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1. Introduction

The properties of a molecule are tightly connected to its characteristics is
one of the fundamental concepts in chemistry. In this connection, graph
theory has been successfully applied [5, 11, 23].

Chemical graph theory is a branch of mathematical chemistry. It is
concerned with handling chemical graphs that represent chemical systems.
Hence, chemical graph theory deals with analyses of all consequences of
connectivity in a chemical system. In other words, chemical graph theory
is concerned with all aspects of the application of graph theory to chemistry
area.

Chemists employ various types of designations and formulas when they
want to communicate information about chemical compounds and their
structures. In spite of this fact, most of the names and formulas have to
direct, immediate or explicit mathematical meaning. It has been found to
be a useful tool in QSAR (Quantitative Structure Activity Relationship)
and QSPR (Quantitative Structure Property Relationship). A lot of stud-
ies have been done relating to the above mentioned fields by using what
are called topological indices [7, 16, 24, 25].

A chemical structure can be represented by using graph theory, where
vertices denote atoms and edges denotes molecular bonds. A topological
index is a numeric number that indicates some useful information about the
molecular structure. It is the numerical invariants of a molecular graph and
is useful to correlate with their bioactivity and physiochemical properties.
Researchers have found the topological index to be a powerful and useful
tool in the description of molecular structure. Some applications related
to topological indices of molecular graphs are included in the reference list
[10, 15, 22, 26].
Dendrimers are among the most complex chemical and interesting struc-
tures and hyper-branched macromolecules, with a precise tailored archi-
tecture. Dendrimers have gained a wide range of application in supra-
molecular chemistry, particularly in host guest reactions and the self-assembly
process [21].
The introduction of porphyrins into dendritic structures began in the early
days of dendrimer chemistry, mainly as core entities, due to the morpholog-
ical resemblance of these macrostructures to natural hemoproteins. Over
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Topological properties of four types of porphyrin dendrimers 987

the years, porphyrin macrocycles have also been introduced as dendritic
surface groups or within the dendritic branches [20].

Let G(V (G), E(G)) be a graph where V (G) is the vertex set and E(G)
is the edge set of the graph G. The degree, deg(v), of the vertex v in a
graph G is the number of edges of G incident with v in G. The length of
the shortest path in a graph G between vertices u and v is the distance,
d(u, v), between u and v.

A graph can be represented by a polynomial, numerical value, or a ma-
trix form. There are certain types of topological indices, which are mainly
eccentric based, degree based and distance based. In this article, we deal
with degree-based topological indices.
Zagreb index (M1) is one of the most oldest and important degree based
topological indices. In 1972, Gutman and Trinajstic̀ proposed this topolog-
ical index [9]. After that, they introduced the second Zagreb index (M2)
[8]. These indices are defined as follows

M1(G) =
P

v∈V (G) d
2(G) =

P
uv∈E(G)(d(u) + d(v))

M2(G) =
P

uv∈E(G) d(u)d(v)

In 1975, M. Randic̀ introduced the Randic̀ index (R). This topological
index has great importance in QSPR/QSAR. The Randic̀ index of a graph
G is defined as

R(G) =
X

uv∈E(G)

1p
d(u)d(v)

A closely related topological index named as sum-connectivity index was
proposed by Zhou et. al. [27]. The sum-connectivity index of a graph G is
obtained from Randic̀ index by replacing the term d(u)d(v) by d(u)+d(v).
In QSPR/QSAR, the sum connectivity index shows some better results in
some aspects. It is defined as

χ(G) =
X

uv∈E(G)

1p
d(u) + d(v)

The molecular graph of dendrimers structures is denoted by Gn, where
n is the growth stages and n ≥ 0.

For detailed study computation of topological indices of molecular struc-
tures we refer [1, 2, 3, 4, 12, 13, 6, 18, 19].
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2. Four Layered Prophyrin Core Dendrimers

The majority of porphyrin dendrimers reported to date possess a (metallo)
porphyrin unit as the interior core moiety only. Pooneering work in the field
of porphyrin dendrimers was performed in laboratories of Aida, Diederich
and Suslick. The first example was described by Aida and co-workers in
1993 [14]. Figure 2.1 shows the Aida’s four layered porphyrin core den-
drimer. In this section, we compute the certain topological indices of the
four layered porphyrin core dendrimers.

The molecular graph shown in Figure 2.1 contain 136 · 2n − 15 vertices
(aotms) and 152 · 2n − 12 edges (bonds). There are four types of vertices
based on the degree, vertices with degree 1, 2, 3 and 4. We partition
the edge set of the molecular graph of Aida’s four layered prophyrin core
dendrimer based on the degree of end vertices of each edge. Table 2.1
illustrate this partition.

(d(u), d(v)), n ≥ 1 (2,2) (2,3) (1,3) (3,3) (3,4)

number of edges 32 · 2n − 4 112 · 2n − 32 8 · 2n 20 4

Table 2.1: Partition of the edge set of Aida’s four layered prophyrin core
dendrimer based on the degree of end vertices of each edge.

Let Gn be the molecular graph of the four layered prophyrin core den-
drimer, then the Zagreb indices of Gn is equal to

M1(Gn) = 45 · 2(n+4) − 28
M2(Gn) = 103 · 2(n+3) + 20

Proof. The graph Gn contains the vertices of degrees 1,2,3 and 4. We
found the edge partition of the form (2, 2), (2, 3), (1, 3), (3, 3) and (3, 4) for
Gn based on the degree of end vertices of each edge. Table 2.1 explains
such partition. By using the Table 2.1, we can compute the first and second
Zagreb indices of Gn, as follows

M(Gn) =
P

uv∈E(Gn)(d(u) + d(v))

= (32 · 2n − 4)(2 + 2) + (112 · 2n − 32)(2 + 3) + (8 · 2n)(1 + 3) + 20(3 + 3) + 4(3 + 4)
= 45 · 2(n+4) − 28
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M(Gn) =
P

uv∈E(Gn) d(u)d(v)

= (32 · 2n − 4)(2 · 2) + (112 · 2n − 32)(2 · 3) + (8 · 2n)(1 · 3) + 20(3 · 3) + 4(3 · 4)
= 103 · 2(n+3) + 20

2

Let Gn be the molecular graph of the four layered prophyrin core den-
drimer, then the Randic index of Gn is given as

R(Gn) =
2

3

³
(6 + 3

√
3 + 7

√
6)2(n+2) + 7 +

√
3− 8

√
6
´

Proof. The edge partition of the graph Gn based on the degree of end
vertices of each edge is shown in Table 2.1. Now we apply the formula of
Randic̀ index to obtain the result

R(Gn) =
P

uv∈E(Gn)
1√

d(u)d(v)

= (32 · 2n − 4) 1√
2·2 + (112 · 2

n − 32) 1√
2·3 + (8 · 2

n)
√
1 · 3 + 20 1√

3·3 + 4
1√
3·4

= 2
3

³
(6 + 3

√
3 + 7

√
6)2(n+2) + 7 +

√
3− 8

√
6
´

2

Let Gn be the molecular graph of the four layered prophyrin core den-
drimer, then the sum-connectivity index of Gn is

χ(Gn) =
³
2 + 7

√
5
´
2(n+4) − 2 + 10

r
2

3
− 32√

5
+

4√
7

Proof. By using the definition of sum-connectivity index and the Table
2.1 we can obtain the required result. Since

χ(Gn) =
X

uv∈E(Gn)

1p
d(u) + d(v)

this implies that
χ(Gn) = (32 · 2n − 4) 1√

2+2
+ (112 · 2n − 32) 1√

2+3
+ (8 · 2n)

√
1
√
1 + 3+

20 1√
3+3

+ 4 1√
3+4

=
³
2 + 7

√
5
´
2(n+4) − 2 + 10

q
2
3 −

32√
5
+ 4√

7
2
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Figure 2.1: Molecular graph of four Layered Prophyrin Core Dendrimer.

3. Porphyrin-Core Denrimer With n Layers of Internal Tria-
zole Units

Very recently, several dendritic porphyrins in which benzyl ether dendritic
azides were clicked to an acetylene terminated Znporphyrin core through
Cu-catalyzed cycloaddition reactions (52-90 to afford 1,2,3-triazole links
were designed by Kimura et. al. [17]. A molecular graph of porphyrin-core
denrimer with n layers of internal triazole units is shown in Fig. 3.1.

From Figure 3.1 one can notice that the graph have 256 ·2n−63 vertices
(aotms) and 288 ·2n−68 edges (bonds). There are vertices with degree 1, 2,
3 and 4. We partition the edge set of the molecular graph of porphyrin-core
dendrimer with n layers of internal triazole units based on the degree of
end vertices of each edge. Table 3.1 illustrate this partition.

(d(u), d(v)), n ≥ 1 (2,2) (2,3) (1,3) (3,3) (3,4)

number of edges 48 · 2n − 12 208 · 2n − 80 24 · 2n 8 · 2n+20 4

Table 3.1: Partition of the edge set of porphyrin-core dendrimer with N
layers of internal triazole units based on the degree of end vertices of each
edge.

pc
fig-1


rvidal
Cuadro de texto
984



Topological properties of four types of porphyrin dendrimers 991

Figure 3.1: Porphyrin-core dendrimer with n = 2 layers of internal triazole
units.

Let Hn be the molecular graph of the porphyrin-core denrimer with n
layers of internal triazole units, then the Zagreb indices of Hn is equal to

M1(Hn) = 43 · 2(n+5) − 300
M2(Hn) = 99 · 2(n+4) − 300

Proof. The graph Hn contains the vertices of degrees 1,2,3 and 4. We
found the edge partition of the form (2, 2), (2, 3), (1, 3), (3, 3) and (3, 4) for
Hn based on the degree of end vertices of each edge. Table 3.1 explains
such partition. By using the Table 3.1, we can compute the first and second
Zagreb indices of Hn, as follows

M1(Hn) =
P

uv∈E(Hn)(d(u) + d(v))

= (48 · 2n − 12)(2 + 2) + (208 · 2n − 80)(2 + 3) + (24 · 2n)(1 + 3)+
(8 · 2n + 20)(3 + 3) + 4(3 + 4)
= 43 · 2(n+5) − 300

M(Hn) =
P

uv∈E(Hn) d(u)d(v)

= (48 · 2n − 12)(2 · 2) + (208 · 2n − 80)(2 · 3) + (24 · 2n)(1 · 3)+
(8 · 2n + 20)(3 · 3) + 4(3 · 4)
= 99 · 2(n+4) − 300

2
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fig-2
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Let Hn be the molecular graph of the porphyrin-core denrimer with n
Layers of internal triazole units, then the Randic index of Hn is given as

R(Hn) =
2

3

³
(10 + 3

√
3 + 13

√
6)2(n+2) + 1 +

√
3− 20

√
6
´

Proof. The edge partition of the graph Hn based on the degree of end
vertices of each edge is shown in Table 3.1. Now we apply the formula of
Randic̀ index to obtain the result

R(Hn) =
P

uv∈E(Gn)
1√

d(u)d(v)

= (48 · 2n − 12) 1√
2·2 + (208 · 2

n − 80) 1√
2·3 + (24 · 2

n) 1√
1·3+

(8 · 2n + 20) 1√
3·3 + 4

1√
3·4

= 2
3

³
(10 + 3

√
3 + 13

√
6)2(n+2) + 1 +

√
3− 20

√
6
´ 2

Let Hn be the molecular graph of the porphyrin-core denrimer with n
Layers of internal triazole units, then the sum-connectivity index of Hn is

χ(Hn) = 9 · 2(n+2) − 6 +
16(13 · 2n − 5)√

5
+
2(n+3) + 20√

6
+

4√
7

Proof. By using the definition of sum-connectivity index and the Table
2.1 we can obtain the required result. Since

χ(Hn) =
X

uv∈E(Hn)

1p
d(u) + d(v)

this implies that
χ(Hn) = (48 · 2n − 12) 1√

2+2
+ (208 · 2n − 80) 1√

2+3
+ (24 · 2n) 1√

1+3
+

(8 · 2n + 20) 1√
3+3

+ 4 1√
3+4

= 9 · 2(n+2) − 6 + 16(13·2n−5)√
5

+ 2(n+3)+20√
6

+ 4√
7

2

4. Proteo-dendrimers

In Proteo-dendrimers three hydrophobic Frchet dendrons with a hydrophilic
polyether surface are combined with a poly(glutamic acid) dendron around
a fluorescent Znporphyrin core. The molecular graph of Proteo-dendrimer
is shown in Fig. 4.1.
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The molecular graph of proteo-dendrimers have 154 · 2n − 62 vertices
(aotms) and 168 · 2n edges (bonds). There are vertices with degree 1, 2, 3
and 4. The partitioning of the edge set of the molecular graph of proteo-
dendrimers based on the degree of end vertices of each edge. Table 4.1
illustrate this partition.

(d(u), d(v)), n ≥ 1 (2,1) (2,2) (2,3) (1,3) (3,3) (3,4)

number of edges 6 · 2n 56 · 2n − 1 98 · 2n − 22 6 · 2n − 1 2 · 2n + 20 4

Table 4.1: Partition of the edge set of proteo-dendrimers based on the
degree of end vertices of each edge.

Let In be the molecular graph of the Proteo-dendrimers, then the Zagreb
indices of In is equal to

M1(In) = 6(2
(n+7) + 5)

M2(In) = 215 · 2(n+2) + 89

Proof. The molecular graph of proteo-dendirmer contains the 154 ·2n−
62 vertices of degrees one, two, three and four. Based on the end degrees
of each edge the partition is shown in Table 4.1. Since

M1(In) =
P

uv∈E(In)(d(u) + d(v))

= (6 · 2n)(2 + 1) + (56 · 2n − 1)(2 + 2) + (98 · 2n − 22)(2 + 3) + (6 · 2n − 1)(1 + 3)
+(2 · 2n + 20)(3 + 3) + 4(3 + 4)
= 6(2(n+7) + 5)

M2(In) =
P

uv∈E(Hn) d(u)d(v)

= (6 · 2n)(2 · 1) + (56 · 2n − 1)(2 · 2) + (98 · 2n − 22)(2 · 3) + (6 · 2n − 1)(1 · 3)+
(2 · 2n + 20)(3 · 3) + 4(3 · 4)
= 215 · 2(n+2) + 89

2

Let In be the molecular graph of the Proteo-dendrimers, then the
Randic index of In is given as

R(In) =
(6 · 2n)√

2
+
(172 · 2n + 37)

6
+
(98 · 2n − 22)√

6
+
(6 · 2n − 1)√

3
+

4√
12
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Proof. By definition of Randic̀ index and the Table 4.1, we have
R(In) =

P
uv∈E(Hn)

1√
d(u)d(v)

= (6·2n)√
2·1 +

(56·2n−1)√
2·2 + (98·2n−22)√

2·3 + (6·2n−1)√
1·3 + (2·2n+20)√

3·3 + 4√
3·4

= (6·2n)√
2
+ (172·2n+37)

6 + (98·2n−22)√
6

+ (6·2n−1)√
3

+ 4√
12

2

Let In be the molecular graph of the Proteo-dendrimers, then the sum-
connectivity index of In is

χ(In) = 31 · 2n − 2 +
(6 · 2n)√

3
+
98 · 2n − 22√

5
+
(2 · 2n + 20)√

6
+

4√
7

Proof. Result can be obtained by applying Table 4.1 in definition of
sum-connectivity index as

χ(In) =
P

uv∈E(In)
1√

d(u)+d(v)

= (6·2n)√
2+1

+ (56·2n−1)√
2+2

+ 98·2n−22√
2+3

+ (6·2n−1)√
1+3

+ (2·2n+20)√
3+3

+ 4√
3+4

= 31 · 2n − 2 + (6·2n)√
3
+ 98·2n−22√

5
+ (2·2n+20)√

6
+ 4√

7

2

Figure 4.1: Molecular graph of Proteo-dendrimers.
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5. Dendritic Iron (II) Porphyrins

The molecular graph of dendtitic iron (II) porphyrins is shown in Fig. 5.1.
This molecular structure has 168·2n−4 vertices (atoms) and 184·2n−6 edges
(bonds). The vertices have degrees 1, 2, 3 and 4. Based on the degrees of
the end vertices of each edge we partitioned the edge set. This partitioning
is shown in Table 5.1.

Figure 5.1: First generation of dendritic iron (II) porphyrin.

(d(u), d(v)), n ≥ 1 (1,2) (2,2) (2,3) (1,3) (3,3) (3,4)

number of edges 8 · 2n 92 · 2n − 5 80 · 2n − 28 4 · 2n − 3 22 8

Table 5.1: Partition of the edge set of dendritic iron (II) porphyrin based
on the degree of end vertices of each edge.

Let Jn be the molecular graph of the Proteo-dendrimers, then the Za-
greb indices of Jn is

M1(Jn) = 8(101 · 2n + 2)
M2(Jn) = 219 · 2(n+2) + 97

Proof. The molecular graph of dendritic iron (II) porphyrin consist of
168 · 2n − 4 vertices. Based on the end degrees of each edge the partition
of edge set is illustrated in Table 5.1. Since
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fig-4
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M1(Jn) =
P

uv∈E(Jn)(d(u) + d(v))

= (8 · 2n)(1 + 2) + (92 · 2n − 5)(2 + 2) + (80 · 2n − 28)(2 + 3) + (4 · 2n − 3)(1 + 3)
+(22)(3 + 3) + 8(3 + 4)
= 8(101 · 2n + 2)

M2(Jn) =
P

uv∈E(Jn) d(u)d(v)
= (8 · 2n)(2 · 1) + (92 · 2n − 5)(2 · 2) + (80 · 2n − 28)(2 · 3) + (4 · 2n − 3)(1 · 3)+
(22)(3 · 3) + 8(3 · 4)
= 219 · 2(n+2) + 97

2

Let Jn be the molecular graph of the dendritic iron (II) porphyrin, then
the Randic index of In is equal to

R(Jn) =
2n+3√
2
+
(276 · 2n + 29)

6
+
(80 · 2n − 28)√

6
+
(4 · 2n + 1)√

3

Proof. From Table 5.1 and the definition of Randic̀ index we have
R(Jn) =

P
uv∈E(Jn)

1√
d(u)d(v)

= (8·2n)√
2·1 +

(92·2n−5)√
2·2 + (80·2n−28)√

2·3 + (4·2n−3)√
1·3 + (22)√

3·3 +
8√
3·4

= 2n+3√
2
+ (276·2n+29)

6 + (80·2n−28)√
6

+ (4·2n+1)√
3

2

Let Jn be the molecular graph of the dendritic iron (II) porphyrin, then
the sum-connectivity index of In is given as

χ(Jn) =
2n+3√
3
+
(96 · 2n − 8)

2
+
(80 · 2n − 28)√

5
+
22√
6
+

8√
7

Proof. Result is easily obtained from the definition and the Table 5.1
as

χ(Jn) =
P

uv∈E(Jn)
1√

d(u)+d(v)

= (8·2n)√
2+1

+ (92·2n−5)√
2+2

+ (80·2n−28)√
2+3

+ (4·2n−3)√
1+3

+ (22)√
3+3

+ 8√
3+4

= 2n+3√
3
+ (96·2n−8)

2 + (80·2n−28)√
5

+ 22√
6
+ 8√

7

2
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