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1. Introduction

The graphs studied in the present paper are undirected and connected. For
undefined notations and terminologies discussed in this paper but not de-
fined here, see the book by Bondy and Murty [3]. Resistance distance is an
intrinsic graph metric and a distance function on graphs which is further
extensions of ordinary distance. Let G and H be two graphs. The tensor
product G × H of G and H is a graph whose vertex set is the Cartesian
product of V (G)×V (H) and distinct vertices (a, a0) and (b, b0) are adjacent
in G ×H if a is adjacent to b and a0 is adjacent to b0.

Suppose Γ = (VΓ, EΓ) is a graph with vertex-set VΓ and edge-set EΓ.
The adjacency matrix A(Γ) of a graph Γ is a |VΓ × VΓ| matrix whose
(i, j)-entry equals to 1 if vertices vi and vj are adjacent and 0 other-
wise. Suppose D(Γ) = (d1, d2, . . . , dn) is a diagonal matrix of a graph
Γ, where d1, d2, . . . , dn are the degree of vertices (v1, v2, . . . , vn). Suppose
Q(Γ) = D(Γ) +A(Γ) is a Signless Laplacian matrix of a graph Γ.

The Laplacian matrix for a graph Γ is determined as

L(Γ)ij=

⎧⎪⎨⎪⎩
di, if i is equal to j;
−1, if i is not equal to j and vi ∼ vj ;
0, otherwise.

The Normalized Laplacian matrix for a graph Γ is determined as

L(Γ)ij=

⎧⎪⎨⎪⎩
1, if i is equal to j;
− 1√

didj
, if i is not equal to j and vi ∼ vj ;

0, otherwise.

Clearly, L(Γ) = D(Γ) − A(Γ) and L(Γ) = D(Γ)
−1
2 L(Γ)D(Γ)

−1
2 . The

distance among two vertices i and j is the length of shortest walk among
vertices i and j and is represented by dij , which is very important in graph
theory [4]. There are number of parameters to characterize the structural
properties of graphs. The Wiener index [24] is determined in the following
way:

W (Γ) =
X
i<j

dij .(1.1)
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Later, the another version of Wiener index was presented by Gutman
which is known by his name called Gutman index [11] and determined in
the following way:

Gut(Γ) =
X
i<j

didjdij .(1.2)

In 1993, Klein and Randić[17] initiated the study of resistance distance
based on electrical network. The resistance distance, denoted by r(u, v), is
described as the net effective resistance among vertices u and v of G in the
corresponding electrical network obtained from G by changing each edge
of G with a resistor of 1 Ohm. They also presented the Krichhoff index for
a graph Γ which is determined in the following way:

Kf(Γ) =
X
i<j

rij .

For a connected graph (Γ), the Kirchhoff index with regard to Laplacian
matrix is also proved by Zhu et al. [28] and Gutman and Mohar [12] and
determined in the following way:

Kf(Γ) = n
nX
i=2

1

ωi
,(1.3)

where 0 = ω1 < ω2 ≤ . . . ≤ ωn are the eigenvalues of L(Γ).

In 2007, the weighted version of Kirchhoff index was suggested in [6],
determined in the following way:

Kf∗(Γ) =
X
i<j

didjrij .

This index is called multiplicative Kirchhoff index. It is also relevant to
spectrum of the Normalized Laplacian matrix and it is also determined in
the following way [6]:

Kf∗(Γ) = 2m
nX
i=2

1

ψi
,(1.4)

where m = |EΓ|, 0 = ψ1 < ψ2 ≤ . . . ≤ ψn represents the eigenvalues of
L(Γ).

Kirchhoff index is also a graph structure-descriptor [25] similar toWiener
index. In spite of, it is not simple to get a closed formula for Kirchhoff in-
dex due to its computational complexity but there are different kinds of
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techniques to determine the Kirchhoff index (see [1,2,9,10,29]). In recent
times, Kirchhoff index and multiplicative Kirchhoff index were computed
for different graph structures, i.e., composite graphs [27], ladder graphs [8],
Cycles [16], ladder-like chains [5], linear polyomino chains [15,26], linear
octagonal-quadrilateral networks [18], linear pentagonal chains [13], linear
phenylenes [19,29] and linear hexagonal chains [21, 22].

Suppose G and H are two graphs. The tensor product of G and H is
a graph whose vertex set is the Cartesian product of V (G) × V (H) and
distinct vertices (a, a0) and (b, b0) are adjacent in G ×H if a is adjacent to b
and a0 is adjacent to b0 and it is represented by G ×H. Let Γn = P2 ×Kn

be a graph obtained by tensor product of P2 and Kn. Clearly, the graph Γn
contain 2n vertices and n(n− 1) edges. The graph illustrated in Figure 1.1
is an example of tensor product of path graph P2 and a complete graph K4.

The present study is organized in this way. In Section 2, there are
few elementary definitions that leads to main results in Section 3. The
conclusive remarks for the whole paper are discussed in Section 4.

Figure 1.1: The graph Γ4 = P2 ×K4.

pc
figure-1
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2. Preliminaries

Suppose M is a square matrix and the characteristic polynomial for M
is ϕ(M) = det(xI − M). Label the vertices of Γn like Figure 1.1. Let
V1 = {1, 2, . . . , n} and V2 = {10, 20, . . . , n0}. It is easy to see that there is
an automorphism i.e., π = (1, 10), (2, 20), . . . , (n, n0). Then we can write the
Laplacian matrix and Normalized Laplacian matrix of Γn in the following
way.

L(Γn) =

Ã
LV11 LV12

LV21 LV22

!
, L(Γn) =

Ã
LV11 LV12
LV21 LV22

!
.

It is easy to check that LV11 = LV22 , LV12 = LV21 and LV11 = LV22 ,
LV12 = LV21 .
Given

T =

Ã
1√
2
In

1√
2
In

1√
2
In − 1√

2
In

!
,

then

TL(Γn)T
0 =

Ã
LA 0
0 LS

!
and TL(Γn)T 0 =

Ã
LA 0
0 LS

!
,

where T 0 is the transposition of T , LA = LV11 + LV12 , LS = LV11 − LV12

and LA = LV11 + LV12 , LS = LV11 − LV12 .
We can procure the decomposition theorem of graph Γn as follows.

Lemma[14,21] Suppose LA, LS , LA and LS are matrices as defined above.
Then ϕ(L(Γn)) = ϕ(LA).ϕ(LS) and ϕ(L(Γn)) = ϕ(LA).ϕ(LS).

Lemma[7] Suppose Γ is a n-vertex connected graph and τ(Γ) represents
the number of spanning trees for a graph Γ. Then

τ(Γ) =
1

n

nY
i=2

ωi.

where 0 = ω1 < ω2 ≤ . . . ≤ ωn are the eigenvalues of L(Γ).

3. The main results

In the present section, we propose the explicit formulas for the Kirchhoff
index, Wiener index, multiplicative Kirchhoff index, Gutman index and
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number of spanning trees for Γn. First, one can see that

LV11 = (cij)
V11
n×n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n− 1 0 0 0 · · · 0 0
0 n− 1 0 0 · · · 0 0
0 0 n− 1 0 · · · 0 0
0 0 0 n− 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · n− 1 0
0 0 0 0 · · · 0 n− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ci,i = n−1 for i ∈ {1, 2, . . . , n} and all other entries of LV11 = (cij)
V11
n×n

are equal to zero.

LV12 = (cij)
V12
n×n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 −1 · · · −1 −1
−1 0 −1 −1 · · · −1 −1
−1 −1 0 −1 · · · −1 −1
−1 −1 −1 0 · · · −1 −1
...

...
...

...
. . .

...
...

−1 −1 −1 −1 · · · 0 −1
−1 −1 −1 −1 · · · −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ci,i = 0 for i ∈ {1, 2, . . . , n} and and all other entries of LV12 =
(cij)

V12
n×n are equal to -1. Since LA = LV11 + LV12 and LS = LV11 − LV12 ,

then
LA = (cij)

VA
n×n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n− 1 −1 −1 −1 · · · −1 −1
−1 n− 1 −1 −1 · · · −1 −1
−1 −1 n− 1 −1 · · · −1 −1
−1 −1 −1 n− 1 · · · −1 −1
...

...
...

...
. . .

...
...

−1 −1 −1 −1 · · · n− 1 −1
−1 −1 −1 −1 · · · −1 n− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ci,i = n−1 for i ∈ {1, 2, . . . , n} and all other entries of LA = (cij)
VA
n×n

are equal to -1. Now
LS = (cij)

VS
n×n
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n− 1 1 1 1 · · · 1 1
1 n− 1 1 1 · · · 1 1
1 1 n− 1 1 · · · 1 1
1 1 1 n− 1 · · · 1 1
...

...
...

...
. . .

...
...

1 1 1 1 · · · n− 1 1
1 1 1 1 · · · 1 n− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ci,i = n−1 for i ∈ {1, 2, . . . , n} and all other entries of LS = (cij)
VS
n×n

are equal to 1.
Note that LA = L(Kn) and LS = Q(Kn), where LA is equal to Laplacian
matrix of a complete graphKn and LS is equal to Signless Laplacian matrix
of a complete graphKn. It is renowned that eigenvalues of Laplacian matrix
of complete graph Kn are n with multiplicity n− 1 and 0 with multiplicity
1 and the eigenvalues of Signless laplacian matrix of complete graphKn are
n− 2 with multiplicity n− 1 and 2n− 2 with the multiplicity 1. By using
Lemma 1, φ1, φ2, . . . , φn, η1, η2, . . . , ηn represents the eigenvalues of L(Γn),
i.e., 0, n, n, . . . , n, n − 2, n − 2, . . . , n − 2, 2n − 2 are all the eigenvalues of
L(Γn).

Theorem 3.1 Let Γn (n ≥ 3) be a graph as defined above. Then

1. Kf(Γn) =
4n3−11n2+10n−4

n2−3n+2 .

2. τ(Γn) = nn−2(n− 1)(n− 2)n−1.

3. W (Γn) = 3n
2.

4. lim
n→+∞

Kf(Γn)
W (Γn)

= 0

Proof. (1) Since |V (Γn)| = 2n. So by using Equation 1.3, we procure

Kf(Γn) = 2n(
Pn

i=2
1
φi
+
Pn

i=1
1
ηi
)

= 2n(n−1n + 1
2n−2 +

n−1
n−2)

= n(4n
3−11n2+10n−4
n(n−1)(n−2) )

= 4n3−11n2+10n−4
n2−3n+2 .

(2) Since |V (Γn)| = 2n. So by using Lemma 2, we obtain
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...
...
...
...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ci,i = 1 for i ∈ {1, 2, . . . , n} and all other entries of LV11 = (cij)V11n×n
are equal to zero.

Now

LV12 = (cij)
V12
2n×2n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1
n−1

−1
n−1

−1
n−1 · · · −1

n−1
−1
n−1

−1
n−1 0 −1

n−1
−1
n−1 · · · −1

n−1
−1
n−1

−1
n−1

−1
n−1 0 −1

n−1 · · · −1
n−1

−1
n−1

−1
n−1

−1
n−1

−1
n−1 0 · · · −1

n−1
−1
n−1

...
...

...
...

. . .
...

...
−1
n−1

−1
n−1

−1
n−1

−1
n−1 · · · 0 − −1

n−1
−1
n−1

−1
n−1

−1
n−1

−1
n−1 · · · −1

n−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ci,i = 0for i ∈ {1, 2, . . . , n} and all other entries of LV12 = (cij)
V12
n×n

are equal to − 1
n−1 . Since LA = LV11 +LV12 and LS = LV11 −LV12 , then we

have

LA = (cij)VAn×n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
n−1

−1
n−1

−1
n−1 · · · −1

n−1
−1
n−1

−1
n−1 1 −1

n−1
−1
n−1 · · · −1

n−1
−1
n−1

−1
n−1

−1
n−1 1 −1

n−1 · · · −1
n−1

−1
n−1

−1
n−1

−1
n−1

−1
n−1 1 · · · −1

n−1
−1
n−1

...
...

...
...

. . .
...

...
−1
n−1

−1
n−1

−1
n−1

−1
n−1 · · · 1 −1

n−1
−1
n−1

−1
n−1

−1
n−1

−1
n−1 · · · −1

n−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ci,i = 1 for i ∈ {1, 2, . . . , n} and all other entries of LA = (cij)
VA
n×n

are equal to −1
n−1 . Now

LS = (cij)VSn×n
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
n−1

1
n−1

1
n−1 · · · 1

n−1
1

n−1
1

n−1 1 1
n−1

1
n−1 · · · 1

n−1
1

n−1
1

n−1
1

n−1 1 1
n−1 · · · 1

n−1
1

n−1
1

n−1
1

n−1
1

n−1 1 · · · 1
n−1

1
n−1

...
...

...
...

. . .
...

...
1

n−1
1

n−1
1

n−1
1

n−1 · · · 1 1
n−1

1
n−1

1
n−1

1
n−1

1
n−1 · · · 1

n−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ci,i = 1 for i ∈ {1, 2, . . . , n} and all other entries of LS = (cij)
VS
n×n

are equal to 1
n−1 .

Also LA = 1
n−1L(Kn) and LS = 1

n−1Q(Kn). By using Lemma 1,
1

n−1φ1,
1

n−1φ2, . . . ,
1

n−1φn,
1

n−1η1,
1

n−1η2, . . . ,
1

n−1ηn are the eigenvalues of L(Γn),

i.e., 0, n
n−1 ,

n
n−1 , . . . ,

n
n−1 ,

n−2
n−1 ,

n−2
n−1 ,

. . . , n−2n−1 ,
2n−2
n−1 are all the eigenvalues of L(Γn).

Theorem 3.2 Suppose Γn (n ≥ 3) is a graph as defined above. Then

1. Kf∗(Γn) = (n− 1)2Kf(Γn) = (n− 1)[4n
3−11n2+10n−4

n−2 ].

2. Gut(Γn) = (n− 1)2W (Γn) = 3n
2(n− 1)2.

3. lim
n→+∞

Kf∗(Γn)
Gut(Γn)

= 0

Proof. (1) Since E(Γn) = n(n− 1). So by using Equation 1.4, we have

Kf∗(Γn) = 2n(n− 1)[Pn
i=2

n−1
φi
+
Pn

i=1
n−1
ηi
]

= 2n(n− 1)[ (n−1)
2

n + n−1
(2n−2) +

(n−1)2
(n−2) ]

= (n− 1)[4n3−11n2+10n−4n−2 ]

= (n− 1)2Kf(Γn).

(2) Since Γn is (n− 1) regular graph. So by using Equation 1.2, it is easy
to get Gut(Γn) = (n− 1)2(W (Γn)).
(3) Combining with Kf∗(Γn) and Gut(Γn), by using Theorem 3 (4), one
gets

lim
n→+∞

Kf∗(Γn)
Gut(Γn)

= lim
n→+∞

(n−1)2Kf(Γn)
(n−1)2W (Γn)

= 0

This complete the proof of our theorem. 2
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