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1. Introduction

Codes over the ring of order six Zg have received some attention in the
past due to their connection to euclidean lattices [11,13]. The main tool
in this context is the Chinese Remainder Theorem (CRT) over the integers
[8]. A classification technique for self-dual codes over this ring up to the
permutation part of their monomial automorphism group was derived in
[16], using the notion of double cosets in permutation groups. In a series
of recent papers, the authors have studied self-orthogonal codes over non-
unital rings of order 4 [1, 2, 4, 3]. This is a major innovation in the domain
of codes over rings, where only unital rings were used as alphabets till then
[18,19].

In the present paper, we combine these two strands of thought in the
following way. We study self-orthogonal codes over two non-unital rings of
order 6, denoted here by Hso and Hss. Both rings are semilocal with two
maximal ideals of size two and three. There is a non multiplicative analogue
of the CRT that allows to attach to any code over such a ring the ordered
pair of a binary code and a ternary code. If the code is quasi self-dual (QSD)
that is self-orthogonal of length n and size 6"/2, it can be shown that one of
the two codes is self-dual and the other is a rate one-half code. Forgetting
their multiplicative structure, we can regard the codes over either of these
two non-unital rings as additive codes over Zg, or, equivalently Zg-linear
codes. This simple observation allows us to use the Magma package for
codes over rings [6] to compute weight distributions, and complete weight
enumerators. We use the same classification methodology as that in [16]
for codes over Zg. We are able to classify QSD codes over these two rings
up to length n = 8.

The material is layed out in the following way. The next section collects
the notations and notions needed for the rest of the paper. Section 3 is an
exposition of the classification technique that we used. Section 4 contains
some numerical data pertaining to that classification in modest length.

2. Background material

2.1. Codes over fields

Let p be a prime. Denote by wt(x) the Hamming weight of x € F}'. The
dual of a linear code C over F, is denoted by C* and defined as

Ct={ye F}|Vz€C, (x,y) =0},
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where (z,y) = Y-, x;y;, denotes the standard inner product. A code C is
self-orthogonal if it is included in its dual, i.e. C C Ct. A code is even
if all its codewords have even weights. All binary self-orthogonal codes are
even, but not all binary even codes are self-orthogonal. Two codes over £},
are permutation equivalent if there is a permutation of coordinates that
maps one to the other.

2.2. Rings

Let C, be the cyclic additive abelian group of order p and C,(0) be the
ring with additive group C, and trivial multiplication. We know (see for
example [9,Lemma 2]) that, up to isomorphism, there are exactly two rings
of order p, namely Z, and Cp(0) and, if p and ¢ are distinct primes, there
are exactly four rings of order pg. These are Z,,q, Cpq(0), Hpq := Z,+Cy(0),
and Hgy, := Cp(0) + Z,;. The symbol + denotes the direct product of rings.
Since the first two rings are well known, we consider in this paper the
last two rings which are semi-local non-unital rings of order pq. In order
to effectively construct codes, we restrict ourselves to the case p = 3 and
q = 2. We denote these rings by

Hsy := Z3+ C3(0) = (a,b | 2a = 0,3b = 0,a® = 0,ab = 0 = ba, b*> = b),
and
Hoz := Zy 4+ C3(0) = (a,b | 2a = 0,3b = 0,a®> = a,ab = 0 = ba, b*> = 0).

We denote by ¢, d, e the remaining three elements, which we define as

c = a+b
= 2b
e = a-+2b.

The addition tables of H3o and Hss are identical up to isomorphism
and given by the following table
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+10la|lblc|d]e
O (O0flalblc|d]e
alal0|lc|blel|d
b|blcld|el|0]a
clc|ble|d|la]|0
d|d|e|0]|al|b]|c
e |leld|la|0|c|b

The multiplication tables for respectively Hss and Hsg are as follows.

X|0la|b|c|d]e X|0la|b|c|d]|e
0[{0]J]0|0|0O]0O]O0O 0(0]0|0]0O]0O]O0
a|0(0]0]0|0]0 a|0]lal|l0|la|0]a
b {0|0|b|b|d]|d and b 10]{0{0]0]0]O0
c |0|0|b|b|d]|d c |0]lal|0|la|0]a
d|{0|0|d|d|b]|b d|0]0{0]0]0]O
e |0]0|d|{d|b]|Db e |0]lal0|la|0]a

From these tables, we infer that these two rings are commutative, and
without an identity element for the multiplication. They are semi-local with
the two maximal ideals J, = {0,a}, and J, = {0,b,d}. Let z € {23,32}.
The following decomposition

Hz — Ja@t]ba

can be checked directly from the defining relations of ¢, d, e.
This alphabet decomposition induces a code decomposition as follows.
The code C over H, can be written as a direct sum (in the sense of
modules)

C =aC, ® bCy,

where C, is a binary code and Cj, is a ternary code.

Denote by o, : H, — F5 the map of reduction modulo J,, and
denote by «ap : H, — F3 the map of reduction modulo J;,, where J,,
and J, are viewed as additive groups. Thus a,(a) = ap(b) = 0, and, by
convention we choose aq(b) = ap(a) = 1. These maps are extended in the
natural way into maps from H?' to F3' (resp. from H' to F3').

Thus, with these notations, we see that C, = a(C) and Cj, = a,(C).
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Remark 1. These maps are additive morphisms but not ring morphisms.
Still C, (resp. Cy) is a vector space over Fy (resp. F3) because Fy (resp.
F3) is a prime field and additive subgroups of Fj' (resp. F3') coincide with
vector spaces over Fy (resp. F3).

2.3. Weight Enumerators

A linear H.-code C of length n is an H,-submodule of H. It can be
described as the H.-span of the rows of a generator matrix. Two H-
codes are permutation equivalent if there is a permutation of coordinates
that maps one to the other.

An additive code C of length n over Zg is an additive subgroup of
Zg. It is an Zg sub-module of Z§. By the CRT over the integers we can
attach two codes to C: a binary code (s, and a ternary code C3. We will
write C = CRT(Cy,Cs). Conversely, from every pair of a binary code B
and a ternary code T of the same length a Zg-code C' can be constructed
by the formula C = CRT(B,T).

If C =aC,+bCyis an H,-code, we can identify it with an additive Zg-code
given by C = CRT(C,, Cy). We use the Magma notation

(<0, 1>, <i, A >, <n, A, >

for the weight distribution of a senary code, where A; is the number
of codewords of Hamming weight ¢. The first index i > 0 for which A; is
nonzero is called the Hamming distance of the code. It is denoted by dp.
We will also require the complete weight enumerator in six variables
cwee of a senary code C' defined by

5
C’(UGC(Q?O’ L1, T2, X3, T4, IB5) = Z H :L‘?i(C)a
ceC =0

where n;(c) denotes for i = 0,...,5, the number of coordinates j for which
¢; = 4. Thus, if n is the length of C, we have for all ¢ € C the relation

We follow the notation of [15].
In view of the connection with lattices it makes sense to introduce Eu-
clidean weight enumerator in one variable ewec of a senary code C
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defined as
ewec(y) = > y*rl),
ceC
where the Euclidean weight of x € Zg is defined as wg(z) = 0,1,4,9
if x = 0,£1,+£2,43 respectively. This notation is extended to vectors
in the obvious way. The following connection with the complete weight
enumerator is immediate from the definitions.

ewec(y) = cwe(L,y, y*, v7, %, v).

The first exponent i > 0 for which the coefficient of 3’ is nonzero is
called the Euclidean distance of the code and is denoted by dg.

For the next theorem we require some familiarity with lattices in the
sense of the geometry of numbers [7,11]. The following result is the so-
called Construction A of lattices from codes over Z,, when m = 6. For a
proof see [7] for m = 2, and [14] for m = 4.

Theorem 1. If C is a Zg code of length n and size 6™2, then the lattice
A(C) given by
V6AC) = | (c+62m)

ceC

has determinant 1 and norm min(6,dg/6). If, furthermore, the code C' is
self-dual, then A(C) is unimodular.

Remark 2. It is proved in [11,13] that C = CRT(B,T) is self-dual iff both
B and T are self-dual. Thus the Zg-codes produced in this paper, in view
of Lemma 1, and Lemma 2 are not always self-dual.
2.4. Duality
Define an inner product on H} as (z,y) = Y iy V.
The dual C* of C is the module defined by
Ct={yeH!|VzeC, (z,y) =0}.

Thus the dual of a module is a module. A code is self-dual if it is equal
to its dual.
A code C is said to be self-orthogonal if

Vz,y € C, (z,y) =0.
Clearly, C is self-orthogonal iff C C C*.
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Remark 3. Let the alphabet be Hss. The repetition code of length 2 is
defined by Ry := {00, aa,bb, cc,dd,ee}. We see that Ra is self-orthogonal.
Its dual contains also bc, cb, ed, de. (Note that the rows of ¢ and b (resp. d
and e) are the same).Thus Ry is not self-dual.

A code of length n is said to be quasi self-dual (QSD) if it is self-
orthogonal and of size 2.

Example: The code Ry over either Hso or Hog is self-orthogonal of
cardinality 6, hence it is QSD.

3. Classification

The following characterization result is easy but essential to understand
the classification technique.

Lemma 1. Every QSD code C of length n over Haj is of the form aC,®bCh,
where

1. C, is a self-dual binary code,
2. Gy is an [n,n/2| ternary code.

In particular n must be even.
Proof. = The code C is self-orthogonal iff C, is a self-orthogonal binary
code because of the following identity

(az + by, az’ + by) = a(x, '),

where x,2’ (resp. y,3y’) are arbitrary binary (resp. ternary) vectors of
length n. Since by the QSD hypothesis C = |C,||Cy| = 6"/2, we see that
both C, and C}, have dimension n/2. n

Lemma 2. Every QSD code C of length n over Hso is of the form aC,®bCh,
where

1. Cy is a self-dual ternary code,
2. C, is an [n,n/2| binary code.

In particular n must be doubly even.
Proof. The proof of the first statement is analogous to the proof of
Lemma 1, and is not written. To prove the second statement we use the
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fact that ternary self-dual codes only exist in doubly even lengths [15]. =

To classify QSD codes, we thus have to find all codes that are permu-
tation equivalent to aCy + bCy for a given pair (Cy, Cp). This is a similar
situation to the classification of self-dual codes over Z,, in [16], and we
follow the method there. Here SDR stands for System of Distinct Repre-
sentatives.

Theorem 2. Let (C,,C}) be a pair of codes as defined in Lemma 1 or
Lemma 2, with respective permutation groups A and B. Then, the set

Sc,.c, = {aCq +bo(Cy) | o runs over an SDR of A\S,,/B}

forms a set of inequivalent codes. In particular |Sc, c,| = |A\Sn/B].
The next corollaries are immediate.

Corollary 1. Let L, be the set of all inequivalent self-dual binary codes
of length n. Let Ly be the set of all inequivalent [n,n/2] ternary codes.
Then, the set of all QSD codes of length n over Hsg is, up to coordinate
permutation, the disjoint union [ Sc,c,-

Cq€Lq
CpeLy

Corollary 2. Let Ly be the set of all inequivalent self-dual ternary codes
of length n. Let L, be the set of all inequivalent [n,n/2| binary codes.
Then, the set of all QSD codes of length n over Hss is, up to coordinate
permutation, the disjoint union [ Sc,.c,-
ety
To apply Corollary 1 effectively to classify QSD Has-codes, we thus need
to know two lists of codes, for a given length n.

1. An SDR of equivalence classes of self-dual [n,n/2] binary codes,

2. an SDR of equivalence classes of ternary [n,n/2] codes.

To apply Corollary 2 effectively to classify QSD Hss-codes, we thus need
to know two lists of codes, for a given length n.

1. An SDR of equivalence classes of self-dual [n,n/2] ternary codes,

2. an SDR of equivalence classes of binary [n,n/2] codes.
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The first type of list can be found in [12]. The second type of list can be
established by using the method in [5,10].

The classification algorithm for QSD Has-codes can be described as
follows. Given an even length n > 1, do the following steps.

1. Write a list L, of self-dual [n,n/2] binary codes.
2. Write a list Ly of ternary [n,n/2] codes.
3. For all pairs (C,,Cy) in L, x Ly do the following.
1. Compute the permutation groups A and B of C, and Cj, respec-
tively.
2. Find a list 01,..., 04 of representatives of A\S,,/B.
3. For i =1 to s output aCy, + bo;(Cp).

A similar description holds for QSD Hgzs-codes.

1. Write a list Lj of self-dual [n,n/2] ternary codes.
2. Write a list L, of binary [n,n/2] codes.

3. For all pairs (Cy, Cy) in Ly x Ly do the following.

1. Compute the permutation groups A and B of C, and Cj respec-
tively.

2. Find a list 01,..., 0, of representatives of A\S,,/B.
3. For i =1 to s output aC, + bo;(Ch).

4. Numerical results

All the computations needed for this section were performed in Magma [6],
except for the length 8 where we used Sage [17]. The Euclidean distance of
the codes below is computed by inspection of the Euclidean weight enumer-
ator, which is, most of the time, too long to be displayed. In the following
sections Zg-codes are classified up to coordinate permutation, which is a
weaker form of equivalence than that used in [12,13,16] where the permuta-
tion part of the monomial automorphism group of the codes is authorized.
Thus, we find seventeen euclidean self-dual Zg-codes for n = 8, where only
five are found in [12,16]. In general all the self-dual codes mentioned below
are self-dual for the standard inner product over Zg like in [12,13,16].
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4.1. The Ring Hso

The bijective correspondence Hso < Zg is given informally by

0=0,e=1,b=2,a=3,d=4,c=5.

4.1.1. Length 4 (13 codes)

The main properties are summarized in the following table.

#codes|4|6|1]|2
dr 111122
dg 61363

There is a unique self-dual Zg-code of length 4. Its ewe is
y36 + 10y18 + 16y12 +8y6 + 1.
This is consistent with [16,Table 2]. Construction A yields the lattice
AR

4.1.2. Length 8 (11 615 codes)

The Hamming distance distribution is summarized in the following table.

# codes | 4516 | 6365 | 743
dg 1 2 3

There are seventeen self-dual codes, eleven of Hamming weight 2 and
Euclidean weight 6, and six of Hamming weight 3 and Euclidean weight 12.
The six codes of Euclidean distance 12 yield the lattice Fg by Theorem 1,
the unique Type II lattice in dimension 8 [7].

yields the lattice Z® by construction A.

4.2. The Ring Hos

The bijective correspondence Hasg < Zg is given informally by
0=0,e=1,b=2,a=3,d=4,c=5.

4.2.1. Length 2 (two codes)

We obtain two codes one with generator matrix (1 3), dg = 1, dg = 4, and
the other one with generator matrix (1 1), dg = 2, dg = 2.
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4.2.2. Length 4 (fourteen codes)

The metric properties are summarized in the following table.

#codes|2]3[3|5]1
dy 1(1(2]2
dg | 2[4|2]4]6

The unique code with dg = 6 is the self-dual code obtained in §4.1.1.

4.2.3. Length 6 (162 codes)

The metric properties are summarized in the following table.

# codes | 16 | 34 | 25 | 56 | 31
dg 1)1 1]12]2]2
dp 21412146

4.2.4. Length 8 (10447 codes)

The metric properties are summarized in the following table.

# codes | 209 | 1797 | 509 | 3690 | 11 | 3179 | 416 | 481 [ 117 | 6 | 27| 5
SD N| N | N| N|Y| N|N|N|N|Y|N|N
dg 1 1 2 2 2 2 2 3 3131414
dr 2 4 2 4 6 6 8 4 8 12| 4 | 8

Like for codes over Hgs, there are 17 self-dual codes, 11 of Hamming
weight 2 and Fuclidean weight 6, and 6 of Hamming weight 3 and Euclidean
weight 12. The 6 codes of Euclidean distance 12 yield the lattice Eg by
Theorem 1, the unique Type II lattice in dimension 8 [7].
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