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1. Introduction

The idea to construct a new sequence space by means of the matrix domain
of a particular limitation method has recently been employed by Altay and
Basar[3, 4], Malkowsky and Savas[17], Basar et al.[7], Kirisci and Basar[11],
Ng and Lee[18], Sonmez[21] and many more. Moreover, Altay and Basar
[1, 2], Malkowsky[16] and Aydin and Basar[6] have employed on to con-
struct new paranormed sequence spaces by means of the domain of some
infinite matrices. The domain of generalized difference matrix B(r,s) on
some Maddox’s spaces was studied by Aydin and Altay [5]. More recently,
domain of the double sequential band matrix B(7,§) on some Maddox’s
spaces was studied by Ozger and Basar[19).

2. Preliminaries

Throughout the paper we denote w,{,c,co and ¢, be the space of all,
bounded, convergent, null and p-absolutely summable sequences respec-
tively. Also, bs, cs and £1 denote the spaces of all bounded, convergent and
absolutely convergent series respectively.

Let X and Y be two sequence spaces and B = (b,;) be an infinite
matrix of real or complex numbers b,x, where n,k € N = {1,2, — — —}.
Then, we say that B defines a matrix mapping from X into Y, denoted by
B: X — Y, if for every sequence z = (x,) € X, the sequence Bx = (Bx),
is in Y where,

(2.1) (Bz), = Z bnkxr, (n € Nandz € X),
k=1

provided the right hand side converges for every n € N and z € X.

If 11 is a normed sequence space, we write D,,(B) for « € w for which the
sum in (2.1) converges in the norm of p. We write (A, u) = {B : A C D,(B)}
for the space of those matrices which send the whole of the sequence space
A into the sequence space p in this sense.

The sequence space A\p = {x = (z) € w: Bz € A} is called the domain
of an infinite matrix B in a sequence space A\. One can easily verify that
the sequence spaces Ap and A are linearly isomorphic when B is triangle.
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A paranormed space (X, g) is a topological linear space in which the
topology is given by paranorm g, a real sub-additive function on X such
that g(6) =0, g(z) = g(—x) and scalar multiplication is continuous means
that A\, — A\, z,, — x imply \,z,, — Az, for scalars A and vectors x.

We consider (pg) is a bounded sequence of positive real numbers with
suppy = H and M = maz{1, H}. Throughout we assume p, ' + (p;) ' = 1
provided 0 < infpr < H < o0.

Throughout C denotes the complex field.

Maddox [13] define the following sequence spaces:

loo(p) = {z = (2) € w: suppeN|TE|PF < 00},

clp) ={x=(z) ew:31 € C,3 limg_oolzr — I[P =0},

co(p) = {x = (zx) € w :D limg_o|zk|P* = 0},

Up) ={x = (z) € w: Y |zk|P < o0}, (0 < prp < 0).

If p € {5 then (Maddox[14], Theorem 6]) co(p) and ¢(p) are complete
paranormed sequence spaces paranormed by g1 (z) = supk€N|:nk|ﬁ . Also
{(p) is a complete paranormed sequence space paranormed by g; if and
only if infpr > 0. Further, ¢(p) is complete paranormed sequence space

paranormed by ga2(z) = (34 |q:k|Pk)ﬁ

Let, # = (r;) and § = (si) are convergent sequences whose entries
either constants or distinct non-zero numbers then we define the matrix
D(7,0,0,5) as follows: D(7,0,0,8) = [dnx(r, s)] where,

re, (k=mn)
dp (r,8) =< sk, (k=n-—23)
0, otherwise.

for all k,n € N.
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3. Some new paranormed sequence spaces and their topolog-
ical properties

We define the sequence spaces £, (15, p), c(ﬁ, p) and ¢ (lA), p) as the set of
sequences whose transforms are in the spaces ¢ (p), c(p) and co(p) respec-
tively, that is-

loo(D,p) = {x = (z1) : SUpReN|TETEL + Sp—3Tk—3/PF < 00},
c(ﬁ,p) ={z=(xg): 31 € C,3 limg_oo|TrTk + Sk_37K_3 — [Pk = 0},
co(b,p) = {x = (z1) : limg—oo|TrTk + Sk—3TK—3/Pk = 0}.

Theorem 3.1 The sequence spaces Eoo(ﬁ,p),c(lj,p) and co(ﬁ,p) are the
complete linear metric spaces paranormed by g, defined by g(x) = suppeN|rETe+

Sk—3Tp—3[Pk.

Proof: We proof the result only for the space co(f?, p) to avoid the repeti-
tion of the similar statements for other given spaces. One can easily prove
that co(ﬁ,p) is a linear space with co-ordinate wise addition and scalar
multiplication since D(#,0,0, ) is a triangle matrix and co(p) is a linear
space.

It is clear that g(0) = 0, g(x) > Oforallz € co(D,p) and g(—z) = g(z).
Consider any sequence {z"} of points of ¢y(D,p) such that g(z" —x) — 0
as n — oo and (f3,,) is a sequence of scalars with 3, —  as n — oc.

Now, {g(z™)} is bounded sequence since g(z") < g(z)+ g(z"™ — x) holds
by subadditivity of the function g. Again, we have,
p
(Bua™ — Bz) = suppen [11(Bn} — Bar) + sp-3(Bazf_s — Brr—3)|
< [Bn = Blg(z") + [Blg(z" —x)

which tends to zero as n — oo.

Thus, scalar multiplication is continuous and hence cyo(D, p) is a para-
normed sequence space.

Next let {xz} be a Cauchy sequence in ¢o(D, p), where
@ ) Y

at = {331 1y Lo 5 Tg"y —
Then, by the definition of Cauchy sequence, for a given € > 0, there exists
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a positive integer ng depending on ¢ such that g(x! —a7) < ¢ for all 4,5 > 0.

Now, using the definition of g for each fixed k € N,

{D(#,0,0, )z} — {D(#,0,0, )27 }|
(3.1) < supen[{D(#,0,0,8)2'hy — {D(7,0,0,8)a7 b3 <
for every 4, j € ng, which leads us to the fact that

{{D(#,0,0,8)z"' }, {D(#,0,0, 8)a?}y, {D(#,0,0, 8)z}y,, — — =}

is a Cauchy sequence of complex numbers and is convergent for each £ € N.
Suppose, for each fixed k,

{D(#,0,0,3)z'}; — (D(#,0,0, )z
as 1 — oo.
Now, define the sequence

{(D(#,0,0,8)z)1, (D(#,0,0,8)x), (D(#,0,0,8)x)3, — — —}
From, the relation (3.1) with 7 — oo we have,
(32)  suprenl{D(#,0,0,8)z'} — {D(7,0,0, 8} ¥ <,
for every fixed k € N.
Now, @' = {}} € co(D,p) implies
{D(#,0,0,8)a}| 3 <,

for each £ € N.

Thus, by using relation (3.2) we have
Al . P
{D(7,0,0,8)x}| ™
< {D(#,0,0,8)a}x — {D(#,0,0,8)a"}i| T + {D(#,0,0,8)a"}[ 3 < 2

Hence, the sequence {ﬁ(f, 0,0, 3)z} belongs to co(p). Since, {z'} is an ar-
bitrary Cauchy sequence, the space c¢o(D,p) is complete. This completes
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the proof.

It is well known that the matrix domain Ap of a sequence space \ has
a basis whenever B = (by,x) is a triangle. (Jarrah and Malkowsky [10],
Remark 2.4), we have

Proposition 3.2 Let vy = {ﬁ(f,0,0,§)x} and 0 < pp, < M < oo for all
k € N. Define the sequences f = (fn) and dk) = {dﬁlk)(f,é)}neN of the
elements of the space co(D,p) by

For fixed n, k and for j € N

(B) (o 2y — (k)  _ (D" *spspiz———sn-3
dn” (7, 8) = dn+3j - TkTh4+3———Tn

0, otherwise.

n > k,taking s_; =1

fo=>0=1 at®) (7,8). Then, the following statements hold:

(i) The sequence {d®Y} is a basis for co(D,p) and any = € co(D,p) has a
unique representation of the form x =", e d®).

(i) The set {f,d®Y is a basis for ¢(D,p) and any x € ¢(D,p) has a
unique representation of the form x = nf + (v — n)d®. where n =
limg—oso{D(#,0,0, 8)2}1.

4. Duals of the sequence spaces

The idea of dual sequence space was introduced by Koéthe and Toeplitz
[12]. Then, Maddox, [15], generalized this notion to -X valued sequence
classes where X is a Banach space. Further, Chandra Tripathy[8] studied
on generalized Kothe-Toeplitz duals of some sequence spaces.

The set S(\, 1) is defined by
(4.1) S\ p) ={2z=(2) €w:zz € p,Vo = (z) € A}

is called the multiplier space of the spaces A and . One can easily observe
for a sequence space v with A D v D u that the inclusions S(\, u) C S(v, 1)
and S(\, p) C S(A, ) hold. With the notation (4.1), the a, § and v duals
of a sequence space \, which are respectively denoted by A%, A% and \? are
defined by A\ = S(X, £1), A% = S(\, ¢cs) and \Y = S(\, bs).
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Define the sequence y = (yg) which will be frequently used by D(f’, 0,0, 3)-
transform of a sequence z = (), that is
yr = {D(7,0,0,8)x}r = rpxg + sp—szk—3 for k € N, taking

(4.2) 3= _9—=T_1 = 0

Throughout we denote N,,, be the collection of those integers which are
greater than or equal to m € N and also @ denote the collection of all finite
subsets of N.

Theorem 4.1 Define the sets T;(p), i € {1,2,3,— — —, 7} as follows:

(i) Ta(p) = Ussa{a = (ax) € w : suprep S | Sex AP (7, )an| 57 <

(ii) To(p) = Ugsifa = (ar) € w : 354 [ 327 k sk Sky———Si3 |S;_>_,€1 <

Tkrk+3 —— T

(i) Ta(p) = Ugfa = (ax) € w: (S, CLMmea—0ms 0,650 ) € £, ),

7“ka+3***7‘1

i . =1
(iv) Tu(p) = Ugs1{a = (ar) € w : suppen S | Sy, CLokskes ———sis ) 7 <

TRTht3———T3
oo},

) T5(0) = Nesrla = (@) € w : suprep T | Srer A (7, Han ST <

oo}?

isks ———Si— =L
(Vi) Ts(p) = Ngor{a = (ar) € w : Xy | g, CL skt —sis g7 <

TETk4+3—— T4
oo},

(vil) T7(p) = {a = (ax) e w: >, | > d%k)(f,é)an] < oo}
Then we have, [co(f),p)]"‘ =Ti(p), [CQ(D,p)]ﬁ = Tr(p) NT3(p), [Co(ﬁvp)]7 =
T4(p)a

[e(D,p)]* = Ti(p) N Tr(p), [e(D, p))? = Ta(p) N Ts(p) N es, [e(D, p)] =
T4(p) N bS,

[loo (D, )]* = T5(p), [loo(D,p)]® = Ts(p) Nes, [la(D,p)]" = Ts(p).
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Proof : To avoid repetition and similar arguments we give the proof only
for the sequence space co(D, p).

Let f = (fn) € w and define the matrix A = (a,) via the sequence
f=(fn) by
_ ﬁ(fag)fm (1<k<n)
k= 0, (k>n)
Using the relation (4.2), one can derive by straight forward calculation
that

Fottn = fo{D71(7,0,0,8)y}n = 71 dP (7, )y = (Ay)y for any

(4.3) n € N.

From the relation (4.3), we observe that fx = (f,z,) € ¢1 whenever

z = (z) € co(D,p) if and only if Ay € £; whenever y = (yx) € co(p).

Hence, f = (fn) € [co(D,p)]* if and only if A € (co(p) : ¢1). Then,

in equation (5.14), by considering ¢, = 1 for any n € N we can write
|

. -1
f € leo(D,p)]* if and only if suprep >, | Xorer ank|SP+ < 0o and conse-
quently, [co(D,p)]* = T1(p).

Consider the equality

k=1 j=1

n n k
(4.4) S frew =30 dY (7, 8)y;) fu = (My)n,
k=1

where M = (my) is defined by

]ld ( S)fja 1<k<n
0, k>n

w ]

for any n, k € N.

Now, from the relation (4.4), we observe that, fx = (f,2,) € cs when-
ever ¥ = (zy) € co(D, p) if and only if My € cs whenever y = (yi) € co(p).
Hence, f = (fy) € [co(D,p))? if and only if M € (co(p) : ¢).

Again, we derive from the equation (5.10) and (5.11), by taking g, = 1
for any n € N and some S € Ny we have Y ;_g ]mnk|SPk < oo and there

exists scalar 3, € C for any k € N such that SUPReN| D oh—1 mmk—ﬁk|5”’k <
00, respectively, which implies that [co(D,p)]? = Ta(p) N T3(p). Now, we
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deduce from equation (5.9) that fo = (fpzn) € bs whenever z = () €
co(D,p) if and only if My € ls whenever y = (y) € co(p). Hence,
f = (fn) € [co(D,p)]" if and only if M € (co(p) : €oo). Therefore, by
equation (5.9) with ¢, = 1 for any n € N, we attain [co(D, p)]” = Ty(p).

5. Matrix Transformations

In summability theory, different classes of matrices have been investigated.
Characterization of matrix classes is found in Rath and Tripathy [20], Tri-
pathy and Sen [23] and many others.

Let A denote any of the sequence spaces cg, ¢ or £ and p be any given
sequence space. In this section, we characterize the classes (A(D,p) : p)

and (p : _)\(D, p)) of infinite matrices. Throughout we consider, b,; =
S (=1)*siSit3———5n—3 bui, for any k,n € N.

TiTi+3———Tn

Theorem 5.1: Suppose that the elements of the infinite matrices U = (upy)
and V' = (vn) be connected with the relation

2 (—1)'si8i43 — — —
15543 Sn—3
Unk = TkUnk+5k+3Un,k+30TUnk = E P Ui foranyk,n € N
—k iTi+3 Tn

(5.1)

and X\ be any of the spaces cg,c or £ and p be any given sequence space.
Then, U € (M(D,p) : ) if and only if

Ve (Ap) : p)and

V™ e (Ap) : ¢)(5.2)
for any fized n € N, where V™" = (v(n)) with

mk
—1)isisiy3———sn_
S _ [y Sy 0 <k <m
mk 0, k>m

for any m, k € N.

Proof: Suppose that the infinite matrices U = (upg) and V = (v,x) be
connected with the relation (5.1) and let p be any given sequence space.
One can easily prove that the spaces (\,p) and A\(p) are paranorm isomor-
phic.
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Let U € (MD,p) : ) and y € A(p). Then, VD(#,0,0,3) clearly ex-
ists and (upk)gen € [A(D,p)]?, which implies that (5.2) is necessary and
(Vi) peN € [MP)])? for each n € N. Thus, Vy exists for all y € A(p) and
hence by letting m — oo in the equality

u A X (<1)'siSi43 — — — Sp—3
(5.3) E UnkTE = E [ E — Um']yk:
k=1 k=1i=k T3 T T T Tn

Now, using (5.1) we have Uz = Vy, which concludes that V' € (A(p) :
1)

Conversely, let V' € (A(p) : ) and suppose it holds the relation (5.2).
Also let y = (yx) € A(p). Then, we have (vnx)reN € [A(p)]?, which gives
together with the relation (5.2) that (uni)reN € [MD,p)])? for each n € N.

Thus, Ux exists and consequently, from tpe relation (5.3) by letting
m — oo we have Vy = Uz and hence U € (A\(D,p) : p).

Theorem 5.2 Suppose that the elements of the infinite matrices E = (epx)
and F = (fnr) are connected with relation fpp = rnenk + Sp—3€n—3 for any
k,n € N, X is any of the spaces cg,c or bs and p be any given sequence
space. Then, E € (u: MD,p)) if and only if F € (u: M\(p)).

Proof: Let z = (2x) € p and consider the equality > 1L fukzk = 2 peq (Tnenk+
Sp—3€n—3 1)z for any m,n € N. Then by letting m — oo, we have (Fz), =
{D(f’,0,0,é)Ez}n for any n € N. Hence, we observe that Fz € )\(D,p)
whenever z € p if and only if Fz € A\(p) whenever z € u. This completes
the proof.

Let (gn) be a non-decreasing bounded sequence of positive real num-
bers. Also, let S and 7' denote the natural numbers. Finally, the sets K3
and K> are defined by
Ki={keN:p,<1}and Ky ={k e N:p, > 1}.

The following lemmas are consider from Grosse-Erdmann[9] which gives
the characterization of matrix mappings between Maddox’s sequence spaces

£(p), co(p), c(p) and Lo (p).

Lemma 5.3 Let B = (by) be an infinite matriz. Then, the following state-
ments hold:
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(i) B € (feo(p) : Leo(q)) if and only if

a
(5.4) VS > 15 sup,en( Z |bpi| SPE ) < o0,
keN

(ii) B € (loo(p) : c(q)) if and only if

1
(5.5) VS > 15 sup,eN Z |bpi| SPe < 00,
keN

3 (Bk) € w and

1
(5.6) VS >13 limnﬂw(z b — B S7r ) =0,
k

(iii) B € (leo(p) : co(q)) if and only if

1
VS > 13 limp—oo(D_ [bpk|SPr )™ =0,
k

(5.7)

1
(iv) B € (loo(p) : £(q)) if and only if supgey, >, | Yokex burS P [T < 00

forany

dn > 1 and for any S > 1. (5.8)

Lemma 5.4 Let B = (byy) be an infinite matriz. Then, the following state-
ments hold:

(i) B € (co(p) : loo(q)) if and only if

—1
(5.9) VS >13 supneN(Z bk | S7F )T < o0,
keN

(ii) B € (co(p) : c(q)) if and only if

;1
(5.10) VS > 15 sup,eN Z |bpi| S PE < 00,
keN
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—1
YT,3S > 13 supnen Shex, |k — BT ST < o0, (5.11)

(iii) B € (co(p) : co(q)) if and only if (5.11)holds with

Br =0

for any k € N and limy,—.co|bpi|% = 0 for each fized k € N, (5.13)
(iv) B € (co(p) : (q)) if and if

-1
IS >1>3 supKe@Z\ Z bpS Pk |1 < 00
n  keK
for any q, > 1. (5.14)

Lemma 5.5 Let B = (b,x) be an infinite matriz. Then, the following
statements hold: (i)B € (c(p) : £(q)) if and only if (5.9) holds and

(5.15) SUPLeN| ank|q” < 00,
k
(ii) B € (c(p) : c(q)) if and only if (5.10), (5.11) and (5.12) hold and

(5.16) 3B € C 3 limpoo| D _ bk — B|™ =0,
ks

(iii) B € (c(p) : co(q)) if and only if (5.13),holds and

=1
(5.17) VT,35 > 15 suppen > [buklT7 S < oo,
keKo
(5.18) Tim |3 bl =0,
k

(iv) B € (c(p) : £(q)) if and only if (5.14) holds and

Z‘ank‘q” < 00
n k

for any q, > 1(5.19)
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Lemma 5.6 Let B = (byy) be an infinite matriz. Then, the following state-
ments hold:

(i) B € (U(p) : c(q)) if and only if (5.12) holds and

(5.20) SUPpeNSUPKe K, [bnk[PF < 00,
(5.21) 35 >1> supneNZ b S™HPE < o0,
k

1
A(Bk) € w and VT > 1 3 sup,eNsupker; (|bnk — Bi|T )Pk < 00, (5.22)

A(Br) € w and VT',3S > 1 3 sup,cNSUPker, (|bnk — ﬁk\TanS*I)pk < 00, (5.23)
(ii) B € (U(p) : co(q)) if and only if (5.13) holds and

1
SUP,eN SUPke K [ankT o [Pk < 00, VT > 1, (5.24)

35 > 13 sup,eN 2 |ankTq_lnS_1|pk < oo for any T > 1,(5.25)
(iii) B € ((p) : Loo(q)) if and only if

—1
I > 15 suppensupke sy |bak T [P+ < oo,

__1
AT > 1 5 sup, e NSUPkek, |ank T [Pk < 00.(5.26)
Now, the following we may quote our theorems without proof on the
characterization of some matrix classes concerning with the sequence spaces

co(D,p),e(D,p) and ls(D,p).

Theorem 5.7 Let B = (byx) be an infinite matriz. Then, the following
statements hold:
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(i) B € (co(D,p) : £(q)) if and only if (5.14) also holds with by, instead of
bnk and (5.2) also holds with \ = cy.

(ii) B € (co(D,p) : ¢(q)) if and only if (5.10), (5.11) and (5.12) hold with
bk instead of b, and (5.2) also holds with X\ = cy.

(iii) B € (co(D,p) : loo(q)) if and only if (5.9) also holds with by instead
of bk and (5.2) also holds with X\ = cy.

Theorem 5.8 Let B = (byr) be an infinite matriz. Then, the following
statements hold:

(i) B € (¢(D,p) : £(q)) if and only if (5.14) and (5.19) hold with byy, instead
of bpi and (5.2) also holds with A = c.

(ii) B € (¢(D,p) : ¢(q)) if and only if (5.10), (5.11), (5.12) and (5.16) hold
with by, instead of byi and (5.2) also holds with A\ = c.

(iii) B € (¢(D,p) : Loo(q)) if and only if (5.9) and (5.15) also hold with byy
instead of byi and (5.2) also holds with A = c.

Theorem 5.9 Let B = (byx) be an infinite matriz. Then, the following
statements hold:

(i) B € (lso(D,p) : lso(q)) if and only if (5.8) also holds with by, replaced
by bk and (5.2) also holds with A =l

(i) B € (loo(D,p) : co(q)) if and only if (5.7) also holds with by, replaced
by boi and (5.2) also holds with A = l.

(iii) B € (loo(D,p) : ¢(q)) if and only if (5.5) and (5.6) hold with by, re-
placed by bog and (5.2) also holds with A = o

(iv) B € (boo(D, p) : loo(q)) if and only if (5.4) also holds with by, replaced
by bpx, and (5.2) also holds with A = lx

Theorem 5.10 Let B = (b,y) be an infinite matriz. Then, the following
statements hold:

(i) B € (co(p) : ¢(D,q)) if and only if (5.10), (5.11) and (5.12) holds with
bni Teplaced by vk R

(ii) B € (co(p) : loo(D,q)) if and only if (5.9) also holds with by, replaced
by vng.-
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Theorem 5.11 Let B = (b,x) be an infinite matriz. Then, the following
statements hold:

(i) B € (c(p) : ¢(D,q)) if and only if (5.10), (5.11), (5.12) and (5.16) holds
with by, replaced by vp.

(ii) B € (¢(p) : Loo(D,q)) if and only if (5.9) and (5.15) holds with by,
replaced by vp.

Theorem 5.12 Let B = (b,x) be an infinite matriz. Then, the following
statements hold:

(i) B € (lso(p) : co(D,q)) if and only if (5.7) also holds with by, replaced
by V-

(ii)) B € (loo(p) : ¢(D,q)) if and only if (5.5) and (5.6) holds with by,
replaced by vy, . X

(i) B € (boo(p) : boo(D,q)) if and only if (5.4) also holds with by replaced
by vnk-

Theorem 5.13 Let B = (byx) be an infinite matriz. Then, the following
statements hold:

(i) B € (U(p) : co(D,q)) if and only if (5.13) and (5.24)-(5.25) holds with
bni Teplaced by vk

(ii) B € (U(p) : ¢(D,q)) if and only if (5.12) and (5.20)-(5.23) holds with
bk Teplaced by vk

(iii) B € (£(p) : loo(D,q)) if and only if (5.26) and (5.27) holds with by
replaced by vyy.

Conclusion:

The spectrum of the matrix class D(r,0,0,s) has been investigated by
Tripthy and Paul [22] is a special case of D(7,0,0, ) if we consider 7 = re
and § = se . The results investigated in this paper are more general.
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