € K\ L and v € L\ K.
Clearly u+v € K+ L CS = K|L. Therefore u+v € K or u+v € L.
Firstly, If w + v € K, then d(u + v) = 0 which implies d(u) + d(v) = 0
and therefore d(v) = 0 which means v € K, a contradiction. Secondly, if
u+v €L u+v,r = ur]+vr] =url =0Vre S, which implies
u € L, a contradiction. Therefore, we have either L C K or K C L and
hence either S = K or S = L. This proves that that either d = 0 or S is
commutative. O

Theorem 2.6. Let S be prime *-semiring. If S admits a *-derivation d
such that d(uowv) =0, Yu,v € S, then d =0 or S is commutative.

Proof. For any u,v € S, We have

(2.21) d(uowv) =0

In (2.21) replacing u by uv, we obtain d((uv)owv) = 0. But d((uv)o
d(uowv)v). Therefore d(uov)v) = 0 and hence d(u o v)v* + (uowv)d(v)
Using (2.21) again, we obtain

v) =
= 0.

(2.22) (uow)d(v) =0

In (2.22) replacing u by sv, we obtain ((sv) o v)d(v) = 0, which implies
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(2.23) (sowv)Sd(v) =0

Since S is prime, therefore (2.23) yields either (s owv) = 0 or d(v) = 0.
Let K ={veS:dv)=0}and L={ve S:sov=0,Vs € S}. Clearly
S = KJL. Our claim is that either S = K or S = L. For this we show
that either K € L or L C K. Suppose that v € K\ L and v € L\ K.
Clearly u+v € K+ L C S = K|JL, which impliesu+v € K or u+v € L.
Firstly, If u +v € K, then d(u +v) = d(u) + d(v) = d(v) = 0 which means
v € K, a contradiction. Secondly, if u+v € L, then ro(u+v) = rou+rov =
rou = 0,Vr € S. which means v € L, a contradiction. Therefore we obtain
either L C K or K C L, which implies that either S = K or S = L. If
S = K, then d = 0. On the other hand, if S = L, then for any s,v € S

(2.24) sov=0

In (2.24) replacing s by sw, we obtain (sw) o v = 0, which implies
swv +vsw = 0. Since s = s+ + s and s+ € Z(S) therefore last
equation becomes swv + v(s + s + s)w = 0 which gives on simplification
that s(w o v) + [v,s]lw = 0. Using (2.24) again, we obtain [v, sjlw = 0.
Replacing w by wu, we obtain [v, s]Su = 0,. By the primeness of S, since
S # 0, we obtain [v, s] = 0. This proves that S is commutative. O

Theorem 2.7. Let S be prime *-semiring. If S admits a *-derivation d
such that d(u) ov =0, Yu,v € S, then d =0 or S is commutative.

Proof. We have for any u,v € S

(2.25) d(u)ov =20

In (2.25) replacing u by uw, we obtain (d(u)w* + ud(w)) ov = 0. Since
v+v € Z,v4+v +v=vand v +v+v =0, after simplification we obtain

(2.26)  (d(u) ov)w™ 4 d(u)[w*,v] + u(v o d(w)) + [v, u]d(w) =0

Using (26), we obtain

(2.27) d(u)[w*,v] + [v,u]ld(w) =0

Replacing u by v, (2.27), we obtain d(v)[w*,v] + [v,v]d(w) = 0. Using
the definition of S and simplifying we obtain
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(2.28) d(v)[w*,v] + v(vd(w) + v d(w)) = 0
From (2.25), we have d(w)v = v'd(w). Hence (2.28) becomes d(v)[w*, v]+
v(d(w) ov) = 0. Using (2.25) again, we obtain
(2.29) d(v)[w*,v] =0
In (2.29) replacing w by w*, we obtain
(2.30) d(v)[w,v] =0

Replacing w by ww in (2.30), we obtain d(v)[uw,v] = 0 which further
implies d(v)u[w, v] + [d(u), v]Jw = 0. Using (2.30) again, we obtain

(2.31) d(v)S[w,v] =0

Since S is prime, therefore from (2.31), we have d(v) = 0 or [w,v] = 0. The
remaining part is same as that of Theorem 2.5. O

Theorem 2.8. Let S be a 2-torsion free semiprime *-semiring. Suppose
that

au*b* + bua = 0,Vu € S, for some a,b € S. Then ab =0 = ba. Moreover
if S is prime, then either a =0 or b = 0.

Proof. By the hypothesis
(2.32) au*b* + bua =0
In (2.32) replacing u by vbu, we obtain a(vbu)*b* + bua = 0

(2.33) au*b*v*b* 4 bvbua =0

From (2.32), using au*b* = bua* into (2.33), we obtain bua v*b* +
bvbua = 0 which further implies

(2.34) bubva + bvbua = 0

In particular for v = u, we obtain 2bubua = 0,Vu € S and 2-torsion
freeness of S further yields

(2.35) bubua =0
Again from (2.32), using au*b* = bua™* into (2.35), we obtain
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(2.36) buau*b* =0

In (2.35), replacing v by wav, we obtain bub(uav)a + b(uav)bua = 0.
Using (2.32), we obtain (buau*b*) va + buavbua = 0. Using (2.36) again,
we obtain buaSbua = 0 and therefore by the semiprimeness, we obtain

(2.37) bua =0

This implies abuab = 0. By the semiprimeness of S, we have ab = 0.
Again from (2.37), we have bauba = 0, which implies ba = 0. Hence we
conclude that ab = 0 = ba. Moreover if S is prime then (2.37) yields either
a=0o0orb=0. O

Theorem 2.9. Let S be a 2-torsion free semiprime *-semiring and F' :
S — § be an additive mapping satisfying

(2.38)  F(w'u) + F(u)v*u* + uf(v)u* + uvf(u) = 0,Yu,v € S

associated with the Jordan *-derivation f. Then F is a Jordan *-derivation.

Proof. Replacing u by u + w by in (2.38), we obtain
F((utw)v (utw))+F (utw)v* (utw)*+(utw) f (v) (utw)* +(utw)o f (utw) = 0

which further implies

F(uv'u) + F(wv'v) + F(uv'w) + F(wv'w) + F(u)v*u*

+F(u)v*w* + F(w)v*w* + F(w)v*w* + (uf(v)u*

+w f(v)u*)tuf(v)w*+wf(v)w* +uv f(u)+wo f(u)+uo f(w)+wo f(w) = 0.
Using (2.38) again we obtain

F(wv'u) + F(uww'w) + F(u)v*w*

(2.39) + F(w)v'w* +wf(v)u* +uf(v)w* +wuf(u) +uvf(w) =0
In (2.39), replacing w by u?, we obtain

Fu*v'u) + F(uv'u?) + F(u)v*u*? + F(u?)v*u?

(2.40) +u? f(v)u* + uf(v)u® + v f(u) + uvf(u?) =0

Replacing v by uv 4+ vu in (2.38), we obtain
F(u(uv+ovu) u) + F(u) (wo+vu)*u* +u f (uo +vu)u* +u((wo+ou)) f(u) = 0,
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which further implies
F(u?v'u + uv'u?) + F(u)u v u* + F(u)v*u*?

(24 ¥ (u)v*u* +u? f(v)u* +uf(v)u*? +uv f(w)u* +u?of(u) +uouf(u) = 0
From (2.40), we have
(F(u?)v*u®) = F(u?v'u) + F(uv'u?)
(2.42)  + F(u)v*u™ + v f(v)u* + uf(v)u® + o f(u) + uvf(u?)
Using (2.42) into (2.41), we obtain F'(u)u*v*u*+(F(u?)v*u*) 4uf(u)v*u* =
0 and therefore F(u)u* v*u* + F(u?)v*u* 4+ v f(u)v*u* = 0, which further
implies
(2.43) (F(u?) + (F(u)u* +u f(u))v*u* =08
Setting F'(u?) + (F(u))u* 4+ u f(u) = A(u) in (2.43), we obtain

(2.44) A(u)v*u* =0

Replacing v by v* in (2.44), we obtain

(2.45) A(u)vu* =0
which implies thatu*A(u)Ru*A(u) = 0. By the semiprimeness of S, we
obtain
(2.46) u*A(u) =0

Replacing v by uw*vA(u), we obtain A(u)u*RA(u)u* = 0 and by the
semiprimeness, we get
(2.47) A(u)u* =0

In (2.47) replacing u by u + v, we obtain A(u + v)(u + v)* = 0, which
further implies (A(u) + B(u,v) + A(v))(u* + v*) = 0, where B(u,v) =
F(uv + vu) + (F(u)v*) + (F(v)u*) + o f(v) + v f(u). Hence we have
A(u)u* + B(u,v)u* + A(v)u* + A(u)v* + B(u,v)v* + A(v)v* = 0. Using
(2.47) again, we obtain

(2.48) B(u,v)u” + A(v)u* + A(u)v* + B(u,v)v* =0
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In (2. 48) replacing u by ', we obtain B(u',v)u* + A(v)u* + A(u')v* +
B(u',v)v* = 0, which further implies B(u,v)u* 4+ (A(v)u*)" + A(u)v* +
(B(u,v)v*)" = 0 and hence

(2.49) B(u,v)u* + A(u)v* = A(v)u* + B(u,v)v*

Using (2.49) into (2.48), we obtain 2(B(u,v)u* + A(u)v*) = 0 and by
2-torsion freeness of S, we obtain
(2.50) B(u,v)u* + A(u)v* =0

Multiplying (2.50) by A(u) from the right, we obtain B(u,v)u*A(u) +
A(u)v*A(u) = 0. Using (2.46), we obtain A(u)v*A(u) = 0. Replacing v
by v*, we obtain A(u)RA(u) = 0. By the semiprimeness of S, we obtain
A(u) = 0. Therefore F'(u?) + (F(u))'u* 44 F(u) = 0, which further implies
F(u?) = F(u)u* + uF(u) and this completes the proof. O

Theorem 2.10. Let S be a 2-torsion and 3-torsion free semiprime *-semiring
and D : S — S be an additive mapping satisfying
(251)  D(uv'w) + D(w)v*u* + uD(v)u* + wwD(u) = 0,Yu,v € S

Then D is a Jordan *-derivation.

Proof. In (2.50), replacing u by u?, we obtain

(252)  D(u*v'u?) + D(u?)v*u*? + u>D(v)u*? + v*vD(u?) = 0

In (2.51) replacing v by wvu, we obtain D(u?v'u?) + D(u)u*v*u*? +
uD(uvu)u* + u(uvu)D(u) = 0. Using (2.51) into the last equation, we
obtain D(u?v'u?) + D(u)u*v*u*? 4+ u(D(u)v*u* + uD(v)u* + wvD(u))u* +
u(uvu)D(u) = 0. Therefore

D(u?0 u?)+D(w)u v u* > +uD (w)v* v +u? D (v)u**+u?o D (w)u* +uvuD(u) = 0
(2.53)

Sincev+v € Z,v+v +v=uv,v +v+0v =, therefore from (2.52)
, we have

(2.54) D(u?v'u?) + u?D(v)u*? = D(u?)v* u*? + v vD(u?
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Using (2.54) into (2.53), we obtain D (u)u*v*u*24uD (u)v*u*2+u?v D (u)u*+
w?vuD(u) 4+ D(u?)v* u*? +u¥ vD(u? = 0. This further implies u?v’ (D(u? +
D(u)u* 4 u' D(u)) + (D(u?) + D(uw)u* + ' D(u))v* u*? = 0 and therefore
w?v(D(u? + D(w)u* + v D(u)) + (D(u?) + D(uw)u* + v D(u))v*u*2 = 0.
Setting A(u) = D(u? + D(u)u* + v D(u) into the last equation, we obtain
(2.55) w?vA(u) + A(u)v*u*? =0

In view of Theorem 2.8, we can write

(2.56) A(u)u® =0

(2.57) u?Au) =0

linearizing (2.56), we obtain

(2.58) Alu+v)(u+v)2=0

We can easily see that A(u+v) = A(u)+B(u,v)+A(v), where B(u,v) =
D(uv+vu)+ (D(w)) v* + (D(v)) w*+u D(v)+v D(u). Hence (59) becomes
A(u)u? + B(u, v)u? + A(v)u? + A(u)v? + B(u, v)v? + A(v)v? + A(w) (uv +vu)
+B(u,v)(uv + vu) + A(v)(uv + vu) = 0. Using (2.56) again in the last
equation, we obtain
B(u,v)u? + A(v)u? + A(u)v? + B(u, v)v? + A(u)(uv + vu)

(2.59) + B(u,v)(uv + vu) + A(v)(uwv +vu) =0
We can easily observe that A(u') = A(u) and B(u',v) = (B(u,v)).
Replacing u by u’ in (2.59), we obtain
(B(u,v)) u? + A(w)u® + A(u)v? + (B(u,v)) v? + A(u)(uv + vu)’
(2.60) + B(u,v)(uv + vu) + A(v)(uv 4+ vu) =0
From (2.60), we have

A()u? 4+ A(u)v? + B(u,v)(uv + vu)
(2.61) = (B(u,v))u? + (B(u,v))v* + A(u)(uv 4+ vu) + A(v)(uwv + vu)

Using (2.61) into (2.59), we obtain 2((B(u, v))u?+(B(u,v))v?+A(u) (uv+
vu) + A(v)(uv +vu)) = 0. Since S is 2-torsion free, therefore
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(2.62) B(u,v)u?® + B(u,v)v? + A(u)(uv + vu) + A(v)(uv + vu)) = 0

We can easily see that A(2u) = 4A(u) and B(2u,v) = 2B(u,v). Re-
placing u by 2u in (2.62), we obtain 8 B(u, v)u? + 2B(u, v)v? + 8 A(u) (uv +
vu) + 2A(v)(uv + vu) = 0, which can also be written as 2(4B(u,v)u? +
B(u,v)v? +4A(u) (uv +vu) + A(v)(uv +vu)) = 0. By the 2-torsion freeness
of S, we obtain

(2.63)4B(u, v)u? + B(u,v)v* + 4A(u)(uwv + vu) + A(v)(uv +vu) =0

Since Since v +v' € Z,v+v +v =0, +v+0v =, therefore from
(2.62), we have

(2.64) B(u, v)v® + A(v)(uwv 4 vu)) = (B(u,v)) v + (A(w)) (wv + vu)

Using (2.64) into (2.63), we obtain 4B(u, v)u?+(B(u, v)) u?+4A(u) (uv+
vu) 4 (A(u)) (uv +vu) = 0. Since u+u +u = u,u' +u+u =, therefore
3B(u,v)u? + 3A(u)(uv + vu) = 0 and hence by 3-torsion freeness of S, we
have
(2.65) B(u,v)u? + A(u)(uv +vu) =0

Multiplying (2.65) by A(u)u from the right and using (2.57), we obtain

(2.66) A(uw)uvA(u)u + A(u)vuA(uw)u =0

In (2.66), replacing v by vu, we obtain A(u)uvuA(u)ut+A(u)vu? A(u)u =
0. Using (2.56), we obtain A(u)uvuA(u)u = 0, which further implies
uA(u)uRuA(u)u = 0. By the semiprimeness of S, we obtain
(2.67) A(u)u =0

Hence (2.65) becomes

(2.68) B(u,v)u? + A(u)vu = 0

Multiplying (2.68) by A(u) from the right and using (2.57), we obtain
A(u)vuA(u) = 0, which implies uA(u)vuA(u) = 0 and henceuA(u) RuA(u) =
0 and by the semiprimeness, we have
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(2.69) uA(u) =0

From (2.68), we have (B(u,v)u+A(u)v)u = 0, which implies (B(u, v)u+
A(u)v)u(B(u,v)u + A(u)v) = 0 and therefore

(2.70) B(u,v)u+ A(u)v =0

Multiplying (2.70) by A(u) from the right, we obtain B(u,v)uA(u) +
A(u)vA(u) = 0 and using (2.70) again, we obtain A(u)vA(u) = 0. Since S is
semiprime, therefore A(u) = 0. This means D(u?) 4+ D(u)u* +u D(u) = 0
and hence D(u?) = D(u)u* 4+ uD(u), which shows that D is Jordan *-
derivation. O

Concluding Remarks

This article presents some criteria for *-derivations which induce commu-
tativity in additive inverse semirings with involution. Secondly we present
some additive mappings satisfying certain conditions under which they be-
come Jordan *-derivations. Therefore ideas presented in this article are
useful. We propose some open problems as follows:

1. Let S be a semiprime *-semiring and d a nonzero *-derivation of S sat-
isfying d(u) o v = 0,Vu,v € S. Is S commutative?

2. Let S be a semiprime *-semiring and d a nonzero *-derivation of S sat-
isfying d(uov) =0,Vu,v € S. Is S commutative?

3. Let S be a prime *-semiring, d a nonzero *-derivation of S and F
an additive mapping defined by F(xy) = F(x)y + zd(y). If F satisfies
F(uowv) =0,Yu,v € S. Is S commutative?
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