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Abstract:

The resistance distance (Kirchhoff index and multiplicative Kirchhoff
index) and distance-based (Wiener index and Gutman index) graph invari-
ants of I'n = P2 XKx are considered. Firstly by using the decomposition theo-
rem, we procure the Laplacian and Normalized Laplacian spectrum for
graph I'n, respectively. Based on which, we can procured the formulae for
the number of spanning trees and some resistance distance and distance-
based graph invariants of graph I'n. Also, it is very interesting to see that
when n tends to infinity, Kf (I'») is a polynomial and W (Tw) is a quadratic
polynomial.
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1. Introduction

The graphs studied in the present paper are undirected and connected. For
undefined notations and terminologies discussed in this paper but not de-
fined here, see the book by Bondy and Murty [3]. Resistance distance is an
intrinsic graph metric and a distance function on graphs which is further
extensions of ordinary distance. Let G and H be two graphs. The tensor
product G x H of G and H is a graph whose vertex set is the Cartesian
product of V(G) x V(H) and distinct vertices (a,a’) and (b, ') are adjacent
in G X H if a is adjacent to b and a’ is adjacent to ¥'.

Suppose I' = (V, Er) is a graph with vertex-set V1 and edge-set Er.
The adjacency matrix A(T") of a graph I' is a |Vp x Vp| matrix whose
(1,7)-entry equals to 1 if vertices v; and v; are adjacent and 0 other-
wise. Suppose D(I') = (dy,ds,...,dy) is a diagonal matrix of a graph
I, where di,dg,...,d, are the degree of vertices (v1,va,...,v,). Suppose
Q') = D(I') + A(T") is a Signless Laplacian matrix of a graph I'.

The Laplacian matrix for a graph I' is determined as
d;, if 7 is equal to j;
L(T");j=¢ —1, ifiis not equal to j and v; ~ v; ;

0, otherwise.

The Normalized Laplacian matrix for a graph I' is determined as

1, if ¢ is equal to j;
1 . . . . .
LT)=¢ — s if 7 is not equal to j and v; ~ vy;
0, otherwise.

Clearly, L(T') = D(T') — A(T") and £(T') = D)= L(I)D(I') 2. The
distance among two vertices ¢ and j is the length of shortest walk among
vertices ¢ and j and is represented by d;;, which is very important in graph
theory [4]. There are number of parameters to characterize the structural
properties of graphs. The Wiener index [24] is determined in the following
way:

(1.1) W(T) =>di.

1<j
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Later, the another version of Wiener index was presented by Gutman
which is known by his name called Gutman index [11] and determined in
the following way:

(1.2) Gut(T) = did;d;;.
1<J

In 1993, Klein and Randi¢[17] initiated the study of resistance distance
based on electrical network. The resistance distance, denoted by r(u,v), is
described as the net effective resistance among vertices 4 and v of G in the
corresponding electrical network obtained from G by changing each edge
of G with a resistor of 1 Ohm. They also presented the Krichhoff index for
a graph I' which is determined in the following way:

Kf(T) =Y ry.
1<j
For a connected graph (T'), the Kirchhoff index with regard to Laplacian

matrix is also proved by Zhu et al. [28] and Gutman and Mohar [12] and
determined in the following way:

L |
(13) KFT)=n3~.
i—p Wi
where 0 = wy; < wy < ... < w, are the eigenvalues of L(T).

In 2007, the weighted version of Kirchhoff index was suggested in [6],
determined in the following way:

Kf*(T) =Y didjri;.
i<j
This index is called multiplicative Kirchhoff index. It is also relevant to

spectrum of the Normalized Laplacian matrix and it is also determined in
the following way [6]:

(1.4) K () = QmZ%,
i=2 7t

where m = |Er|, 0 = ¢1 < 92 < ... < 1), represents the eigenvalues of
L(T).

Kirchhoff index is also a graph structure-descriptor [25] similar to Wiener
index. In spite of, it is not simple to get a closed formula for Kirchhoff in-
dex due to its computational complexity but there are different kinds of
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techniques to determine the Kirchhoff index (see [1,2,9,10,29]). In recent
times, Kirchhoff index and multiplicative Kirchhoff index were computed
for different graph structures, i.e., composite graphs [27], ladder graphs [8],
Cycles [16], ladder-like chains [5], linear polyomino chains [15,26], linear
octagonal-quadrilateral networks [18], linear pentagonal chains [13], linear
phenylenes [19,29] and linear hexagonal chains [21, 22].

Suppose G and H are two graphs. The tensor product of G and H is
a graph whose vertex set is the Cartesian product of V(G) x V(H) and
distinct vertices (a,a’) and (b, V') are adjacent in G x H if a is adjacent to b
and a’ is adjacent to b’ and it is represented by G x H. Let I'), = P, x K,
be a graph obtained by tensor product of P, and K,,. Clearly, the graph I,
contain 2n vertices and n(n — 1) edges. The graph illustrated in Figure 1.1
is an example of tensor product of path graph P, and a complete graph K.

The present study is organized in this way. In Section 2, there are

few elementary definitions that leads to main results in Section 3. The
conclusive remarks for the whole paper are discussed in Section 4.

Figure 1.1: The graph I'y = P> x K4.


pc
figure-1
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2. Preliminaries

Suppose M is a square matrix and the characteristic polynomial for M
is (M) = det(xI — M). Label the vertices of T',, like Figure 1.1. Let
Vi={1,2,...,n} and Vo = {1',2',... ,n'}. Tt is easy to see that there is
an automorphism i.e., 7 = (1,1"),(2,2"),..., (n,n’). Then we can write the
Laplacian matrix and Normalized Laplacian matrix of I';, in the following
way.

L(Ty,) = Lvy, Ly, L(T,) = ( Lvi, Ly )

a Ly,, Ly, |’ Lvy, Ly,

It is easy to check that Ly,, = Ly,,, Ly, = Ly, and Ly, = Ly,,,
£V12 = £V21’
Given

1 1

_( Al
T L _17p ’

Vv2imt e

then

’ LA 0 ’ EA 0
TLT,)T = ( o Le ) and TL(T,)T = < o e )

where T" is the transposition of T, Ly = Lv;, + Lv;,, Ls = Ly;; — Ly,
and L4 = £V11 + ['Vna Lg = £V11 — £V1z'
We can procure the decomposition theorem of graph I';, as follows.

Lemmal[14,21] Suppose Ly, Lg, L4 and Lg are matrices as defined above.
Then ¢(L(I'n)) = ¢(La)-¢(Ls) and p(L(I'n)) = ¢(La).¢(Ls).

Lemmal|7] Suppose I' is a n-vertex connected graph and 7(I") represents
the number of spanning trees for a graph I". Then

1 n
T(F):—Hwi.
ni:2

where 0 = w; < wy < ... < w, are the eigenvalues of L(T).

3. The main results

In the present section, we propose the explicit formulas for the Kirchhoff
index, Wiener index, multiplicative Kirchhoff index, Gutman index and
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number of spanning trees for I',,. First, one can see that

1%
LV11 = (ﬁij)nlxln

n-1 0 0 0 0 0
0 n-1 0 0 0 0
0 0 n-1 0 0 0
| o 0o 0 n-1 0 0 7
0 0 0 0 - m-1 0
o 0 0 0 - 0 n-1

nxn

where ¢; ; =n—1fori € {1,2,...,n} and all other entries of Ly,, = (Elj)xlxln
are equal to zero.

LV12 = (&j)Vm

nxn
0 -1 -1 -1 .-~ -1 -1
-1 0 -1 -1 .-+ —1 -1
-1 -1 0 -1 -+ -1 -1
| -1 -1 -1 0 - -1 -1 ,
-1 -1 -1 -1 -~ 0 -1
-1 -1 =1 =1 -+ =1 0

nxn

where ¢;; = 0 for ¢ € {1,2,...,n} and and all other entries of Ly,, =
(&j),‘ffn are equal to -1. Since L4 = Ly, + Ly;, and Lg = Ly,, — Ly,,,
then
_ Va
Ly= (eij)nxn

n-1 -1 -1 -1 - -1 -1
-1 n-1 -1 -1 - -1 -1
-1 -1 n-1 -1 - -1 -1
| -1 -1 -1 n-1 - -1 -1 ,
-1 -1 -1 -1 -« n-1 -1
-1 -1 -1 -1 - -1 n-1

nxn

where £;; =n—1fori € {1,2,...,n} and all other entries of L4 = (£;;)r4,,
are equal to -1. Now
Ls = (bij)5

nxn
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n—1 1 1 1 1 1
1 n—1 1 1 1 1
1 1 n—1 1 1 1
- 1 1 1 n—1 1 1 7
1 1 1 1 ceeom—1 1
1 1 1 1 1 n—1

nxn

where ¢;; =n—1fori € {1,2,...,n} and all other entries of Lg = (&])Xin
are equal to 1.

Note that Ly = L(K,,) and Lg = Q(K,,), where L4 is equal to Laplacian
matrix of a complete graph K, and Lg is equal to Signless Laplacian matrix
of a complete graph K,,. It is renowned that eigenvalues of Laplacian matrix
of complete graph K, are n with multiplicity n — 1 and 0 with multiplicity
1 and the eigenvalues of Signless laplacian matrix of complete graph K, are
n — 2 with multiplicity n — 1 and 2n — 2 with the multiplicity 1. By using
Lemma 1, ¢1, ¢2, ..., dn,M1,M2,- - -, 1y represents the eigenvalues of L(T',),
ie, O0,n,n,....,n,n—2n—2,...,n—2,2n — 2 are all the eigenvalues of
L(Ty,).

Theorem 3.1 Let I';, (n > 3) be a graph as defined above. Then

3_ 2 —
1. Kf(T,) = 4—pntin=d,
2. 7([y) =n""2(n—1)(n—2)""L.

3. W(Ty,) = 3n2.

Proof. (1) Since |V(T',)| = 2n. So by using Equation 1.3, we procure

Kf(Tn) =2n(3 i, % + 2 ni)

_ n—1 1 n—1
- QTL( n +22n—2 + n—2)
_ 4n°—11n“4+10n—4

= n(—n(nfl)(nf2) )

_ 4n3—11n2+10n—4

- n2—3n+2

(2) Since |V (I';,)| = 2n. So by using Lemma 2, we obtain
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7(I'n) _L{z( i= 2¢7 i=11i)
=5, ((n)"1.(2n = 2).(n — 2)"71)
— nn—Q(n _ 1)( 2)n T

(3) Now we determine the Wiener index for graph I',.

Since the diameter of graph I'), is 3. So we have three different pairs of
vertices i.e., n(n — 1), > ;n—1 =mn(n— 1) and n pairs of vertices at a
distance 1, 2 and 3, respectively. So by using equation 1.1, it is easy to
obtain the desired result, i.e.,

W(T,) =n(n—1)+2n(n — 1) + 3n = 3n%

Table 3.1: K f(I')(reserves a decimal fraction) and 7(I") of graphs from I'y
to F12.

I Kf(Iy =(I") I Kf(I) 7(I') I Kf(I) 7(I7)

Iy 193 384 Ir 30 1575656250 Ino 41.6 120795955200000000
Is 226 40500 Ik 33.8 513684799488 71 45.5 82216552273527685120
I's 26.2 6635520 Iy 37.7 220582915793352 [12 49.5 68109100646400000000000

(4) Combining with K f(T'y,) and W(I',), one gets

EfTn)  _ iy 4n°=1ln’+10n—4
W(Th) — potoo 3ni—9n3+6n2

1 1 1
4-111 41045 4%
n—-Foo 3n—9+6

lim
n—-400

O
Now we determine the Normalized Laplacian spectrum for graph I';,.
Note that

£V11 - (E )Xlxln
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1 000 00
0100 00
0010 0 0

-1 0001 00 ,
00 0O 1
000 0

nxn

where £;; = 1 for i € {1,2,...,n} and all other entries of Ly;, = (£;;)V3,

are equal to zero.

Now
Ly, = (6)%22
Vie 17)2nx2n

|
—
|
—
|
—
|
—
|
—

e}

n—1 n—1 n—1 n—1 n—1
—1 0 —1 —1 —1 —1
n—1 n—1 n-—1 n—1 n—1
—1 —1 0 —1 —1 —1
n—1 n—1 n—1 n—1 n—1
—1 —1 -1 0 —1 —1
= n—1 n—1 n—1 n—1 n—1 5
—1 —1 —1 —1 0 -1
n—1 n—1 n—-1 n—-1 n—1
—1 —1 —1 —1 —1 0
n—1 n—-1 n—-1 n-1 n—1 nxn

where £;; = Ofor i € {1,2,...,n} and all other entries of Ly;, = (£;;)V22,

are equal to ——=. Since L4 = Ly, + Ly, and Lg = Ly, — Ly,,, then we
have

_ Va
La= (gij)nxn
1 —1 —1 —1 -1 -1
n—1 n—1 n—1 n—1 n—1
-1 1 T a1 o
n—1 n—1 n-—1 n—1 n—1
—1 -1 1 -1 —1 —1
n—1 n—1 n—1 n—1 n—1
—1 —1 —1 1 —1 —1
= n—1 n—1 n—1 n—1 n—1 5
-1 -1 -1 -1 1 -1
n—1 n—1 n—-1 n-—1 n—1
—1 —1 —1 —1 -1 1
n—1 n—-1 n—-1 n-—1 n—1 nxn
where ¢;; = 1 for i € {1,2,...,n} and all other entries of L4 = (&-j)xfin

are equal to % Now

Ls = (Lij)sm
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TR S W O 11
n—1 n—1 n—1 n—1 n—1
I B 1 1
n—1 n—1 n-—1 n—1 n-—1
o1 o 1 1
n—1 n—1 n—1 n—1 n-—1
1 Ty 1 1

= n—1 n—1 n—1 n—1 n—1 5
1 1 1 1 1 L
n—1 n—-1 n-1 n-1 n—1
R B R I 1

n—1 n—-1 n—-1 n-1 n—1 nxn

where ¢;; = 1 for ¢ € {1,2,...,n} and all other entries of Lg = (ElJ)Xin
are equal to ﬁ

Also L4 = ﬁL(Kn) and Lg = Ll Q(K,). By using Lemma 1,
ﬁ@bl,ﬁqﬁg,...,ﬁ@“nllm;nllnz,... %77 are the eigenvalues of L(T'y,),
_n_ n —2 n—2
Le. O’n 1'n—17"""7"n— l’ﬁ’n 1
n—2 2n—2

.oy 7=1, 2= are all the eigenvalues of L(I';,).

Theorem 3.2 Suppose I';, (n > 3) is a graph as defined above. Then

1. Kf*(Tn) = (n—1)2Kf(T,) = (n — 1)[42=tn+10n-4)

n—2
2. Gut(T'y) = (n —1)2W(T,,) = 3n2(n — 1)%

. Kf Ty

Proof. (1) Since E(I'y,) = n(n — 1). So by using Equation 1.4, we have

Kf*(rn) = ( )[Zz 2 +Zz 1 ’71 ]
= 2n(n — 1)[(71 nl) + (2711712) + ((T;L 12)) ]
= gn _ 1)[%]

- 1)2Kf(rn)‘

(2) Since Ty, is (n — 1) regular graph. So by using Equation 1.2, it is easy
to get Gut(Ty) = (n — 1)2(W(Ty,)).

(3) Combining with K f*(T'y,) and Gut(I'y,), by using Theorem 3 (4), one
gets

Kf*(L'y)

. n—1)2K f(Ty
LR R TN CES) S

n—-+o0o (n—1)2W(Ty)
=0

lim
n—-4o00

This complete the proof of our theorem. O
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Table 3.2: K f*(I")(reserves a decimal fraction) of graphs from I'y to I'5.

I KfP0) T Kp@) T Kf(@) I K@)
Ty 174 'y 1078.8 Ty 3370.5 TI'i3 7696.4
I's 361.3 I's 1656.7 I'y17 45544 TI'y4  9702.3
Tg 655 I'g 24126 T'12 59884 TI'15 12030.3

Conclusion

The graph spectrum has many useful information related to the graph.
In this paper, we study the Kirchhoff, multiplicative Kirchhoff index and
number of spanning trees for graph I',,. By using Decomposition theo-
rem of Laplacian Polynomial, we procure that Laplacian spectrum of I',
contains the Laplacian spectrum of complete graph K, and the Signless
laplacian spectrum of the complete graph K,,. Further, the Gutman index
and Wiener index for graph I, is also studied.
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