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Abstract

The objective of this paper is to investigate the existence of mild so-
lutions and optimal controls for a class of fractional neutral stochastic
integrodifferential equations driven by Rosenblatt process and Poisson
jumps in Hilbert spaces. First we establish a new set of sufficient
conditions for the existence of mild solutions of the aforementioned
fractional systems by using the successive approximation approach.
The results are formulated and proved by using the fractional calcu-
lus, solution operator and stochastic analysis techniques. The exis-
tence of optimal control pairs of system governed by fractional neutral
stochastic differential equations driven by Rosenblatt process and pois-
son jumps is also been presented. An example is provided to illustrate
the theory.
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1. Introduction

Fractional differential equations (FDEs) is about to generalization of the
integer order and derivative to arbitrary order. The potential applications
of FDEs are in many fields of science and including fluid flow, electrical
networks and control theory, see [20, 21, 22, 11, 1, 2, 3, 4]. It is well known
that many real world problems in science and engineering are modeled as
stochastic differential equations [6]. Since fractional stochastic differential
equations describe a physical dynamical system more accurately, it seems
necessary to discuss the qualitative properties for such systems.

Nowadays various real-life situations can be modeled by using Poisson
jumps. For example, if a system jumps from a “normal state” to “ a other
state”, the strength of systems is random. In order to make more realistic
model, a jump term is included in any dynamical systems. The study of
stochastic differential equations driven by Poisson jumps has considerable
attentions [9, 8, 5, 10]. Recently, Tamilalagan et al. [10] have investigated
the stochastic fractional evolution inclusions driven by Poisson jumps in a
Hilbert space. Very recently Rihan et al. [11] extended to study the exis-
tence of fractional SDEs with Hilfer fractional derivative and Poisson jumps.
In [12] Balasubramaniam et al. studied a class of Hilfer fractional stochas-
tic integrodifferential equations with Poisson jumps through the fixed point
technique.

The fractional Brownian motion is the usual candidate to model phe-
nomena due to its self-similarity of increments and long-range dependence.
This fractional Brownian wH is the continuous centered Gaussian process
with covariance function described by

RH(t, s) := E
h
wH(t)wH(s)

i
=
1

2
(t2H + s2H − |t− s|2H).

The parameter H characterizes all the important properties of the pro-
cess, when H < 1

2 the increments are negatively correlated and the cor-
relation decays more slowly than quadratically; when H > 1

2 , the incre-
ments are positively correlated and the correlation decays so slowly that
they are not summable, a situation which is commonly known as the long
memory property. Natural candidates are the Hermite processes, these
non-Gaussian stochastic processes appear as limits are called Non-Central
Limit theorem [15]. The fractional Brownian motion can be expressed as a
Wiener integral with respect to the standard Wiener process, i.e. the inte-
gral of a deterministic kernel with respect to a standard Brownian motion,
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the Hermite process of order 1 is fractional Brownian motion and of order
2 is the Rosenblatt process.

Frequently, the optimal control is largely applied to biomedicine, namely,
to model the cancer chemotherapy, and recently applied to epidemiological
models and medicine (see [17, 18] and references therein). The main goal
of optimal control is to find, in an open-loop control, the optimal values of
the control variables for the dynamic system which maximize or minimize
a given performance index. If a fractional differential equation describes
the performance index and system dynamics, then an optimal control prob-
lem is known as a fractional optimal control problem. Using the fractional
variational principle and Lagrange multiplier technique, Agrawal [13] dis-
cussed the general formulation and solution scheme for Riemann-Liouville
fractional optimal control problems. It is remarkable that the fixed point
technique, which is used to establish the existence results for abstract frac-
tional differential equations, could be extended to address the fractional
optimal control problems. Recently, Aicha Harrat et al. [23] studied the
optimal controls of impulsive fractional system with Clarke subdifferential.
Very recently, Using the Leray-Schauder fixed point theorem, Balasubra-
maniam et al. [3] studied the solvability and optimal controls for impulsive
fractional stochastic integrodifferential equations. Tamilalagan et al. [19]
investigated the solvability and optimal controls for fractional stochastic
differential equations driven by Poisson jumps in Hilbert space via analytic
resolvent operators and Banach contraction mapping principle. Ramkumar
et al. [28] investigated the existence of mild solutions and optimal control
for a class of fractional neutral stochastic differential equation driven by
fractional Brownian motion and Poisson jumps in Hilbert spaces via suc-
cessive approximation method.

Motivated by the aforementioned research works, in this manuscript we
derive the sufficient conditions for the existence of solutions of the following
class of optimal control for fractional neutral stochastic integrodifferential
system driven by Rosenblatt process with Poisson jumps

D
β
t
[x(t)− f(t, xt)] = A

£
x(t)− f(t, xt)

¤
+ Γ

1−β
t

hZ t

0

g(s, xs)dZH(s) +

Z
Z

h(t, xt, η)eN(dt, dη)i, t ∈ [0, b],

x(t) = φ(t), −r ≤ t ≤ 0,(1.1)

where Dβ
t is the Caputo fractional derivative of order β, 0 < β < 1. Γ1−βt (.)

denotes the 1 − β order fractional integral. Let A : D(A) ⊂ X → X
is an infinitesimal generator of solution operator {Sα(t)}t≥0 defined on a
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Hilbert space X with an inner product h·, ·i and the norm k·k. Let Y
be another separable Hilbert space. The functions f : [0, b] × C → X ,
g : [0, b] × C → L02(Q1/2Y,X ) and h : [0, b] × C × Z → X are nonlin-
ear, φ(0) is =0-measurable X-valued stochastic process independent of the
Rosenblatt process ZH with finite second moment. Let C = C([−r, 0];X )
is the Banach space of all continuous functions φ : [−r, 0] → X endowed
with the norm kφk = sup {|φ(θ)| : −r ≤ θ ≤ 0}. Also, for x ∈ ([−r, b];X ),
we have xt ∈ C for t ∈ [0, b], xt(s) = x(t + s) for s ∈ [−r, 0]. IneN(dt, dη) = N(dt, dη) − dt(λdη) the Poisson measure eN(dt, dη) denotes
the Poisson counting measure.

Let (Ω,=,P) be a complete probability space furnished with complete
family of right continuous increasing sub σ-algebras {=t, t ∈ [0, b]} satisfy-
ing =t ∈ =. =t denotes the σ-field generated by

n
ZH(s),s∈[0,t]

o
and the P-

null sets. ZH(t) is a Rosenblatt process with parameter H ∈ (12 , 1) on a real
separable Hilbert space Y. The collection of all strongly measurable, square
integrable X -valued random variable is denoted by L2(Ω,=,X ) ≡ L2(Ω,X )
which is a Banach space equipped with norm

kx(·)kL2 =
³
E kx(t)k2

´1/2
,

It is easy to verify that L2(Ω,X ) is a Banach space equipped with the
above norm.

Let L(Y,X ) denotes the space of bounded linear operators from Y into
X , whenever X = Y, we simply denote L(Y). Q ∈ Y represents a non-

negative self adjoint operator. We introduce the subspace Y0 = Q
1
2Y of

Y which is endowed with the inner product < u, v >Y0=< Q
1
2u,Q

1
2 v >Y

is a Hilbert space. Let L02 = L2(Y0,X ) be the space of all Hilbert-Schmit
operators from Y0 into X , φ ∈ L02 is called a Q-Hilbert-Schmidt operator,
if

kφk2L02 =
∞X
n=1

°°°Q 1
2 enφ

°°°2 <∞,

and that the space L02 equipped with inner product < φ,ψ >L02=
P∞

n=1 <

φen, ψen > is a separable Hilbert space. Also if φ = ψ, then kφk2L02 =°°°φQ1
2

°°°2 = Tr(φQφ∗).
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2. Preliminaries

In this section, we recollect basic concepts, definitions and Lemmas which
will be used in the sequel to obtain the main results.

Definition 2.1. [15] The basic concepts of the Rosenblatt process as far
as Wiener integral, let ZH(t) be a one-dimensional Rosenblatt process with
Hurst parameter H ∈ (12 , 1). Hence the Rosenblatt process with parameter
H > 1

2 representation as

ZH(t) = c(H)

Z t

0

Z t

0

⎡⎣Z t

y1∨y2

∂KH
0

∂v
(v, y1)

∂KH
0

∂v
(v, y2)dv

⎤⎦ dw(y1)dw(y2),
(2.1)

where KH(t, s) is defined as

KH(t, s) = CHs
1
2
−H

Z t

s
(v − s)H−

3
2 vH−

1
2dv, t > s

with cH =
r

H(2H−1)
β(2−2H,H− 1

2
)
).

For basic preliminaries and fundamental results on Rosenblatt process
one can refer to [15, 3].

A two parameter function of the Mittag-Leffler type is defined by the
series expansion

Eα,β(z) =
∞X
k=0

zk

Γ(αk + β)
=

1

2πi

Z
c

µα−βeµ

µα − z
dµ, α, β > 0, z ∈ C

where c is a contour that starts and ends with −∞ and encircles the disc
|µ| ≤ |z|1/2 counter clockwise. The most interesting properties of the
Mittag-Leffler functions are associated with their Laplace integralZ ∞

0
e−λttβ−1Eα,β(ωt

α)dt =
λα−β

λα − ω
, Reλ > ω1/α, ω > 0
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Definition 2.2. The Caputo derivative of order α with the lower limit 0
for a function f can be written as

Dα
t f(t) =

1

Γ(n− α)

Z t

0

fn(s)

(t− s)α+1−n
ds = In−αfn(t), t > 0, 0 ≤ n− 1 < α < n.

The Laplace transform of the Caputo derivative of order α > 0 is given
as

L{Dα
t f(t);λ} = λαf̃(λ)−

n−1X
k=0

λα−k−1fk(0), n− 1 < α < n.

Definition 2.3. A closed and linear operator A is said to be sectorial if
there are constants ω ∈ R, θ ∈ [π/2, π],M > 0 such that the following two
constants are satisfied
(i) ρ(A) ⊂P(θ,ω) = {λ ∈ C, λ 6= ω, |arg(λ− ω)| < θ}
(ii) kR(λ,A)kL(X ) ≤ M

|λ−ω| , λ ∈
P
(θ,ω)

Definition 2.4. Let A be a linear closed operator with domain D(A) de-
fined on X . We call A as the generator of a solution operator if there
exists ω ≥ 0 and strongly continuous functions Sα : R+ → L(X ) such that
{λα;Reλ > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =
Z ∞
0

e−λtSα(t)xdt, Reλ > ω, x ∈ X .

Sα is called the solution operator generated by A.

Lemma 2.1. If the functions f : [0, b]×C → X , g : [0, b]×C → L02(Q1/2Y,X )
and h : [0, b] × C × Z → X satisfy the uniform Holder condition with ex-
ponent β ∈ (0, 1] and A is a sectorial operator, then a continuously differ-
entiable function x(t) is a mild solution of (1) if x satisfies the following
fractional integral equation

x(t) = φ(t), t ∈ [−r, 0],

x(t) = Sα(t)[φ(0)− f(0, φ)] + f(t, xt) +

Z t

0
Sα(t− s)

∙Z s

0
g(τ, xτ )dZH(τ)

¸
ds

+

Z t

0

Z
Z
Sα(t− s)h(s, xs, η)Ñ(ds, dη),



Fractional neutral stochastic integrodifferential equations with ... 555

where Sα(t) is the solution operator, generated by A is given by

Sα(t) = Eα,1(At
α) =

1

2πi

Z
B̂r

eλt
λα−1

λα −A
dλ, B̂r denotes the Brownwich path

[27].

Definition 2.5. A Cadlag stochastic process x : [−r, b] → X is called a
mild solution of (1) if
(i) x(t) is =t − adapted,
(ii)

R b
0 Ekx(s)k2ds <∞, almost surely

(iii) for each t ∈ [0, b], x(t) satisfies the following integral equation

x(t) = ϕ(t), t ∈ [−r, 0],

x(t) = Sα(t)[φ(0)− f(0, φ)] + f(t, xt) +

Z t

0
Sα(t− s)

∙Z s

0
g(τ, xτ )dZH(τ)

¸
ds

+

Z t

0

Z
Z
Sα(t− s)h(s, xs, η)Ñ(ds, dη), t ∈ [0, b].

(2.2)

Definition 2.6. Let us define M2([−r, b],X ) be the space of all X -valued
=t adapted processes

n
x(t),−r ≤ t ≤ b

o
such that

(i) x0 = φ and x(t) is Cadlag on [0, b],
(ii) for all x ∈M2([−r, b],X )

Ekxk2M2
= Ekφk2 +E

Z b

0
kx(t)k2dt <∞.(2.3)

Lemma 2.2. [26] The space M2([−r, b],X ) is a Banach space with the
norm defined by (4).

3. Existence of Mild Solutions

In this section, we shall derive the existence and uniqueness of mild solution
for system (1). we will work under the following hypotheses:

(A1) There exists a constant M > 0 such that kSα(t)k2 ≤ M , for all
t ∈ [0, b].
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(A2) The mappings g(.), h(.) satisfy the following conditions, for all
t ∈ [0, b], x1, x2 ∈ CR s
0 kg(τ, x1)− g(τ, x2)k2dτ ≤ κ(kx1 − x2k2),R t
0

R
Z kh(s, x1, η)− h(s, x2, η)k2λ̃(du)ds∨³R t

0

R
Z kh(s, x1, η)− h(t, x2, η)k4λ̃(dη)ds

´1/2
≤
R t
0 κ(kx1 − x2k2)ds,³R t

0

R
Z kh(s, x1, η)k4λ̃(dη)ds

´1/2
≤
R t
0 κ(kx1k2)ds,

where κ(.) is a concave nondecreasing function from R+ to R+ such
that κ(0) = 0, κ(ϑ) > 0 for ϑ > 0 and

R
0+

dϑ
κ(ϑ) = +∞.

(A3) For all t ∈ [0, b], there exists a constant M0 > 0 such thatZ
Z
kh(t, 0, u)k2λ̃(dη)ds ∨

Z s

0
kg(τ, 0)k2dτ ≤M0

(A4) f satisfies the Lipschitz condition, that is, there exist a constantMf >
0 such that

kf(t, x1)− f(t, x2)k2 ≤Mfkx1 − x2k2 and f(t, 0) = 0, t ≥ 0,

x1, x2 ∈ C

Let us introduce the sequence of successive approximation defined as
follows

x0(t) = Sα(t)φ(0), t ∈ [0, b],
xn(t) = φ(t), t ∈ [−r, 0], n = 1, 2, ...

xn(t) = Sα(t)[φ(0)− f(0, φ)] + f(t, xnt ) +

Z t

0
Sα(t− s)∙Z s

0
g(τ, xn−1t )dZH(τ)

¸
ds

+

Z t

0

Z
Z
Sα(t− s)h(s, xn−1s , η)Ñ(ds, dη),(3.1)

t ∈ [0, b], n = 1, 2, ...

Lemma 3.1. Assume that hypotheses (A1)−(A4) andMf <
1
8 hold, then

for all t ∈ [−r, b], n ≥ 0, there exists a constant k1 such that Ekxnk2M2
≤ k1



Fractional neutral stochastic integrodifferential equations with ... 557

Proof. It is obvious that x0 ∈ M2([−r, b],X ). By induction, xn(t) ∈
M2([−r, b],X ). From (5), using the Holder’s inequality, the Doop mar-
tingale inequality, and Burkholder-Davis-Gundy inequality for pure jump
stochastic integral in X , we have

E sup
0≤s≤t

kxn(s)k2 ≤ 8M(Ekφk2 +MfEkφk2) + 4MfEkxns k2

+ 8MTr(Q)C
Ht2H−11

R t
0
[
R s
0
Ekg(τ,xn−1τ )−g(τ,0)k2dτ]ds

+ 8MTr(Q)C
Ht2H−11

R t
0
[
R s
0
Ekg(τ,0)k2dτ]ds

+ 16Mb

∙ Z t

0

Z
Z
Ekh(s, xn−1s , η)− h(s, 0, η)k2λ̃(dη)ds

+

Z t

0

Z
Z
Ekh(s, 0, η)k2λ̃(dη)ds

¸
+ 8Mb

µZ t

0

Z
Z
Ekh(s, xn−1s , η)k4λ̃(dη)ds

¶1/2

≤ 8M(Ekφk2 +MfEkφk2) + 4MfEkxns k2

+ 8MTr(Q)C
Ht2H−11

R t
0
κ(Ekxn−1s k2)ds+8MbM0Tr(Q)C

Ht2H−1
1

+ 16Mb

Z t

0
κ
³
Ekxn−1s k2

´
ds+ 16Mb2M0 + 8Mb

Z t

0
κ(Ekxn−1s k2)ds

≤ 8M
h
Ekφk2 +MfEkφk2

i
+ 8MM0bTr(Q)CHt2H−11

+ 16Mb2K0 + 4MfEkxns k2 + 8MTr(Q)C
Ht2H−11

R t
0
κ(Ekxn−1s k2)ds

+ 24Mb

Z t

0
κ(Ekxn−1s k2)ds

≤ Q1 + 4MfEkxns k2 + 8MTr(Q)C
Ht2H−11

R t
0
κ(Ekxn−1s k2)ds

+ 24Mb

Z t

0
κ(Ekxn−1s k2)ds

where Q1 = 8M
£
Ekφk2 +MfEkφk2

¤
+ 8MM0bTr(Q)CHt2H−11 +16Mb2M0

.

Because κ(.) is concave and κ(0) = 0, we find a pair of positive constants
a1 and a2 so that

κ(ϑ) ≤ a1 + a2ϑ, ϑ ≥ 0
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Then,

E sup
0≤s≤t

kxn(s)k2 ≤ Q1 + 8Ma1(Tr(Q)CHt2H−11 +3b)b

+ 4MfEkxns k2 + 8Ma2(Tr(Q)CHt2H−11 +3b)
R t
0
Ekxn−1s k2ds,

≤ Q2 + 4MfEkxns k2 + 8Ma2(Tr(Q)CHt2H−11 +3b)
R t
0
Ekxn−1s k2ds.

where Q2 = Q1 + 8Ma1(Tr(Q)CHt2H−11 +3b)b and noting that

Ekxtk2C = sup
−r≤θ≤0

Ekx(t+ θ)k2 ≤ 2 sup
−r≤τ≤0

Ekx(τ)k2 + 2 sup
0≤τ≤b

Ekx(τ)k2

and
Ekxn−1s k2 ≤ 2Ekφk2 + 2E sup

0≤s≤b
kxn−1(s)k2.

E sup0≤s≤t kxn(s)k2 ≤ Q2 + 8MfEkφk2 + 8MfE sup0≤s≤t kxn(s)k2
+ 16Ma2(Tr(Q)CHt2H−11 +3b)

× bEkφk2 + 16Ma2(Tr(Q)CHt2H−11 +3b)
R t
0
Ekxn−1(s)k2ds

E sup0≤s≤t kx
n(s)k2(1− 8Mf ) ≤ Q3 + 16Ma2(Tr(Q)C

Ht2H−1
1

+3b)
R t
0
Ekxn−1(s)k2ds,

E sup0≤s≤t kx
n(s)k2 ≤ 1

(1−8Mf )½
Q3 + 16Ma2(Tr(Q)C

Ht2H−1
1

+3b)
R t
0
Ekxn−1(s)k2ds

¾
where Q3 = Q2 + 8MfEkφk2 + 16Ma2(Tr(Q)CHt2H−11 +3b)bEkφk2 .

On the other hand, for any k ≥ 1,

max
1≤n≤k

E sup
0≤s≤t

kxn−1(s)k2 ≤ Ekx0(s)k2 + max
1≤n≤k

E sup
0≤s≤t

kxn(s)k2,

max
1≤n≤k

E sup
0≤s≤t

kxn(s)k2 ≤
1

(1− 8Mf )

£
Q3 + 16Ma2(Tr(Q)C

Ht2H−1
1

+3b)
R t
0
Ekx0(s)k2ds

+ 16Ma2(Tr(Q)C
Ht2H−1
1

+3b)
R t
0
max1≤n≤k E sup0≤r≤s kxn(r)k2ds

¤
,

≤
1

(1− 8Mf )

£
Q3 + 16M

2
a2(Tr(Q)C

Ht2H−1
1

+3b)Ekφk2b

+ 16Ma2(Tr(Q)C
Ht2H−1
1

+3b)
R t
0
max1≤n≤k E sup0≤r≤s kxn(r)k2ds

¤
,

≤ Q4 +Q5

Z t

0

Ekxn(s)k2ds,
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where

Q4 =
1

(1− 8Mf )
[Q3+16M

2a2(Tr(Q)CHt2H−11 +3b)Ekφk2b],Q5=16Ma2(Tr(Q)C
Ht2H−1
1

+3b)

(1−8Mf )

max
1≤n≤k

E sup
0≤s≤t

kxn−1(s)k2 ≤ Q4 +Q5

Z t

0
max
1≤n≤k

E sup
0≤r≤s

kxn(r)k2ds.

By Gronwall inequality yields

E sup
0≤s≤t

kxn−1(s)k2 ≤ Q4e
Q5b.

Moreover, E kxnk2M2
= E kxn0k2+

R b
0 E kxn(s)k

2 ds ≤ E kφk2+bQ4eQ5b <
∞, which implies xn(·) ∈M2([−r, b],X ) and E kxnk2M2

= E kφk2+bQ4eQ5b.
2

Lemma 3.2. If the assumptions of Lemma 3.1 are satisfied with Mf <
1
3 , then there exist positive constants k2 and k3 such that for all t ∈
[0, b], m, n ≥ 1

E sup
0≤s≤t

kxm+n(s)− xn(s)k2 ≤ k2

Z t

0
κ(E sup

0≤r≤s
kxm+n−1(r)− xn−1(r)k2)ds,

E sup
0≤s≤t

kxm+n(s)− xn(s)k2 ≤ k3t

(3.2)

Proof. By the definition of xn, let us derive that for any m,n ≥ 1 and
t ∈ J

E sup0≤s≤t kxm+n(s)− xn(s)k2
≤ 3E sup0≤s≤t kf(s, xm+ns )− f(s, xns )k2
+3E sup0≤s≤t k

R t
0 Sα(t− s)

R s
0 (g(τ, x

m+n−1
τ )− g(τ, xn−1τ ))dZH(τ)dsk2

+3E sup0≤s≤t k
R t
0 Sα(t− s)

R
Z(h(s, x

m+n−1
s , η)− h(s, xn−1s ), η)Ñ(ds, dη)k2,

+3MfE sup0≤s≤t kxm+n(s)− xn(s)k2
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≤ 3(Tr(Q)C
Ht2H−11 +3b)M

R t
0
κ(E sup 0≤s≤tkxm+n−1s −xn−1s k2)ds

+6bM

⎡⎣ R t
0

R
Z E sup0≤s≤t kh(s, xm+n−1s , η)− h(s, xn−1s , η)k2λ̃(dη)ds

+
³R t
0

R
Z E sup0≤s≤t kh(s, xm+n−1s , η)− h(s, xn−1s , η)k4λ̃(dη)ds

´1/2 ⎤⎦
≤ 3MfE sup0≤s≤t kxm+n(s)− xn(s)k2
+3((Tr(Q)C

Ht2H−11 +3b)M+4bM)
R t
0
κ(sup0≤s≤t kxm+n−1s −xn−1s k2)ds

≤ Q6
1−3Mf

R t
0 κ

³
E sup0≤r≤s kxm+n−1(r)− xn−1(r)k2

´
ds,

≤ k2
R t
0 κ(2k1)ds = k3t,

By inequality (5) and Q6 = 3((Tr(Q)CHt2H−11 +3b)M+4bM) and

k2 =
Q6

1−3Mf
. 2

Theorem 3.1. Assume that the hypotheses of Lemma 3.1 and 3.2 hold,
then system (1) has a unique mild solution x(t) ∈M2([−r, b],X ).

Proof. Step 1: Let us show that xn(t), t ∈ [0, b] is a Cauchy sequence.
Let ν1(ϑ) = k2κ(ϑ). Choose b1 ∈ [0, b] such that ν1(K3ϑ) ≤ k3 for

ϑ ∈ [0, b1]. We first introduce two sequences of functions φn,m(t)m,n∈N+

and φn(t)n∈N+
by

φ1(t) = k3t,

φn+1(t) =

Z t

0
ν1(φn(ϑ))dϑ,

φm,n(t) = E sup
0≤ϑ≤t

kxm+n(ϑ)− xn(ϑ)k2.

Then φn(t)n∈N+
is monotonically decreasing when n→∞ and 0 ≤ φm,n(t) ≤

φn(t) for all m,n ≥ 1, t ∈ [0, b1]. In fact, it is obvious that φ1,m(t) ≤ φ1(t)
and

φ2,m(t) = E sup
0≤ϑ≤t

kxm+2(ϑ)− x2(ϑ)k2

≤
Z t

0
ν1E

Ã
sup
0≤ϑ≤s

kxm+1(ϑ)− x1(ϑ)k2
!
ds

≤
Z t

0
ν1(φ1(s))ds

=

Z t

0
ν1(k3s)ds
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= φ2(t) ≤ k3t = φ1(t),

which implies that φ2(t) ≤ φ2(t) ≤ φ1(t). Now assume the results holds for
n, then

φn+1,m(t) = E sup
0≤ϑ≤t

kxm+n+1(ϑ)− xn+1(ϑ)k2

≤
Z t

0
ν1(φm,n(s))ds

≤
Z t

0
ν1(φn(s))ds

= φn+1(t) ≤
Z t

0
ν1(φn−1(s))ds

= φn(t).

This shows that φn(t) is a nonnegative and decreasing continuous func-
tion on [0, b1] by induction on n, so we can define a function φn(t) by φk(t) ↓
φ(t), and it is easy to verify that φ(0) = 0 and φ(t) is a continuous function
on [0, b1]. Consequently, φ(t) = limn→∞ φn(t) = limn→∞

R t
0 ν1(φn−1(s))ds =R t

0 ν1(φ(s))ds. From φ(0) = 0,
R
0+

dϑ
ν1(ϑ)

= +∞ together with Bihari in-

equality, we obtain φ(t) ≡ 0. Thus 0 ≤ φn,n(t) ≤ φn(b1) → 0as n → ∞.
This shows that xn(t), t ∈ [0, b1] is a Cauchy sequence in M2([−r, b],X ).
The Borel-Cantelli lemma shows that as n → ∞, xn(t) → x(t) holds uni-
formly for 0 ≤ t ≤ b. So, taking limits on both sides of (5), for all
−r ≤ t ≤ b, we obtain that x(t) is a solution of (1).
Step 2: Uniqueness Let x(t), y(t) be two solutions of (1). Then the
uniqueness is obvious on the interval [−r, 0], and for 0 ≤ t ≤ b, it is easy to
show that by using Lemma 3.2, we have

E sup
0≤s≤t

kx(s)− y(s)k2 ≤ k2

Z t

0
κ

Ã
sup
0≤r≤s

kx(r)− y(r)k2
!
ds

The Bihari inequality yields that

E( sup
0≤s≤t

kx(s)− y(s)k2) = 0, 0 ≤ t ≤ b.

Therefore, x(t) = y(t) for all 0 ≤ t ≤ b. 2
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4. Optimal Controls

Let Y be a reflexive Banach space in which controls u takes values. The
multi valued map υ : [0, b] → 2Y \ {∅} has closed, convex and bounded
values, υ(.) is graph measurable and υ(.) ⊆ ε, where ε is a bounded set in

Y. Introduce the admissible set Uad =
n
u(.) ∈ L2(ε) : u(t) ∈ υ(t), a.e.

o
.

Now, Consider the fractional stochastic control problem

Dα
t [x(t)− f(t, xt)] = A[x(t)− f(t, xt)] + J1−αt∙

B(t)u(t) +

Z t

0
g(s, xs)dZH(s)ds

+

Z
Z
h(t, xt, η)Ñ(dt, dη)

¸
, J, u Uad,(4.1)

x(t) = φ(t),−r ≤ t ≤ 0.

(A5) The operator B ∈ L2(J, L(Y,X )), kBkL2 stands for the norm of
operator B in the Banach space L2(J,L(Y,X )). It is obvious that
Bu ∈ L2(J,X ) for all u ∈ Uad.

Theorem 4.1. If the hypotheses (A1)− (A5) are satisfied, for every u ∈
Uad, then there exists a unique mild solution of system (7) of the form

x(t) = Sα(t)[φ(0)− f(0, φ)] + f(t, xt) +

Z t

0
Sα(t− s)∙

B(s)u(s) +

Z s

0
g(s, xs)dZH(s)

¸
ds

+

Z t

0
Sα(t− s)

Z
Z
h(s, xs, η)Ñ(ds, dη), t ∈ J.

Proof. The proof of this theorem is similar to that of Theorem 3.3, and
one can easily prove that solution of system (7) by using the method of
successive approximation, and hence, it is omitted. 2

To prove the existence of optimal control pair of system (7), let us define
the performance index

J (u) =
Z b

0
L(t, x(t), xt,u(t))dt
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Our aim is to find u0 ∈ Uad such that J (u0) ≤ J (u) for all u0 ∈ Uad,
where x(t) denotes the mild solution of (7), we need the following hypothe-
ses:

(A6)
(i) The functional L : J ×X × C ×Y → R ∪ {∞} is Borel measurable.
(ii) L(t, ·, ·, ·) is sequentially lower semicontinuous on X ×C ×Y for almost
all t ∈ J .
(iii) L(t, x, xt, ·) is concave on Y for each xt ∈ C, x ∈ X and almost all
t ∈ J .
(iv) There exist constants d, e ≥ 0, j > 0, ρ ≥ 0 and ρ ∈ L1(J,R) such that

L(t, x(t), xt,u(t)) ≥ ρ(t) + dkxkX + ekxtkC + J kuk2Y.

Theorem 4.2. Assume that hypotheses (A1) − (A5) and Theorems 3.3
and 4.1 hold and B as a strongly continuous operator, should be defined
(7) admits at least one optimal pair.

Proof. The main task is to minimize the performance index J (u). In
order to prove that, if inf {J (u) : u ∈ Uad} =∞, then the result is obvious.
Assume that inf {J (u) : u ∈ Uad} = < ∞, using the hypothesis (A6),
we have > −∞. By the definition of infimum, there exists a minimizing
sequence feasible pair {(xm,um)} ⊂ Aad ≡

n
(x,u) : x is a mild solution

of the system (7) corresponding to u ∈ Uad
o
such that J (xm,um) → as

m→ +∞. Because {um} ⊆ Uad m = 1, 2, ... and {um} is a bounded subset
of the separable reflexive Banach space L2(J,Y), there exist a subsequence
{um} and u0 ∈ L2(J,Y) such that um → u0 weakly in L2(J,Y). Because
Uad is closed and convex, owing to the Marzur lemma, u0 ∈ Uad. Suppose
xm is the mild solution of system (7) corresponding to um and xm satisfy-
ing the following integral equations

xm(t) = φ(t), t ∈ [−r, 0]

xm(t) = Sα(t)[φ(0)− f(0, φ)] + f(t, xmt ) +

Z t

0
Sα(t− s)[

Z s

0
g(τ, xmτ )dZH(τ)]ds

+

Z t

0
Sα(t− s)

Z
Z
h(s, xms , η)Ñ(ds, dη) +

Z t

0
Sα(t− s)B(s)um(s)ds t ∈ J.

(4.2)
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Similarly corresponding to u0, there exists a mild solution x0 of (7),
that is,

x0(t) = φ(t), t ∈ [−r, 0]

x0(t) = Sα(t)[φ(0)− f(0, φ)] + f(t, x0t ) +

Z t

0
Sα(t− s)[

Z s

0
g(τ, x0τ )dZH(τ)]ds

+

Z t

0
Sα(t− s)

Z
Z
h(s, x0s, η)Ñ(ds, dη) +

Z t

0
Sα(t− s)B(s)u0(s)ds t ∈ J.

(4.3)

Hence, for t ∈ J , by the hypothesis (A1) − (A5), and the Holder
inequality, after an elementary calculation, we have

E|xm(t)− x0(t)|2
≤ 4MfE|xm(s)− x0(t)|2 + 4(Tr(Q)C

Ht2H−11 +3b)M
R t
0
κ(Ekxm(s)−x0sk2)ds

+8Mb

∙ R t
0

R
Z Ekh(s, xms , η)− h(s, x0s, η)k2λ̃(dη)ds

+
³R t
0

R
Z kh(s, xms , η)− h(s, x0s), η)k4λ̃(dη)ds

´1/2 ¸
+4Ek

R s
0 Sα(t− s)B(s)(um(s)− u0(s))dsk2

≤ 4MfE
³
sup0≤s≤t kxm(s)− x0(s)k2

´
+4((Tr(Q)C

Ht2H−11 +3b)M+2bM)
R t
0
κ(E sup0≤s≤t kxms −x0sk2)ds

+4bMEkBum −Bu0k2L2(J,Y).

By lemma 4.2 in [24], B is strongly continuous and Lebesgue’s domi-
nated convergence theorem, we have

J1 = 4((Tr(Q)C
Ht2H−11 +3b)M+2bM)

R t
0
κ(E sup0≤s≤t kxms −x0sk2)ds→0 as m→∞,

J2 = 4bMEkBumBu0k2L2(J,Y) → 0 as m→∞.

For each t ∈ J , xm(.), x0(.) ∈ X , we have

Ekxm(t)− x0(t)k2 ≤ J1 + J2
1− 4Mf

, 4Mf < 1.

So, let us infer that xm → x0 asm→∞. Finally using Balder’s theorem
[25] and hypothesis (A6), we obtain
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= lim
m→∞

Z b

0
L(t, xm(t), xmt ,um(t))dt

≥
Z b

0
L(t, x0(t), x0t ,u0(t))dt

= J (u0) ≥ .

Hence, the result is followed that J attains its minimum at u0 ∈ Uad.

5. Example

Consider the following fractional SPDE’s with Rosenblatt process and Pois-
son jumps

Dα
t

∙
y(t, x)−

Z 0

−r
a3(s) sin y(t+ s, x)ds

¸
=

∂2

∂x2

∙
y(t, x)−

Z 0

−r
a3(s) sin y(t+ s, x)ds

¸
+

1

Γ(1− α)

Z t

0
(t− s)−α

∙ Z
D
k0(x, γ)u(γ, t)dγ +

Z t

0

Z t

−r
e4(s−t)y(s, x)dsdZH(s)

+

Z
Z
η

µZ t

−r
a4(s− t)y(s, x)ds

¶
Ñ(dt, dη)

¸
,(5.1)

x ∈ D = [0, π], t ∈ J := [0, b], u ∈ Uad,
y(t, 0) = y(t, π) = 0, t ∈ J,

y(t, x) = φ(t, x), −r ≤ t ≤ 0, x ∈ D,

whereDα
t is Caputo fractional derivative of order 0 ≤ α ≤ 1 and {ZH(t) : t ∈ J}

is the Rosenblatt process with parameter H ∈ (12 , 1). Let Y = X =
L2([0, π]) and define the operator A : D(A) ⊂ X → X by Ay = y00

with the domain D(A) =
n
y ∈ X ; y, y0 are absolutely continuous, y00 ∈

X , y(0) = y(π) = 0
o
. Then Ay =

P∞
n=1 n

2(y, yn)yn, y ∈ D(A), where

yn(x) =
q
2
πsin(nx), n ∈ N is the orthogonal set of eigenvectors of A. Fur-

thermore, A generates an analytic compact semigroup of bounded linear
operator S(t), t ≥ 0, on a separable Hilbert space X which is given by

T (t)y =
∞X
n=1

(yn, en)en, y ∈ X .

The subordination principle of solution operator, implies that A is the
infinitesimal generator of a solution operator (Sα(t)t≥0). Because Sα(t) is
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strongly continuous on [0,∞) by a uniformly bounded theorem, there exist
a constant M > 0 such that kSα(t)k2 ≤M , for t ∈ J . Define the nonlinear
functions f : J × C → X , g : J × C → L02 and h : J × C × Z → X by

f(t, φ)(x) =

Z 0

−r
a3(θ)sin(φ(θ)(x))dθ, θ [−r, 0], x ∈ D

g(t, φ)(x) =

Z 0

−r
e−4θφ(θ)(x)dθ

h(t, φ)(x) =

Z 0

−r
a4(θ)φ(θ)(x)dθ

and assuming that
R
Z η2λ̃(dη) <∞. Furthermore, the nonlinear functions

f, g and h satisfy the hypotheses (A1)−(A6). Let functions u : τy(D)→ R,
such that u ∈ L2(τy(D)) as the controls. This claim is that t → u(., t)
going from [0, b] into Y is measurable. Set U(t) = u ∈ Y; kuk2Y ≤ µ,
where µ ∈ L2(J ,R+). We restrict the admissible controls Uad to be all
the u ∈ L2(τy(D)) such that ku(., t)k2 ≤ µ(t) a.c. Define B(t)u(t)x =R
D k0(x, γ)u(γ, t)dγ and consider the following cost function

J (u) =
Z b

0

Z
D
(ky(t, x)k2X + ku(t, x)k2X )dxdt+

Z b

0

Z
D

Z 0

−r
ky(t+ s, x)k2Xdsdxdt

with respect to system (10). Thus, problem (10) can be written as the form
of (7). Hence, all the hypotheses stated in theorem 4.2 are satisfied. Hence,
there exists an admissible control u0 ∈ Uad such that J (u0) ≤ J (u), for
all u ∈ Uad. 2
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