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1. Introduction

The idea to construct a new sequence space by means of the matrix domain
of a particular limitation method has recently been employed by Altay and
Basar[3, 4], Malkowsky and Savas[17], Basar et al.[7], Kirisci and Basar[11],
Ng and Lee[18], Sönmez[21] and many more. Moreover, Altay and Basar
[1, 2], Malkowsky[16] and Aydin and Basar[6] have employed on to con-
struct new paranormed sequence spaces by means of the domain of some
infinite matrices. The domain of generalized difference matrix B(r, s) on
some Maddox’s spaces was studied by Aydin and Altay [5]. More recently,
domain of the double sequential band matrix B(r̃, s̃) on some Maddox’s
spaces was studied by Özger and Basar[19].

2. Preliminaries

Throughout the paper we denote w, ∞, c, c0 and p be the space of all,
bounded, convergent, null and p-absolutely summable sequences respec-
tively. Also, bs, cs and 1 denote the spaces of all bounded, convergent and
absolutely convergent series respectively.

Let X and Y be two sequence spaces and B = (bnk) be an infinite
matrix of real or complex numbers bnk, where n, k ∈ N = {1, 2,− − −}.
Then, we say that B defines a matrix mapping from X into Y , denoted by
B : X → Y , if for every sequence x = (xn) ∈ X, the sequence Bx = (Bx)n
is in Y where,

(Bx)n =
∞X
k=1

bnkxk, (n ∈ Nandx ∈ X),(2.1)

provided the right hand side converges for every n ∈ N and x ∈ X.

If µ is a normed sequence space, we write Dµ(B) for x ∈ w for which the
sum in (2.1) converges in the norm of µ. We write (λ, µ) = {B : λ ⊂ Dµ(B)}
for the space of those matrices which send the whole of the sequence space
λ into the sequence space µ in this sense.

The sequence space λB = {x = (xk) ∈ w : Bx ∈ λ} is called the domain
of an infinite matrix B in a sequence space λ. One can easily verify that
the sequence spaces λB and λ are linearly isomorphic when B is triangle.
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A paranormed space (X, g) is a topological linear space in which the
topology is given by paranorm g, a real sub-additive function on X such
that g(θ) = 0, g(x) = g(−x) and scalar multiplication is continuous means
that λn → λ, xn → x imply λnxn → λx, for scalars λ and vectors x.

We consider (pk) is a bounded sequence of positive real numbers with
suppk = H andM = max{1,H}. Throughout we assume p−1k +(ṕk)

−1 = 1
provided 0 < infpk ≤ H <∞.

Throughout C denotes the complex field.

Maddox [13] define the following sequence spaces:

∞(p) = {x = (xk) ∈ w : supk∈N|xk|pk <∞},

c(p) = {x = (xk) ∈ w : ∃ l ∈ C,3 limk→∞|xk − l|pk = 0},

c0(p) = {x = (xk) ∈ w :3 limk→∞|xk|pk = 0},

(p) = {x = (xk) ∈ w :
P

k |xk|pk <∞}, (0 < pk <∞).

If p ∈ ∞ then (Maddox[14], Theorem 6]) c0(p) and c(p) are complete

paranormed sequence spaces paranormed by g1(x) = supk∈N|xk|
pk
M . Also

(p) is a complete paranormed sequence space paranormed by g1 if and
only if infpk > 0. Further, (p) is complete paranormed sequence space

paranormed by g2(x) = (
P

k |xk|pk)
1
M .

Let, r̂ = (rk) and ŝ = (sk) are convergent sequences whose entries
either constants or distinct non-zero numbers then we define the matrix
D̂(r̂, 0, 0, ŝ) as follows: D̂(r̂, 0, 0, ŝ) = [dnk(r, s)] where,

dnk (r, s) =

⎧⎪⎨⎪⎩
rk, (k = n)
sk, (k = n− 3)
0, otherwise.

for all k, n ∈N.
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3. Some new paranormed sequence spaces and their topolog-
ical properties

We define the sequence spaces ∞(D̂, p), c(D̂, p) and c0(D̂, p) as the set of
sequences whose transforms are in the spaces ∞(p), c(p) and c0(p) respec-
tively, that is-

∞(D̂, p) = {x = (xk) : supk∈N|rkxk + sk−3xk−3|pk <∞},

c(D̂, p) = {x = (xk) : ∃ l ∈ C,3 limk→∞|rkxk + sk−3xk−3 − l|pk = 0},

c0(D̂, p) = {x = (xk) : limk→∞|rkxk + sk−3xk−3|pk = 0}.

Theorem 3.1 The sequence spaces ∞(D̂, p), c(D̂, p) and c0(D̂, p) are the
complete linear metric spaces paranormed by g, defined by g(x) = supk∈N|rkxk+
sk−3xk−3|pk .

Proof: We proof the result only for the space c0(D̂, p) to avoid the repeti-
tion of the similar statements for other given spaces. One can easily prove
that c0(D̂, p) is a linear space with co-ordinate wise addition and scalar
multiplication since D̂(r̂, 0, 0, ŝ) is a triangle matrix and c0(p) is a linear
space.

It is clear that g(θ) = 0, g(x) ≥ 0 for all x ∈ c0(D̂, p) and g(−x) = g(x).
Consider any sequence {xn} of points of c0(D̂, p) such that g(xn − x)→ 0
as n→∞ and (βn) is a sequence of scalars with βn → β as n→∞.

Now, {g(xn)} is bounded sequence since g(xn) ≤ g(x)+g(xn−x) holds
by subadditivity of the function g. Again, we have,

(βnx
n − βx) = supk∈N |rk(βnxnk − βxk) + sk−3(βnxnk−3 − βxk−3)|

pk
M

≤ |βn − β|g(xn) + |β|g(xn − x)
which tends to zero as n→∞.

Thus, scalar multiplication is continuous and hence c0(D̂, p) is a para-
normed sequence space.

Next, let {xi} be a Cauchy sequence in c0(D̂, p), where

xi = {x(i)1 , x
(i)
2 , x

(i)
3 ,−−−}.

Then, by the definition of Cauchy sequence, for a given ε > 0, there exists
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a positive integer n0 depending on ε such that g(x
i−xj) < ε for all i, j ≥ 0.

Now, using the definition of g for each fixed k ∈ N,

|{D̂(r̂, 0, 0, ŝ)xi}k − {D̂(r̂, 0, 0, ŝ)xj}k|

≤ supk∈N|{D̂(r̂, 0, 0, ŝ)xi}k − {D̂(r̂, 0, 0, ŝ)xj}k|
pk
M < ε(3.1)

for every i, j ∈ n0, which leads us to the fact that

{{D̂(r̂, 0, 0, ŝ)x1}k, {D̂(r̂, 0, 0, ŝ)x2}k, {D̂(r̂, 0, 0, ŝ)x3}k,−−−}

is a Cauchy sequence of complex numbers and is convergent for each k ∈N.

Suppose, for each fixed k,

{D̂(r̂, 0, 0, ŝ)xi}k → (D̂(r̂, 0, 0, ŝ)x)k

as i→∞.

Now, define the sequence

{(D̂(r̂, 0, 0, ŝ)x)1, (D̂(r̂, 0, 0, ŝ)x)2, (D̂(r̂, 0, 0, ŝ)x)3,−−−}

From, the relation (3.1) with j →∞ we have,

supk∈N|{D̂(r̂, 0, 0, ŝ)xi}k − {D̂(r̂, 0, 0, ŝ)x}k|
pk
M < ε,(3.2)

for every fixed k ∈ N.

Now, xi = {xik} ∈ c0(D̂, p) implies

|{D̂(r̂, 0, 0, ŝ)xi}k|
pk
M < ε,

for each k ∈ N.

Thus, by using relation (3.2) we have

|{D̂(r̂, 0, 0, ŝ)x}k|
pk
M

≤ |{D̂(r̂, 0, 0, ŝ)x}k − {D̂(r̂, 0, 0, ŝ)xi}k|
pk
M + {D̂(r̂, 0, 0, ŝ)xi}k|

pk
M < 2ε

Hence, the sequence {D̂(r̂, 0, 0, ŝ)x} belongs to c0(p). Since, {xi} is an ar-
bitrary Cauchy sequence, the space c0(D̂, p) is complete. This completes
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the proof.

It is well known that the matrix domain λB of a sequence space λ has
a basis whenever B = (bnk) is a triangle. (Jarrah and Malkowsky [10],
Remark 2.4), we have

Proposition 3.2 Let γk = {D̂(r̂, 0, 0, ŝ)x} and 0 < pk ≤ M < ∞ for all

k ∈ N. Define the sequences f = (fn) and d(k) = {d(k)n (r̂, ŝ)}n∈N of the
elements of the space c0(D̂, p) by

d
(k)
n (r̂, ŝ) =

⎧⎪⎨⎪⎩
For fixed n, k and for j ∈ N
d
(k)
n+3j =

(−1)n−ksksk+3−−−sn−3
rkrk+3−−−rn n ≥ k, taking s−t = 1

0, otherwise.

fn =
Pn

k=1 d
(k)
n (r̂, ŝ). Then, the following statements hold:

(i)The sequence {d(k)} is a basis for c0(D̂, p) and any x ∈ c0(D̂, p) has a
unique representation of the form x =

P
k γkd

(k).
(ii) The set {f, d(k)} is a basis for c(D̂, p) and any x ∈ c(D̂, p) has a
unique representation of the form x = ηf +

P
k(γk − η)d(k). where η =

limk→∞{D̂(r̂, 0, 0, ŝ)x}k.

4. Duals of the sequence spaces

The idea of dual sequence space was introduced by Köthe and Toeplitz
[12]. Then, Maddox, [15], generalized this notion to -X valued sequence
classes where X is a Banach space. Further, Chandra Tripathy[8] studied
on generalized Köthe-Toeplitz duals of some sequence spaces.

The set S(λ, µ) is defined by

S(λ, µ) = {z = (zk) ∈ w : xz ∈ µ,∀x = (xk) ∈ λ}(4.1)

is called the multiplier space of the spaces λ and µ. One can easily observe
for a sequence space γ with λ ⊃ γ ⊃ µ that the inclusions S(λ, µ) ⊂ S(γ, µ)
and S(λ, µ) ⊂ S(λ, γ) hold. With the notation (4.1), the α, β and γ duals
of a sequence space λ, which are respectively denoted by λα, λβ and λγ are
defined by λα = S(λ, 1), λ

β = S(λ, cs) and λγ = S(λ, bs).
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Define the sequence y = (yk) which will be frequently used by D̂(r̂, 0, 0, ŝ)-
transform of a sequence x = (xk), that is
yk = {D̂(r̂, 0, 0, ŝ)x}k = rkxk + sk−3xk−3 for k ∈ N, taking

x−3 = x−2 = x−1 = 0(4.2)

Throughout we denote Nm be the collection of those integers which are
greater than or equal to m ∈ N and also ℘ denote the collection of all finite
subsets of N.

Theorem 4.1 Define the sets Ti(p), i ∈ {1, 2, 3,−−−, 7} as follows:

(i) T1(p) =
S
S>1{a = (ak) ∈ w : supK∈℘

P
n |
P

k∈K d
(k)
n (r̂, ŝ)an|S

−1
pk <

∞},

(ii) T2(p) =
S
S>1{a = (ak) ∈ w :

P
k |
Pn

i=k
(−1)isksk+3−−−si−3

rkrk+3−−−ri ai|S
−1
pk <

∞},

(iii) T3(p) =
S
S>1{a = (ak) ∈ w : (

Pn
i=k

(−1)isksk+3−−−si−3
rkrk+3−−−ri aiS

−1
pk ) ∈ ∞},

(iv) T4(p) =
S
S>1{a = (ak) ∈ w : supn∈N

P
k |
Pn

i=k
(−1)isksk+3−−−si−3

rkrk+3−−−ri ai|S
−1
pk <

∞},

(v) T5(p) =
T
S>1{a = (ak) ∈ w : supK∈℘

P
n |
P

k∈K d
(k)
n (r̂, ŝ)an|S

−1
pk <

∞},

(vi) T6(p) =
T
S>1{a = (ak) ∈ w :

P
k |
Pn

i=k
(−1)isksk+3−−−si−3

rkrk+3−−−ri ai|S
−1
pk <

∞},

(vii) T7(p) = {a = (ak) ∈ w :
P

n |
P

k d
(k)
n (r̂, ŝ)an| <∞}.

Then we have, [c0(D̂, p)]α = T1(p), [c0(D̂, p)]β = T2(p)∩T3(p), [c0(D̂, p)]γ =
T4(p),

[c(D̂, p)]α = T1(p) ∩ T7(p), [c(D̂, p)]β = T2(p) ∩ T3(p) ∩ cs, [c(D̂, p)]γ =
T4(p) ∩ bs,

[ ∞(D̂, p)]α = T5(p), [ ∞(D̂, p)]β = T6(p) ∩ cs, [ α(D̂, p)]γ = T6(p).
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Proof : To avoid repetition and similar arguments we give the proof only
for the sequence space c0(D̂, p).

Let f = (fn) ∈ w and define the matrix A = (ank) via the sequence
f = (fn) by

nk =

(
k
n(r̂, ŝ)fn, (1 ≤ k ≤ n)

0, (k > n)

Using the relation (4.2), one can derive by straight forward calculation
that
fnxn = fn{D̂−1(r̂, 0, 0, ŝ)y}n =

Pn
k=1 d

(k)
n (r̂, ŝ)yk = (Ay)n for any

n ∈N.(4.3)

From the relation (4.3), we observe that fx = (fnxn) ∈ 1 whenever
x = (xk) ∈ c0(D̂, p) if and only if Ay ∈ 1 whenever y = (yk) ∈ c0(p).
Hence, f = (fn) ∈ [c0(D̂, p)]α if and only if A ∈ (c0(p) : 1). Then,
in equation (5.14), by considering qn = 1 for any n ∈ N we can write

f ∈ [c0(D̂, p)]α if and only if supK∈℘
P

n |
P

k∈K ank|S
−1
pk < ∞ and conse-

quently, [c0(D̂, p)]α = T1(p).

Consider the equality

nX
k=1

fkxk =
nX

k=1

(
kX

j=1

d
(j)
k (r̂, ŝ)yj)fk = (My)n,(4.4)

where M = (mnk) is defined by

nk =

(
k
j=1d

(j)
k (r̂, ŝ)fj , 1 ≤ k ≤ n

0, k > n
(4.5)

for any n, k ∈N.

Now, from the relation (4.4), we observe that, fx = (fnxn) ∈ cs when-
ever x = (xk) ∈ c0(D̂, p) if and only if My ∈ cs whenever y = (yk) ∈ c0(p).
Hence, f = (fn) ∈ [c0(D̂, p)]β if and only if M ∈ (c0(p) : c).

Again, we derive from the equation (5.10) and (5.11), by taking qn = 1

for any n ∈ N and some S ∈ N2 we have
Pn

k=0 |mnk|S
−1
pk < ∞ and there

exists scalar βk ∈ C for any k ∈ N such that supn∈N|
Pn

k=1mmk−βk|S
−1
pk <

∞, respectively, which implies that [c0(D̂, p)]β = T2(p) ∩ T3(p). Now, we
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deduce from equation (5.9) that fx = (fnxn) ∈ bs whenever x = (xk) ∈
c0(D̂, p) if and only if My ∈ ∞ whenever y = (yk) ∈ c0(p). Hence,
f = (fn) ∈ [c0(D̂, p)]γ if and only if M ∈ (c0(p) : ∞). Therefore, by
equation (5.9) with qn = 1 for any n ∈ N, we attain [c0(D̂, p)]γ = T4(p).

5. Matrix Transformations

In summability theory, different classes of matrices have been investigated.
Characterization of matrix classes is found in Rath and Tripathy [20], Tri-
pathy and Sen [23] and many others.

Let λ denote any of the sequence spaces c0, c or ∞ and µ be any given
sequence space. In this section, we characterize the classes (λ(D̂, p) : µ)
and (µ : λ(D̂, p)) of infinite matrices. Throughout we consider, b̂nk =P∞

i=k
(−1)isisi+3−−−sn−3

riri+3−−−rn bni, for any k, n ∈ N.

Theorem 5.1: Suppose that the elements of the infinite matrices U = (unk)
and V = (vnk) be connected with the relation

unk = rkvnk+sk+3vn,k+3orvnk =
∞X
i=k

(−1)isisi+3 −−− sn−3
riri+3 −−− rn

uniforanyk, n ∈ N

(5.1)

and λ be any of the spaces c0, c or ∞ and µ be any given sequence space.

Then, U ∈ (λ(D̂, p) : µ) if and only if

V ∈ (λ(p) : µ)and
Vn ∈ (λ(p) : c)(5.2)
for any fixed n ∈ N, where V n = (v

(n)
mk) with

v
(n)
mk =

( Pm
i=k

(−1)isisi+3−−−sn−3
riri+3−−−rn uni, 0 ≤ k ≤ m

0, k > m

for any m, k ∈N.

Proof: Suppose that the infinite matrices U = (unk) and V = (vnk) be
connected with the relation (5.1) and let µ be any given sequence space.
One can easily prove that the spaces (λ, p) and λ(p) are paranorm isomor-
phic.
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Let U ∈ (λ(D̂, p) : µ) and y ∈ λ(p). Then, V D̂(r̂, 0, 0, ŝ) clearly ex-
ists and (unk)k∈N ∈ [λ(D̂, p)]β, which implies that (5.2) is necessary and
(vnk)k∈N ∈ [λ(p)]β for each n ∈ N. Thus, V y exists for all y ∈ λ(p) and
hence by letting m→∞ in the equality

mX
k=1

unkxk =
mX
k=1

[
mX
i=k

(−1)isisi+3 −−− sn−3
riri+3 −−− rn

uni]yk(5.3)

Now, using (5.1) we have Ux = V y, which concludes that V ∈ (λ(p) :
µ).

Conversely, let V ∈ (λ(p) : µ) and suppose it holds the relation (5.2).
Also let y = (yk) ∈ λ(p). Then, we have (vnk)k∈N ∈ [λ(p)]β, which gives
together with the relation (5.2) that (unk)k∈N ∈ [λ(D̂, p)]β for each n ∈N.

Thus, Ux exists and consequently, from the relation (5.3) by letting
m→∞ we have V y = Ux and hence U ∈ (λ(D̂, p) : µ).

Theorem 5.2 Suppose that the elements of the infinite matrices E = (enk)
and F = (fnk) are connected with relation fnk = rnenk+sn−3en−3,k for any
k, n ∈ N, λ is any of the spaces c0, c or ∞ and µ be any given sequence
space. Then, E ∈ (µ : λ(D̂, p)) if and only if F ∈ (µ : λ(p)).

Proof: Let z = (zk) ∈ µ and consider the equality
Pm

k=1 fnkzk =
Pm

k=1(rnenk+
sn−3en−3,k)zk for any m,n ∈ N. Then by letting m→∞, we have (Fz)n =
{D̂(r̂, 0, 0, ŝ)Ez}n for any n ∈ N. Hence, we observe that Ez ∈ λ(D̂, p)
whenever z ∈ µ if and only if Fz ∈ λ(p) whenever z ∈ µ. This completes
the proof.

Let (qn) be a non-decreasing bounded sequence of positive real num-
bers. Also, let S and T denote the natural numbers. Finally, the sets K1

and K2 are defined by
K1 = {k ∈ N : pk ≤ 1} and K2 = {k ∈ N : pk > 1}.

The following lemmas are consider from Grosse-Erdmann[9] which gives
the characterization of matrix mappings between Maddox’s sequence spaces
(p), c0(p), c(p) and ∞(p).

Lemma 5.3 Let B = (bnk) be an infinite matrix. Then, the following state-
ments hold:
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(i) B ∈ ( ∞(p) : ∞(q)) if and only if

∀S > 1 3 supn∈N(
X
k∈N

|bnk|S
1
pk )qn <∞,(5.4)

(ii) B ∈ ( ∞(p) : c(q)) if and only if

∀S > 1 3 supn∈N
X
k∈N

|bnk|S
1
pk <∞,(5.5)

∃ (βk) ∈ w and

∀S > 1 3 limn→∞(
X
k

|bnk − βk|S
1
pk )qn = 0,(5.6)

(iii) B ∈ ( ∞(p) : c0(q)) if and only if

∀S > 1 3 limn→∞(
X
k

|bnk|S
1
pk )qn = 0,

(5.7)

(iv) B ∈ ( ∞(p) : (q)) if and only if supK∈℘
P

n |
P

k∈K bnkS
1
pk |qn <∞

forany

qn ≥ 1 and for any S > 1. (5.8)

Lemma 5.4 Let B = (bnk) be an infinite matrix. Then, the following state-
ments hold:

(i) B ∈ (c0(p) : ∞(q)) if and only if

∀S > 1 3 supn∈N(
X
k∈N

|bnk|S
−1
pk )qn <∞,(5.9)

(ii) B ∈ (c0(p) : c(q)) if and only if

∀S > 1 3 supn∈N
X
k∈N

|bnk|S
−1
pk <∞,(5.10)
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∀T,∃S > 1 3 supn∈N
P

k∈K2
|bnk − βk|T

1
qn S

−1
pk <∞, (5.11)

∃(βk) ∈ w 3 limn→∞|bnk − βk|qn = 0,(5.12)

(iii) B ∈ (c0(p) : c0(q)) if and only if (5.11)holds with

βk = 0

for any k ∈ N and limn→∞|bnk|qn = 0 for each fixed k ∈ N, (5.13)
(iv)B ∈ (c0(p) : (q)) if and if

∃S > 1 3 supK∈℘
X
n

|
X
k∈K

bnkS
−1
pk |qn <∞

for any qn ≥ 1. (5.14)

Lemma 5.5 Let B = (bnk) be an infinite matrix. Then, the following
statements hold: (i)B ∈ (c(p) : (q)) if and only if (5.9) holds and

supn∈N|
X
k

bnk|qn <∞,(5.15)

(ii) B ∈ (c(p) : c(q)) if and only if (5.10), (5.11) and (5.12) hold and

∃β ∈ C 3 limn→∞|
X
k

bnk − β|qn = 0,(5.16)

(iii) B ∈ (c(p) : c0(q)) if and only if (5.13),holds and

∀T,∃S > 1 3 supn∈N
X
k∈K2

|bnk|T
1
qn S

−1
pk <∞,(5.17)

lim
n→∞

|
X
k

bnk|qn = 0,(5.18)

(iv) B ∈ (c(p) : (q)) if and only if (5.14) holds and

X
n

|
X
k

bnk|qn <∞

for any qn ≥ 1(5.19)
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Lemma 5.6 Let B = (bnk) be an infinite matrix. Then, the following state-
ments hold:

(i) B ∈ ( (p) : c(q)) if and only if (5.12) holds and

supn∈Nsupk∈K1 |bnk|pk <∞,(5.20)

∃S > 1 3 supn∈N
X
k

|bnkS−1|pk <∞,(5.21)

∃(βk) ∈ w and ∀T > 1 3 supn∈Nsupk∈K1(|bnk − βk|T
1
qn )pk <∞, (5.22)

∃(βk) ∈ w and ∀T,∃S > 1 3 supn∈Nsupk∈K2(|bnk − βk|T
1
qn S−1)pk <∞, (5.23)

(ii) B ∈ ( (p) : c0(q)) if and only if (5.13) holds and

supn∈Nsupk∈K1 |ankT
1
qn |pk <∞,∀T > 1, (5.24)

∃S > 1 3 supn∈N
P |ankT

1
qn S−1|pk <∞ for any T > 1, (5.25)

(iii) B ∈ ( (p) : ∞(q)) if and only if
∃T > 1 3 supn∈Nsupk∈K2 |bnkT

−1
qn |pk <∞,

∃T > 1 3 supn∈Nsupk∈K2 |ankT
−1
qn |pk <∞.(5.26)

Now, the following we may quote our theorems without proof on the
characterization of some matrix classes concerning with the sequence spaces
c0(D̂, p), c(D̂, p) and ∞(D̂, p).

Theorem 5.7 Let B = (bnk) be an infinite matrix. Then, the following
statements hold:
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(i) B ∈ (c0(D̂, p) : (q)) if and only if (5.14) also holds with b̂nk instead of
bnk and (5.2) also holds with λ = c0.

(ii) B ∈ (c0(D̂, p) : c(q)) if and only if (5.10), (5.11) and (5.12) hold with
b̂nk instead of bnk and (5.2) also holds with λ = c0.
(iii) B ∈ (c0(D̂, p) : ∞(q)) if and only if (5.9) also holds with b̂nk instead
of bnk and (5.2) also holds with λ = c0.

Theorem 5.8 Let B = (bnk) be an infinite matrix. Then, the following
statements hold:

(i) B ∈ (c(D̂, p) : (q)) if and only if (5.14) and (5.19) hold with b̂nk instead
of bnk and (5.2) also holds with λ = c.

(ii) B ∈ (c(D̂, p) : c(q)) if and only if (5.10), (5.11), (5.12) and (5.16) hold
with b̂nk instead of bnk and (5.2) also holds with λ = c.

(iii) B ∈ (c(D̂, p) : ∞(q)) if and only if (5.9) and (5.15) also hold with b̂nk
instead of bnk and (5.2) also holds with λ = c.

Theorem 5.9 Let B = (bnk) be an infinite matrix. Then, the following
statements hold:
(i) B ∈ ( ∞(D̂, p) : ∞(q)) if and only if (5.8) also holds with bnk replaced
by b̂nk and (5.2) also holds with λ = ∞.
(ii) B ∈ ( ∞(D̂, p) : c0(q)) if and only if (5.7) also holds with bnk replaced
by b̂nk and (5.2) also holds with λ = ∞.
(iii) B ∈ ( ∞(D̂, p) : c(q)) if and only if (5.5) and (5.6) hold with bnk re-
placed by b̂nk and (5.2) also holds with λ = ∞.

(iv) B ∈ ( ∞(D̂, p) : ∞(q)) if and only if (5.4) also holds with bnk replaced
by b̂nk and (5.2) also holds with λ = ∞.

Theorem 5.10 Let B = (bnk) be an infinite matrix. Then, the following
statements hold:

(i) B ∈ (c0(p) : c(D̂, q)) if and only if (5.10), (5.11) and (5.12) holds with
bnk replaced by vnk.
(ii) B ∈ (c0(p) : ∞(D̂, q)) if and only if (5.9) also holds with bnk replaced
by vnk.
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Theorem 5.11 Let B = (bnk) be an infinite matrix. Then, the following
statements hold:

(i) B ∈ (c(p) : c(D̂, q)) if and only if (5.10), (5.11), (5.12) and (5.16) holds
with bnk replaced by vnk.
(ii) B ∈ (c(p) : ∞(D̂, q)) if and only if (5.9) and (5.15) holds with bnk
replaced by vnk.

Theorem 5.12 Let B = (bnk) be an infinite matrix. Then, the following
statements hold:

(i) B ∈ ( ∞(p) : c0(D̂, q)) if and only if (5.7) also holds with bnk replaced
by vnk.
(ii)) B ∈ ( ∞(p) : c(D̂, q)) if and only if (5.5) and (5.6) holds with bnk
replaced by vnk .
(iii) B ∈ ( ∞(p) : ∞(D̂, q)) if and only if (5.4) also holds with bnk replaced
by vnk.

Theorem 5.13 Let B = (bnk) be an infinite matrix. Then, the following
statements hold:
(i) B ∈ ( (p) : c0(D̂, q)) if and only if (5.13) and (5.24)-(5.25) holds with
bnk replaced by vnk
(ii) B ∈ ( (p) : c(D̂, q)) if and only if (5.12) and (5.20)-(5.23) holds with
bnk replaced by vnk.
(iii) B ∈ ( (p) : ∞(D̂, q)) if and only if (5.26) and (5.27) holds with bnk
replaced by vnk.

Conclusion:

The spectrum of the matrix class D(r, 0, 0, s) has been investigated by
Tripthy and Paul [22] is a special case of D̂(r̂, 0, 0, ŝ) if we consider r̂ = re
and ŝ = se . The results investigated in this paper are more general.
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