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Abstract

Let di be the degree of vertex vi of G then Randić matrix R(G) =
[rij ] is defined as rij = 1/

p
didj, if the vertices vi and vj are adjacent

in G or rij = 0, otherwise. The Randić energy is the sum of absolute
values of the eigenvalues of R(G). In this paper we have investigated
Randić energy of m-Splitting and m-Shadow graphs. We also have
constructed a sequence of graphs having same Randić energy.
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1. Introduction

Let G be a graph on vertex set V (G) = {v1, v2, ..., vn} and edge set
E(G). Let di be the degree of a vertex vi, for i = 1, 2, ..., n. The adjacency
matrix A(G) = [aij ] of a graph G is a square matrix of order n, where

aij =

(
1 ; if vertices vi and vj are adjacent
0 ; otherwise

As A(G) is a symmetric matrix so, its eigenvalues λ1, λ2, ..., λn are all real
numbers with their sum is zero. The concept of graph energy was intro-
duced by Gutman [8]. According to him energy of graph E(G) is defined
as

E(G) =
nX
i=1

|λi|

A brief account of graph energy can be found in Balakrishnan [2],
Li et al. [14] and Cvetković et al. [6].

In [8], Gutman investigated the energy of complete graph Kn and
conjectured that among all graphs on n vertices, the energy of complete
graph is maximum. But Walikar et al. [21] disproved it by showing the
existence of graphs other than Kn whose energy is greater than that of
complete graph Kn. Gong et al. [7] has introduced a new concept called
borderenergetic graph. According to him a graph on n vertices is called
borderenergetic if E(G) = E(Kn) = 2(n− 1).

In 1975, Milan Randić [15] has defined one topological index and termed
is as Randić index which is denoted as R and defined by

R =
X
i∼j

1p
didj

where the summation is taken over all pairs of adjacent vertices vi and
vj . Randić index is certainly the most widely applicable in chemistry and
pharmacology, in particular for designing quantitative structure property
and structure activity relations. A brief account on Randić index can be
found in [9, 12, 13, 16].

In 2010, Bozkurt et al. [3, 4] pointed out that the Randić index is
purposeful to produce a graph matrix of order n named as Randić matrix
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R(G) = [rij ], where

rij =

⎧⎨⎩
1p
didj

; if vi and vj are adjacent

0 ; otherwise

The connection between the Randić matrix and the Randić index
is obvious: The sum of all elements of R(G) is equal to 2R.

Let R(G) be the Randić matrix with µ1, µ2, ..., µn are eigenvalues of
matrix R(G) then the Randić energy [3, 4] is defined as the sum of absolute
values of Randić eigenvalues of graph G which is denoted as RE(G). That
is,

RE = RE(G) =
nX
i=1

|µi|

The Randić energy of some standard graph families is given as:

Graph Randić Energy Reference

Kn 2 [1]

Km,n 2 [1]

K1,n 2 [1]

Fn n+ 1 [1]

Dn
4 2 + (n− 1)

√
2 [1]

C2n
2 sin((bn2 c+

1
2)

π
n)

sin π
2n

[17]

Pn 2 + 1
2E(Pn−2) [10]

Table 1.1: Randić Energy of Standard Graph Families

From the above Table 1.1, one can observe that among all the graphs,
path Pn is the graph with maximum Randić energy. The Randić energy of
graphs obtained by means of various graph operations has been explored
in [19, 20].

The next section is aimed to discuss the Randić energy of m-Splitting
graph, m-Shadow graph and also to construct a sequence of graphs having
same Randić energy.
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2. Randić Energy of m-Splitting Graph

Definition 2.1. [18] The m-Splitting graph Splm(G) of a graph G is ob-
tained by adding to each vertex v a new m vertex v1, v2, ..., vm, such that
vi, 1 ≤ i ≤ m is adjacent to every vertex that is adjacent to v in G.

Definition 2.2. [11] For the matrices A = [aij ]m×n, B = [bij ]p×q the Kro-
necker product of A and B is defined as the matrix

A⊗B =

⎡⎢⎣ a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤⎥⎦
Proposition 2.3. [11] If λ is an eigenvalue of matrix A = [aij ]m×m with
corresponding eigenvector x, and µ is an eigenvalue of matrix B = [bij ]n×n
with corresponding eigenvector y. Then λµ is an eigenvalue of A⊗B with
corresponding eigenvector x⊗ y.

Z. Chu et al.[5] have proved the following result

Lemma 2.4. For a graph G,

RE(S0(G)) =
3

2
RE(G).

We prove the following result for m-Splitting graph of given graph G
and above result is consequence of our result.

Theorem 2.5. For any graphG, RE(Splm(G)) =

p
1 + 4m(m+ 1)

m+ 1
RE(G).

Proof. Let G be a graph with v1, v2, · · · , vn as vertices of then its Randić
matrix R(G) is given by

pc
mat-1
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Now, consider m-copies of vertex vi for 1 ≤ i ≤ n, say v1i , v
2
i , ..., v

m
i and

then join each vertex vki , for 1 ≤ k ≤ m to neighbors of vertex vi to obtain
m-Splitting of given graph G. Then the Randić matrix R(Splm(G)) can be
written as follows

R(Splm(G)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

m+ 1
R(G)

1√
m+ 1

R(G) · · · 1√
m+ 1

R(G)

1√
m+ 1

R(G) O · · · O

...
...

. . .
...

1√
m+ 1

R(G) O · · · O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

That is,

R(Splm(G)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

m+ 1

1√
m+ 1

· · · 1√
m+ 1

1√
m+ 1

0 · · · 0

...
...

. . .
...

1√
m+ 1

0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗R(G) = A⊗R(G),

where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

m+ 1

1√
m+ 1

· · · 1√
m+ 1

1√
m+ 1

0 · · · 0

...
...

. . .
...

1√
m+ 1

0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is of order m+ 1. Since, A is a matrix of rank 2 so, it means that matrix
A has only two non-zero eigenvalues, say ρ1 and ρ2.
Also, we know that

ρ1 + ρ2 = tr(A) =
1

m+ 1
(2.1)
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Now, consider the matrix

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

(m+ 1)2
+

m

m+ 1

1

(m+ 1)
√
m+ 1

· · · 1

(m+ 1)
√
m+ 1

1

(m+ 1)
√
m+ 1

1

m+ 1
· · · 1

m+ 1
...

...
. . .

...

1

(m+ 1)
√
m+ 1

1

m+ 1
· · · 1

m+ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here,

ρ21 + ρ22 = tr(A2) =
1

(m+ 1)2
+

2m

m+ 1
(2.2)

by solving equations (2.1) and (2.2), we have

ρ1 =
1 +

p
1 + 4m(m+ 1)

2(m+ 1)
and ρ2 =

1−
p
1 + 4m(m+ 1)

2(m+ 1)

Hence,

Spec(A) =

⎛⎜⎜⎝ 0
1 +

p
1 + 4m(m+ 1)

2(m+ 1)

1−
p
1 + 4m(m+ 1)

2(m+ 1)

m− 1 1 1

⎞⎟⎟⎠
Since, R(Splm(G)) = A⊗R(G), it follows that if µ1, µ2, ..., µn are eigen-

values of R(G), then by proposition 2.3, we have
R-Spec(Splm(G)) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1 +

p
1 + 4m(m+ 1)

2(m+ 1)
µ1 · · · 1 +

p
1 + 4m(m+ 1)

2(m+ 1)
µn

n(m− 1) 1 · · · 1

1−
p
1 + 4m(m+ 1)

2(m+ 1)
µ1

1−
p
1 + 4m(m+ 1)

2(m+ 1)
µ2 · · · 1−

p
1 + 4m(m+ 1)

2(m+ 1)
µn

1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Hence,

RE(Splm(G)) =
nP
i=1

¯̄̄̄
¯1±

p
1 + 4m(m+ 1)

2(m+ 1)
µi

¯̄̄̄
¯

=
nP
i=1
|µi|

Ã
1 +

p
1 + 4m(m+ 1)

2(m+ 1)
+

p
1 + 4m(m+ 1)− 1

2(m+ 1)

!
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Therefore,

RE(Splm(G)) =

p
1 + 4m(m+ 1)

m+ 1
RE(G) 2

Illustration 2.6. Consider cycle C4 and its 2-spitting graph Spl2(C4). We

know that R-Spec(C4) =

Ã
−1 1 0
1 1 2

!
and so, RE(C4) = 2.

Figure 1: Cycle C4 and its 2-Splitting graph Spl2(C4)

The Randić matrix of C4 can be written as

R(C4) =

⎡⎢⎢⎢⎣
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0

⎤⎥⎥⎥⎦
The Randić matrix of Spl2(C4) can be written as

R(Spl2(C4) =

⎡⎢⎢⎢⎢⎢⎢⎣

1

3
R(C4)

1√
3
R(C4)

1√
3
R(C4)

1√
3
R(C4) 0 0

1√
3
R(C4) 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

pc
f-1
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=

⎡⎢⎢⎢⎢⎢⎢⎣

1

3

1√
3

1√
3

1√
3

0 0

1√
3

0 0

⎤⎥⎥⎥⎥⎥⎥⎦⊗R(C4)

Therefore, R-Spec(Spl2(C4))=

Ã
1 −1 2

3
−2
3 0

1 1 1 1 8

!
Hence,

RE(Spl2(C4)) =
10

3
=
5

3
RE(C4)

3. Randić Energy of m-Shadow Graph

Definition 3.1. [18] The m-Shadow graph Dm(G) of a connected graph G
is constructed by taking m copies of G say G1, G2, ..., Gm. Then Join each
vertex u in Gi to the neighbors of the corresponding vertex v in Gj , 1 ≤
i, j ≤ m.

We prove the following result for m-Shadow graph of graph G.

Theorem 3.2. For any graph G, RE(Dm(G)) = RE(G).

Proof. Let G be a graph with v1, v2, · · · , vn as vertices of then its Randić
matrix R(G) is given by

Now, consider m-copies G1, G2, ..., Gm of graph G and then join each
vertex of u of graph Gi to the neighbors of the corresponding vertex v in
graph Gj , 1 ≤ i, j ≤ m to obtain m-Shadow Dm(G). Then the Randić

pc
mat-2
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matrix of graph Dm(G) can be written as

R(Dm(G)) =

⎡⎢⎢⎢⎢⎢⎣
1
mR(G) 1

mR(G) · · · 1
mR(G)

1
mR(G) 1

mR(G) · · · 1
mR(G)

...
...

. . .
...

1
mR(G) 1

mR(G) · · · 1
mR(G)

⎤⎥⎥⎥⎥⎥⎦
That is,

R(Dm(G)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m

1
m · · · 1

m

1
m

1
m · · · 1

m

...
...

. . .
...

1
m

1
m · · · 1

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗R(G)

Therefore, R(Dm(G)) = Bm ⊗R(G)
Since, we know that the spectrum of Bm isÃ

0 1
m− 1 1

!

Hence, by Proposition 2.3

R − Spec(Dm(G)) =

Ã
0µ1 0µ2 ... 0µn 1µ1 1µ2 ... 1µn
m− 1 m− 1 ... m− 1 1 1 ... 1

!
where µi, i = 1, 2, ..., n are eigenvalues of R(G).
Therefore,

RE(Dm(G)) =
nX
i=1

|µi| = RE(G)

2

Illustration 3.3. Consider cycle C4 and its shadow graph D3(C4). It is
obvious that RE(C4) = 2 as

R− Spec(C4) =

Ã
−1 1 0
1 1 2

!
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Figure 2: Cycle C4 and its 3-Shadow graph D3(C4)

Now, the Randić matrix of D3(C4)) is given as follow

R(D3(C4)) =

⎡⎢⎢⎢⎣
1
3R(C4)

1
3R(C4)

1
3R(C4)

1
3R(C4)

1
3R(C4)

1
3R(C4)

1
3R(C4)

1
3R(C4)

1
3R(C4)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤⎥⎥⎥⎦⊗R(C4) = B3 ⊗R(C4)

Since, the spectrum of B3 is

Ã
0 1
2 1

!
.

So, R-Spec(D3(C4)) =

Ã
1 −1 0
1 1 10

!
.

Hence,

RE(D3(C4)) = 2 = RE(C4).

In the following section we constructed a sequence of graphs having
same Randić energy.

pc
f-2
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4. A Sequence of Graphs having same Randić Energy

Let G be a graph of order n. Consider an infinite sequence of graphs
F = {G(0),G(1), ..., G(k), ...} such that

G(0) = G, G(1) = Dm(G
(0)), G(2) = Dm(G

(1)), ..., G(k) = Dm(G
(k−1)), ...

Let µ1, µ2, ..., µn be a Randić eigenvalues of graph G, then for G(1) =
Dm(G

(0)) ∈ F , the Randić spectrum of G(1) is

R-Spec(G(1)) =

Ã
0 1µ1 1µ2 ... 1µn

n(m− 1) 1 1 ... 1

!

Now, we have G(2) = Dm(G
(1)) and so, Randić spectra of G(2) can be given

as

R-Spec(G(2)) =

Ã
0 1µ1 1µ2 ... 1µn

n(m2 − 1) 1 1 ... 1

!

By continuing this process we have for any G(k) = Dm(G
(k−1)) ∈ F , for

k1, the Randić spectra of G(k) is given as,

R-Spec(G(k)) =

Ã
0 1µ1 1µ2 ... 1µn

n(mk − 1) 1 1 ... 1

!

Therefore, Randić energy of G(k) is

RE(G(k)) =
nmkP
i=1

|µi|

=
nP
i=1
|µi| = RE(G(0)) = RE(G)

Hence, F is a set of infinite sequence of graphs having same Randić
energy.

5. Concluding Remarks

The concept of Randić energy is defined in the context of Randić
matrix. We have obtained Randić energy of m-Splitting and m-Shadow
graphs. An iterative sequence of graphs having same Randić energy has
been investigated. It is worth to note that, unlike in the concept of equiener-
getic graphs, the graphs whose Randić energies are shown to be equal are
of different order. It is a salient feature of our contribution.
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