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1. Introduction

The theory of field extensions was developed by Galois [1, 2, 3, 4]. The
number of elements of a finite field, also called a Galois Field GF [2] is of
the form pm. corresponds to the number of field, for a prime number p and a
natural number m. For every power pm exists a unique field of pm elements
up to isomorphism, denoted by GF (pm). Suppose that F = GF (pm) and
that K is a subfield of F with pk elements. Then k is a divisor of m
and F is isomorphic to the quotient K[x]/(f) of the polynomial ring K[x]
with coefficients in K on the ideal generated by a irreducible polynomial
f ∈ K[x] of degree r = m/k. Hence we can express the elements of F in
the forma A(x) =

Pr−1
i=0 ai(x

i), with ai ∈ K, 0 ≤ i ≤ r − 1.
The field GF (2m) is an extension of the field GF (2), called finite binary

field, in which each element of GF (2m) can be represented by a vector
of m elements in GF (2). For an element a ∈ GF (2m) the operation of
multiplication by x corresponds to a shift in the form:

x · a(x)mod f =

( Pm
i=1 ai−1x

i, if am−1 = 0Pm
i=1(ai−1 + ai−1fi)xi + am−1f0, if am−1 6= 0

(1.1)

where am−1 is the feedback from LFSR (Linear Feedback Shift Register).
In abstract algebra, Finite Galois Extensions are defined (see chapter 15
in [1]): L|K is a (finite) Galois extension if there exists a finite subgroup
G ⊂ Aut(L), such that K = Fix(L,G), where K is a subfield of L called
the Fix field of G over L. Theorem of Galois theory describes the interplay
between the Galois group and Galois extensions. In particular the result
ties together subgroups of the Galois group and intermediate fields between
L and K, this is presented in [1]. From the study of the extended finite fields
and its properties, the description of the fractal (concatenated) operation
of multiplication for extended fields was developed in this investigation,
from a circuit interpretation LFSR [5] (see Figure 1).
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Figure 1. Fractal structure for iterative multiplication GF [(pm)n−k].

The modular arithmetic can be applied in Cryptography, Theory of
Code, Circuits on Systems, Galois Theory and Digital Communications
and other areas as extended GF (see, for instance, [6-7] and references
therein). This analysis starts from the study of the mathematical model
of the polynomial representation, in which: If p(x) is the irreducible poly-
nomial, then the multiplication of two elements of the field, represented as
the polynomials A(x) and B(x) is the algebraic product of the two poly-
nomials, and the module operation of the polynomial p(x), also known as
modular reduction:

C(x) = A(x)
O

B(x)→ C(x) = A(x) ·B(x)(mod p(x))(1.2)

pc
f-1
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The multiplication of polynomials is associative, commutative and dis-
tributive with respect to addiction [11-13], which is why we obtain:

C(x) = B(x)
mX
i=1

Aix
imod p(x)→ C(x) =

mX
i=1

Bi(A(x)x
imod p(x)(1.3)

where r(x) = A(x)mod p(x), corresponds to modular reduction overGF (pm).
On the other hand, in the definition of the code word Reed Solomon [9],
expressed through a generator polynomial G(x). This calculation is the
resulting given as the operator Rg(x)[.], applied on the data symbols D(x).

C(x) = xn−kD(x) +Rg(x)[D(x)x
n−k](1.4)

Where C(x) is the code word; n is the number of symbols in the code
word and k is the number of symbols in the data word. The mathematical
expression corresponds to assembling two polynomials, defined as: c =
(D << (n − k)) + (D << (n − k))%g. In the form: C(x) = xn−kD(x) +
xn−kD(x)mod g(x) Finding the mathematical expression of the redundancy
symbol generator:

R(x) = xn−kD(x)mod g(x)(1.5)

D(x) being a word of data of size k, which is operated by the polynomial
G(x) = gn−kxn−k + gn−k−1xn−k−1 + . . .+ g1, an irreducible polynomial of
length n − k. If F is a field, then F[x] forms an integral domain. F can
be naturally embedded into F[x] by identifying each element of F with the
corresponding constant polynomial. The only units in F[x] are the nonzero
elements of F [1]. After studying the fundamentals of finite fields, it was
possible to establish the commutative property for iterative operations,
in a fractal structure, over extended fields. This algebraic property has
application in various engineering fields.

∀x ∈ F : and f(x) ∈ G : mod(g(x)) =
nX

j=1

gj
O

f(xi(t)) + g0(t− 1)

Where the multiplication is defined as a convolution between the poly-
nomials G(x) and D(x), detailed as the product operation over finite fields
between the coefficient of the LFSR array at position i and the polynomial
F(x), expressed by gj(x), plus the feedback of the independent term of the
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polynomial in t − 1. Some works define multiplication in a specific struc-
ture [14], in this case the objective is to define the iterative operation over
extended finite fields.

The idea behind the paper is to make the calculations in GF (qn) when
n = mr, in by applying equation (1.1) in two steps: we can consider a ∈
GF (qn) as a polynomial with coefficients inGF (pm) by using the irreducible
polynomial in GF (pm)[x] of degree r and the operations needed in equation
(1.1) can be done by applying again equation (1.1) with the elements of
GF (pm) considered as elements of Zp[x] and an irreducible polynomial of
Zp[x] of degreem. The description of the algorithm present fractal form, we
are applying a similar algorithm several times to concurrent compute the
coefficients in the smaller field and in the bigger field. We can claim that
this method is more efficient is demonstrated by computing the number of
operations and resources, as such as is proved in [15].

2. Preliminaries

Let p[x] with characteristic p, that is, a prime field p that has been ex-
tended module an irreducible polynomial f(x) of degree n. The extension
field Fp[x]/(f(x)) extends module another irreducible polynomial g(x) of
degree n/m, generating a field with a greater number of elements. For the
case, arithmetic over Binary Extension Fields, the finite field GF (2m) is
isomorphic to GF (2)[x]/(p(x)) whereby p(x) is an irreducible polynomial
of degree m with coefficients from GF (2). We represent the elements of
GF (2m) as binary polynomials of degree up to m− 1 [16]. Addition is the
simple logical XOR operation, while the multiplication of field elements
is performed module the irreducible polynomial p(x), some algorithm for
GFmult is presented in [17].

Theorem 2.1. Let R(x) is the modular reduction defined on the polyno-
mial G(x) = gn−kxn−k+ gn−k−1xn−k−1+ . . .+ g1, of the element D(x). An
LFC(n,k) transformation is defined; it is interpreted as the sum of products
in the finite field, representing the concatenation of self-similar operators,
which defines an extended field of dimensions n− k.

Theorem 2.2. Let the function f be an operation defined as the product in
finite fields on the polynomial p(x), and the function g be a concatenation
operation of products on the polynomial g(x), then:

g(f(x)) = &k
i=n−kgi−1 + gi(f(x))
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When replacing each operator, a fractal operator is obtained, a product
of convolution. If the function g(x) corresponds to n−k elements operated
in the finite field product of the function f(x) ∈ GF (2m), then g(x) ∈
GF (2m·n−k). For a proof of theorem 2.1 and theorem 2.2, see [18].

Lemma 2.1. Let F,B, and E be fields with F ⊆ B ⊆ E. Then

(E/F ) = (E/B)(B/F )

.

Proof. Let �1, ..., �m be a basis for E as a B-vector space and β1, ..., βn be a
basis for B as an F-vector space. We claim that �ibj |i = 1, ...,m, j = 1, ..., n
is a basis for E as an F-vector space, yielding the lemma. First, we show
that this set spans E. Let α ∈ E.
Then α =

Pm
i=1 xi�i, with xi ∈ B.

But for each i, xi =
Pm

i=1(
Pn

j=1 γi,jβj)�i =
Pm,n

i,j=1 γi,j(�iβj).
For a proof of this, see [19]. Its application is present in concatenated
systems; such is the case of 2D-RS codes.

3. Main results

In this section, we present the lemmas derived from the observation and
identification of correspondence, and our main results:

Conjecture 3.1. Let G extended finite field of F and G = Aut(F)
then

(i) Being F ⊂ G, the GF-multiplication operation over F is embedded
in GF-multiplication operation on G.

(ii) The multiplication of elements on the extended Galois field G is
iterative on the Galois field F.

(iii) If the fixed coefficients of the extended field generating polynomial
g(x) have been reduced by F, the multiplication operation in the extended
field is simplified.
If

gi, di ∈ G and gf i = gi mod f(x) ∈ F then gi · di ∈ F.

Proof. Starting from property of automorphism (same structural form
between the field and its composition) [1], this are identified by correspon-
dence in the structure by observation and circuit interpretation of the LFSR
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scheme.

r(t) =
nX

j=1

gj(t) ∗ dj(t) + rn(t− 1),

with: gj(t) ∗ dj(t) = gj(t)
Pm

i=1 di(t) ∗ xi(t) + p0(t− 1)
= dj(t)

Pm
i=1 gi(t) ∗ xi(t) + p0(t− 1)

Finally, we obtain the expression of the form:

r(t) = dj(t)
nX

j=1

(gi(t) ∗ xi(t) + p0(t− 1)) + rn(t− 1)

Theorem 3.2. For a finites field, if F is a field defined for GF (pm) and
G a field defined GF (qn). Where Gq[x]/(g(x)) and Fp[x]/(f(x)), with p
prime, then:

(i) A(x)
N

B(x) = A(x)
Pm

i=1 bix
i mod p(x) = B(x)

Pm
i=1 aix

i mod p(x)

(ii) G(x)
N

D(x) = G(x)
Pn

j=1Djx
j mod g(x) = D(x)

Pn
j=1Gjx

j mod g(x)

This defines the field with iterative operations forGF [(pm)n]. Rewriting
Fp[x]/(g(f(x)), in which we can substitute the reduced operand on the
GF (pm).

G(x)
O

D(x) = D(x)
nX

j=1

(
mX
i=1

Gix
i mod p(x))j mod g(x)

With i, j determines the order of the element in the polynomial (position
in the LFSR).

NOTE: For the particular application RS(n,k), the relation of degree of
the polynomials on F and G : deg(a) < deg(p) and deg(d) > deg(g), where
g(x) is a polynomial of n− k elements, the index of the independent term
of polynomial should be n − k, by the specific organization of the Galois
LFSR array.

Proof. By commutative property with respect to the product [1], [12] is
applied for the iterative modular reduction, from which it can be expressed:

G(x)
O

D(x) = G(x)
nX

j=1

(
mX
i=1

(Djx
j)i modq (mod p(x))
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The main difference with results presented in [17] is that in this paper is
obtained the descriptor equation for definability of iterative multiplication
over extended finite fields.

Lemma 3.3. If C = Aut (G/F), with
(i) a =

Pm
i=1 aix

i ∈ F and g =
Pn

j=1 gjx
j ∈ G

(ii) G(x)
N

D(x) = D(x)
Pn

j=1Gjx
j mod g(x)

(iii) A(x)
N

B(x) = A(x)
Pm

i=1 bix
i mod p(x)

Then

g(i)
O

d(i) = d(i)
mX
i=1

gix
i p(x)

Proof. See Theorem 3.2. With which the iterative form of the operation
and fractal structure of the LFSR scheme is proven.

Lemma 3.4. If C = Aut (G/F), a =
Pm

i=1 aix
i ∈ F and g =

Pn
j=1 gjx

j ∈
G then

Aut(G/F) = Aut(GFmult(G)/GFmult(F))

Proof. See Theorem 3.2. GF multiplication operation on each field has
the same structure with an n/m dimensional relationship (see Figure 1).

Algorithm 3.5. Circuit description for iterative multiplication on ex-
tended field

For k = 1 to r generate —extended field E ⊂ G with polynomial e(x)
For j = 1 to n generate —extended field G ⊂ F with polynomial g(x)
For i = 1 to m generate —Field F with polynomial p(x)

R(x) = D(x)�k
Pr

k=0 gi
Pn−k

j=1 [
Pm

i=1 ai(x
i)j ]kmode(modgmod p(x))).

—mod(f(x))→ LFSR Structure:
—With LFSRf :

Pm
i=1 fi · xi(t) + f0(t− 1)

—Concurrent form: at = &i=0]m−1at−1(i−1)x or (at−1(m− 1) and p(i))

—With LFSRg :
Pn−k

j=k+1 gj
N

D(x) + gn−k(t− 1)
—Concurrent form: rt = &

n−k
i=0 rt−1(i)

L
[(D(k)

L
rt−1(n− k))

N
g(i)]

Nexti;Nextj ;Nextk;

The expression has been re-dimensioned concurrently [8], [15] by re-
placing the temporal dimension with a fractal spatial dimension. It is
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important to note that optimizations in a field can be extrapolated to the
extended field. The description of the optimized model [20-22], in which
the temporal analysis was performed and the behavior of the LFSR was
interpreted to obtain the equations of a concurrent architecture, can be
supported under a Holographic Principle approach, of coexistence in the
sequential results space. In which you can identify: self-organizing archi-
tecture of the n-LFSR, coefficients, weights or adaptive gains, Feedback of
partial ring terms, combination of space-temporal terms and dimensional
projection on fractal equations. Each finite field that belongs to a set has
embedded the composition of the preceding field for operation.

4. Conclusion

The recognition of similarity between the structure of theGFmult operations
and automorphism has allowed defining a simplification on extended field,
with the advantages of a generalized mathematical treatment for applica-
tions of this function. The equations developed in this research represent
a contribution to the optimization of computation in applications of er-
ror correction codes, cryptography and for the design of complex systems,
with feedback, being of special interest in multidimensional systems such
as 2D − RS codes [10], scientific advance on fractal models [23-24]. This
has advantages in the circuit of operations over finite fields, in the areas of
mathematics and engineering.

(i) LFSR-Fractal ANN Model in extended finite fields.

(ii) Field generation polynomials with involution properties to simplify
decoding over the extended field: G(G(D(x)) = D(X).

(iii) Technique for the generation of structures for the parallel imple-
mentation of modular arithmetic [6], over finite field, where the number of
component operations and their ordering is simplified and minimized.

(iv) Iterative algorithms for partial operations over extended finite fields,
for hardware description for energy optimization [21].

(v) Expressions of energy balance, for Hybrid-Renewable Energy Sys-
tems [25, 26, 27, 28], with residual feedback inspired by modular LFSR
reduction and circular operations with adaptive coefficients, in dynamic
polynomial systems over finite fields.
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