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1. Introduction

The secret sharing scheme represents a method of distributing secrets be-
tween shareholders. Only the approved subset can rebuild the secret [9]. If
the unapproved subsets can’t resume the least knowledge of the secret, we
consider the scheme a perfect secret sharing scheme [2]. The access struc-
ture Γ represents the set of all approved subsets of shareholders that can
resume the secret. The set of the minimal approved subsets of shareholders
represents the basic access structure, which is called Γ0. The information
rate is an important indicator to measure the performance of the secret
sharing scheme. It is expressed as the ratio of the width of the secret to the
maximum share width provided to shareholders. The graph access struc-
ture is a collection of qualified subsets of two members. In other words,
the two shareholders corresponding to the two ends of each different edge
can recover the secret, while a single shareholder cannot obtain any valu-
able information from the secret. Also, if any superset of the qualified
subset is qualified, the access structure is called monotone. Every share-
holder is interested in a few shares. In this way, the information rate of
the secret sharing scheme is the ratio between the size of the secret and
the maximum share allocated to each shareholder. Therefore, the optimal
information rate for the access structure Γ is the supremum of this ratio.

Blundo et al. [1] calculated the exact value of the optimal information
rate of the path graph. The value of information rate on the graph access
structures with six vertices studied yet [3, 4, 8, 12]. Also, Song considered
the case of a graph access structure with nine vertices [10]. The polyhedral
combinatorics tool [5] used to determine the information ratio of a graph
with a maximum of 10 vertices and

a girth of at least 5. Van Dijk considered all 112 graph access structures
with six vertices, but only proved the exact value of the information rate in
94 cases [12]. Gharahi and Hadian, considered the remaining 8 cases of the
other graphs [3, 4]. Similarly, in [8], the information rate of another case
is calculated. So far, there is insufficient exactness for nine of these access
structures.

1.1. Our Contribution

This article introduces two solutions with six vertices in the nine graph ac-
cess structures, which remained as open problems in Van Dijk’s paper[12].
The optimal information rate for these access structures has not been calcu-
lated. We have established the exact value of the information rate of these
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two structures. Furthermore, a more reasonable bound of the information
rate of some developed graph access structures will be displayed. Finally,
we introduced the developed multipartite graph and the developed cycle
graph and calculated the exact value of their optimal information rate.

1.2. Organization of the paper

The rest of the article is composed as follows: In section 2, the preliminaries
required in the rest of the paper are reviewed. The exact value of the
information rate of two remaining access structures of Van Dijks articles is
presented in Section 3. Finally, Section 4 analyzes the information rate of
the developed graph access structure.

2. Preliminaries

The Shamir’s perfect secret sharing scheme is a method of distributing
secrets between shareholders, such that the approved subset can rebuild
the secret and the unapproved subsets can’t resume the least knowledge of
the secret [9]. In this section, quickly implement the symbols, definitions,
and assumptions of Shamir’s scheme used in this article.

2.1. Access structure

Let P = {p1, p2, . . . , pn} be a set of shareholders and P (P) denote the
power set of P. Two distinct family ΓQ and ΓF of subsets of P referred
to family of approved sets and unapproved sets, respectively. On the other
hands ΓQ,ΓF ⊆ P (P) and ΓQ ∩ ΓF = ∅. We call the pair of (ΓQ,ΓF ) as
an access structure on P and denote by Γ. Define Γ0 to consist of all the
minimal approved sets:

Γ0 = {X ∈ ΓQ | X 0 /∈ ΓQ for all X 0 6⊆ X}.

If ΓQ = {X |Q ⊆ X for all Q ∈ Γ0} we say this access structure
Γ = (ΓQ,ΓF ) on P has monotone increasing property. Let G be a graph
with vertex set V (G) and edge set E(G). The stable set in the graph is a set
of vertices, two of which are not adjacent. Suppose the set of shareholders
P is the set of vertices of graph G i.e. V (G) = P. If Γ0 = E(G) and
ΓF is the family of all stable sets of G then the monotone access structure
Γ = (ΓQ,ΓF ) is a graph access structure .
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2.2. Secret sharing scheme

We first explain the entropy tool, which is used to describe the formal
definition of the secret sharing scheme. Using this tool, you can check the
unconditional security of each scenario.

Definition 1. Let the probability distribution {p(x)}x∈X on a set X. En-
tropy of X is represented by the symbol H(X) and is defined as follows:

H(X) = −
X
x∈X

p(x) log2 p(x).

The entropy H(X) is a measure of the average uncertainty about which
component of the set X is used, and the method of selecting components
from X according to the probability distribution {p(x)}x∈X . In the same
way, apply H(X|Y ) = −

X
y∈Y

X
x∈X

p(y)p(x|y) log2 p(x|y) to describe the con-

ditional entropy of X given Y . Conditional entropy is the average measure
of our uncertainty of the amount of X when we know the amount of Y .

Definition 2. Let the access structure Γ, P shows the set of shareholders
and K represents the set of all possible secrets. We call Σ a perfect secret
sharing scheme for Γ if it has the following properties:

1. If A is an approved set of shareholders in ΓQ then H(K|A) = 0, that
is, the shareholders in A can superimpose their shares to effectively
reconstruct the content of the secret. In other words, with the pres-
ence of shareholder’s shares, no ambiguity remains about the secret.

2. If B is an unapproved set of shareholders in ΓF then H(K|A) =
H(K), that is, even if the overlying shares in B are done, the size of
the ambiguity secret will not be reduced. In other words, with the
presence of shareholders in B, not even a single bit of information
about the secret can be obtained.

Throughout this article, we consider all secret sharing schemes to be
perfect and prove that our proposed scheme is also perfect.

2.3. Information rate

Now, we need to introduce a tool that can be used to test the superiority
of a scheme over other schemes on the access structure.
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Definition 3. Let Sp be the set of all possible shares allocated to each
shareholder p. In this case, the information rate of the specific scheme Σ
on the access structure Γ is defined by

ρ(Σ) =
log2 |K|

max
p∈P

log2 |Sp|
.

Besides, the optimal information rate of the access structure Γ is defined
by

ρ∗(Γ) =supP ρ
³X´

,(2.1)

where the supremum is on all schemes that are expressed for the access
structure Γ.

The information rate of each graph access structure is less than or equal
to one because the length of each share is greater than or equal to the length
of the secret[7]. When ρ∗(Γ) = 1, we say that this is the best case for the
information rate, because each shareholder holds only one share per secret,
not more. Therefore, we call such a scheme an ideal scheme. The value
of the optimal information rate represents the superiority of a scheme to
other schemes on the access structure Γ. Therefore, estimate bound for
this value has always been considered.

3. The exact value of the information rate

Van Dijk considered the information rate of the secret sharing scheme of
the graph access structure on the six shareholders [12]. Of the 112 graph
access structures of six shareholders, only 94 found the best information
rate. Thus, in the case of unresolved secret sharing schemes on the six
shareholders’ association graphs, some of the types of information sharing
were obtained from time to time [3, 4, 8]. Initially, we present the well-
known theorems that are needed to prove our claims.

Theorem 4. ([6]) Let Γ be the graph access structure that corresponds
to the connected graph G. Then ρ∗(Γ) = 1 if and only if G is a complete
multipartite graph.

Theorem 5. ([6]) Let Γ be the graph access structure that corresponds
to the connected graph G. If G is an incomplete multipartite graph, then
ρ∗(Γ) ≤ 2

3 .
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It is straightforward that if H is an induced subgraph of G, then any
secret sharing scheme on the access structure G can be transformed into a
secret sharing scheme on the access structure H by limiting its shareholders
to shareholders H. Consequently, the next theorem is clear.

Theorem 6. Let G be a graph and H the induced subgraph of G. Then
ρ∗(Γ(G)) ≤ ρ∗(Γ(H)).

Using the above theorem, it is possible to find suitable upper bound for the
optimal information rate of the graphs that have induced subgraphs with
known information rates.

3.1. The exact value of the graph access structure with six vertices

In this section, the two remaining access structures of Van Dijk’s articles
Γ55 (Fig. 3.1) and Γ70 (Fig. 3.2), the exact value’s information rate of
which has not yet been calculated, are questioned. Van Dijk in [12] shows
that 3

5 ≤ ρ∗(Γi) ≤ 2
3 for i = 55, 70 that so far this bound has remained

unchanged. In this article, we will calculate the exact value of the best
information rate for these two structures as follows.

Theorem 7. The exact value of the optimal information rate of Γ55 is
2
3 .

Proof. To prove, we perform a secret sharing scheme for access structure
Γ55 as follows. Let Svj for j = 1, . . . , 6, are the set of all shares given to
shareholder vj and the secret is the pair K = (k1, k2). Also, the values ri
for i = 1, . . . , 5, and the secret parts k1, k2 randomly selected from GF (q).

Figure 3.1: Γ55
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Sv1 = {r1 + r2 + r3 + 4k1, r3 + 2k2, r4 + r5 + k1 − 3k2},
Sv2 = {r1 + 3k1, r3, r2},
Sv3 = {r1 + 2k1, r3 + 2k2, r5 + k1 − 2k2},
Sv4 = {r1 + r5 + 4k1 − 2k2, r3, r4 + r2},
Sv5 = {r1 + 2r3 + r4 + r5 + 3k1 + 2k2, r3 + r4 + 2k2, r2},
Sv6 = {r1 + r2 + r3 + 3k1, r3 + r4, r5 + k1 − 2k2}.

Based on the number of shares allocated to each of the six shareholders,
we have: max

1≤i≤6
|Svi | = 3. This means that a maximum of 3 shares will be

given to each shareholder to share two secrets, k1 and k2, between the six
shareholders. Now, according to definition 3, we conclude that the lower
bound of the optimal information rate of Γ55 is equal to

2
3 , i. e.

2
3 ≤ ρ∗(Γ55).

On the other hand, the access structure Γ55 is an incomplete multipar-
tite graph. Thus, according to theorem 5, the optimal information rate for
this scheme is at most equal to 2

3 , i. e. ρ
∗(Γ55) ≤ 2

3 . So the exact value of
the information rate is equal to 2

3 . 2

With a simple review, we will find that both keys k1 and k2 do not
depend on the shareholders’ share of each stable set. Therefore, it can be
immediately concluded that the scheme proposed for the access structure
Γ55 in the previous theorem is perfect.

Theorem 8. The exact value of the optimal information rate of Γ70 is
2
3 .

Proof. To prove, we perform a secret sharing scheme for access structure
Γ70 as follows. Let Svj for j = 1, . . . , 6, are the set of all shares given to
shareholder vj and the secret is the pair K = (k1, k2). Also, the values ri
for i = 1, . . . , 5, and the secret parts k1, k2 randomly selected from GF (q).

Sv1 = {r1 + r2 + r3 + 4k1, r3 + 2k2 + k1, 2r4 + r5 + k1 − 3k2},
Sv2 = {r1 + 3k1 + 2k2, r3, r2},
Sv3 = {r1 + 5

2k1 + 3k2, r3 − 2k2 − k1, r5 + k1 − 2k2 + 2r4},
Sv4 = {r1 + r2 + 3k1 − 2k2, r3, 2r4 + r5 − 6k2 + k1},
Sv5 = {r1 + r2 + 2r3 + r4 + r5 + 4k1, r5 + 2r4 + k1 − 2k2, r4 − r3 − k1},
Sv6 = {r1 + r4 + r2 + 3k1, r4 + r3 − 2k2, r5 + k1 − 2k2}.

Based on the number of shares allocated to each of the six shareholders,
we have: max

1≤i≤6
|Svi | = 3. This means that a maximum of 3 shares will be

given to each shareholder to share two secrets, k1 and k2, between the six
shareholders. Now, according to definition 3, we conclude that the lower
bound of the optimal information rate of Γ70 is equal to

2
3 , i. e.

2
3 ≤ ρ∗(Γ70).

On the other hand, the access structure Γ70 is an incomplete multipar-
tite graph. Thus, according to theorem 5, the optimal information rate for
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this scheme is at most equal to 2
3 , i. e. ρ

∗(Γ70) ≤ 2
3 . So the exact value of

the information rate is equal to 2
3 .

Figure 3.2: Γ70

2

With a simple review, we will find that both keys k1 and k2 do not
depend on the shareholders’ share of each stable set. Therefore, it can be
immediately concluded that the scheme proposed for the access structure
Γ70 in the previous theorem is perfect.

4. Information rate of developed graph access structures

In this article, the term “developing vertex” refers to a vertex connected to
a limited number of new vertices. Suppose, |V (G)| indicates the number
of vertices of the graph G. For every vertex u ∈ V (G) the notation NG(u)
indicates the set of neighbours of u in G and dG(u) = |NG(u)|. We are
introducing a novel category of graphs.

Definition 9. Let Kp1,···,pk as a complete multipartite graph. If u ∈
V (Kp1,···,pk), then the complete multipartite graph that developed on u
defined by Ku

p1,···,pk .

Example 10. In the following, you can see Ku
2,3 that developed on the

vertex u.
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Figure 4.1: Ku
2,3

Presently we want to calculate the information rate of Ku
p1,···,pk . We

perform this by using the Stinson l-decomposition theorem, which you will
see underneath.

Theorem 11. [11] (l-decomposition construction) Suppose that Γ is an
access structure having basis Γ0 and suppose that l ≥ 1 is an integer.
Let K be a specified key set, and for 1 ≤ h ≤ l, suppose that Dh =
{Γh,1, · · · ,Γh,nh} is an ideal decomposition of Γ0 for the key set K. Let
Ph,j denote the shareholder set for the access structure Γh,j . For every
shareholder Pi, define

Ri =
lX

h=1

|{j|Pi ∈ Ph,j}|.

Then there exists a perfect secret sharing scheme realizing Γ, having infor-
mation rate ρ = l

R , where

R = max{Ri|1 ≤ i ≤ w}.

Definition 12. A star graph with n vertices is a complete bipartite graph
that one part has only one vertex and the rest is on the other part. In fact,
the star graph with n vertices is the same as bipartite graph K1,n−1.

Theorem 13. LetG is the complete multipartiteKp1,···,pk with |V (Kp1,···,pk)| ≥
3. Suppose H is the developed graph access structure Ku

p1,···,pk with n new

leaves u1, . . . , un connected to vertex u. Then ρ∗(Ku
p1,···,pk) =

2
3 .
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Proof. We apply the idea of 2-decomposition construction on the graph
H. For all Ku

p1,···,pk with |V (Kp1,···,pk)| ≥ 3, we can give two ideal decom-
positions in the following way.

D1 = {Γ1,1,Γ1,2},
Γ1,1 = {Kp1,···,pk} = {G},
Γ1,2 = {K1,n | V (K1,n) = {u} ∪ {u1, . . . , un}},
D2 = {Γ2,1,Γ2,2},
Γ2,1 = {Kp1,···,pk \ {u}},
Γ2,2 = {K1,n+dG(u) | V (K1,n+dG(u)) = {u} ∪ ({u1, . . . , un} ∪NG(u)}.

Now, according to theorem 11 computes ρ∗(Ku
p1,···,pk). The value of

R is equivalent to the highest representation of each vertex under ideal
decompositions. To calculate R, we first partition the vertices Ku

p1,···,pk
into four categories.

V1 = {u1, u2, . . . , un},
V2 = {u},
V3 = {v|v ∈ NG(u)} = NKp1,···,pk

(u),

V4 = V (G) \ (V3 ∪ {u}) = V (G) \ (NG(U) ∪ {u}).

It is easy to check that
4S

i=1
Vi = V (Ku

p1,···,pk).

We will review the number of vertices of each of these four categories.

• Vertices located on V1 are present in two sub-decompositions Γ1,2 and
Γ2,2.

• Vertex u located on V2 is present in three sub-decompositions Γ1,1,
Γ1,2 and Γ2,1.

• Vertices located on V3 are present in three sub-decompositions Γ1,1,
Γ2,1 and Γ2,2.

• Vertices located on V4 are present in two sub-decompositions Γ1,1 and
Γ2,1.

Therefore, for two ideal decompositions, R = 3. Thus according to
theorem 11, there is a scheme for Ku

p1,···,pk with information rate equals to
2
3 . K

u
p1,···,pk is an incomplete multipartite graph, so according to theorem 5

we have ρ∗(Ku
p1,···,pk) ≤

2
3 . Thus ρ

∗(Ku
p1,···,pk) =

2
3 for |V (Kp1,···,pk)| ≥ 3. 2

In the following, we intend to develop more than one vertex of a com-
plete bipartite graph and try to find a lower bound for its information rate.
But the exact value of their information rate hasn’t been calculated, which
could be of interest to researchers. At the last moment, consider the cycle

rvidal
Cuadro de texto
1014



The lower bound and exact value of the information rate of some...1021

of development from a vertex and find a new lower bound for them 2
5 . So

far, the exact value of its information rate has been uncalculated.

Definition 14. LetKp1,···,pk as a complete multipartite graph. If u1, u2, . . . , um ∈
V (Kp1,···,pk), then the complete multipartite graph that developed on ver-
tices u1, u2, . . . , um defined by Ku1,u2,...,um

p1,···,pk .

We develop m vertices of a complete multipartite graph and prove that
a new lower bound for its information rate, that equals to 1

2 .

Theorem 15. LetG is the complete multipartiteKp1,···,pk with |V (Kp1,···,pk)| ≥
3. Suppose H is the developed graph access structure Ku1,u2,...,um

p1,···,pk . Then
1
2 ≤ ρ∗(Ku1,u2,...,um

p1,···,pk ) ≤ 2
3 .

Proof. We apply the idea of 1-decomposition construction on the graph
H. Suppose that NC(ui) = NH(ui) \ NG(ui), for 1 ≤ i ≤ m. For all
Ku1,u2,...,um
p1,···,pk with |V (Kp1,···,pk)| ≥ 3, we can give one ideal decomposition in

the following way.
D = {Γ1,0,Γ1,1, . . . ,Γ1,m},
Γ1,0 = {Kp1,···,pk} = {G},
Γ1,1 = {K1,|NC(u1)| | V (K1,|NC(u1)|) = {u1} ∪NC(u1)},
...

...
...

...
Γ1,m = {K1,|NC(um)| | V (K1,|NC(um)|) = {um} ∪NC(um)}.

Now, according to theorem 11 computes lower bound on the ρ∗(Ku1,u2,...,um
p1,···,pk ).

With a simple review, we will see that in this decomposition, each vertex is
covered a maximum of 2 times in total. Then for this ideal decomposition,
R = 2. Thus according to theorem 11, there is a scheme for (Ku1,u2,...,um

p1,···,pk )
with information rate equals to 1

2 . It means that
1
2 ≤ ρ∗(Ku1,u2,...,um

p1,···,pk ).
According to theorem 5, we have 1

2 ≤ ρ∗(Ku1,u2,...,um
p1,···,pk ) ≤ 2

3 . 2

Finally, we introduce a developed cycle and prove the information rate
of the developed cycle is exactly 2

3 .

Definition 16. Let Cn is a cycle graph with length n. If u ∈ V (Cn), then
the developed cycle graph that developed on u defined by Cu

n .

Theorem 17. Let Cu
n is the developed cycle of the cycle graph Cn with

n ≥ 3. Then ρ∗(Cu
n) =

2
3 .
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