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Abstract

This paper deals with a fractional boundary value problem involving
variable delays. Sufficient conditions for the existence of a unique
solution are investigated. Moreover the stability of the unique solution
is discussed. A numerical example that emphasizes the importance of
the results obtained in this article is also included.
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1. Introduction

Differential equations of fractional order have become very useful in re-
cent years due to their many applications in applied sciences, fluid flows,
optics, geology, viscoelastic materials, biosciences, ....Moreover, fractional
differential equations are integro-differential equations and their numerical
solution requires large computer memory and long runs of numerical simu-
lations, this makes it very difficult to investigate the general properties of
fractional dynamical systems. As a consequence, accurate approximation
and a suitable numerical technique play an important role in identifying the
solution behavior of such fractional equations and in exploring their appli-
cations (see, e.g.see [1,3—6,10-14, 16-20, 23-28] and the references therein.
Recently, many works focus on the existence of solutions for fractional
differential equations with delay, see [1,4-5,16,17,24,26-28]. In [16], the au-
thors proved the existence results for a class of delay fractional differential
equations of the form:

Dα
0+u (t) = u(t) + f (t, u(t), u(t− τ))) , 0 < α < 1, 0 < t ≤ 1,
u (t) = ϕ(t), t ∈ [−τ, 0]

with the boundary condition

(
u(0) = limt→0+ t

1−αu(t) = c = u(1)

D1−α
0+ u(t)t=0 = cΓ(α),

where Dα
0+ denotes the Riemann-Liouville fractional derivative and f is a

continuous function.
In [28], the authors discussed the stability of the solutions for nonlinear

fractional differential equations with constant delays and integral boundary
conditions:

Dα
0+u (t) =

nX
j=1

aj(t)f (t, u(t), u(t− τj)) = 0, 0 < α < 1, t > 0,

u (t) = ϕ(t), t < 0,

Iα−10+ u(t)t=0 = 0, limϕ(t)t−→0− = 0,

here f : R+ × R2 −→ R is a continuous function, aj and ϕ are given
continuous functions, τj ≥ 0, j = 1, 2, ..., n are constants.

For more results on the stability of solution for fractional boundary
value problem we refer to [11,20,27].

In this work, we discuss the existence, uniqueness and stability of solu-
tions for a nonlinear fractional boundary value problem with variable delays
that we denote by (P):
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(P)

⎧⎪⎨⎪⎩
Dα
0+u (t) = q(t)f (t, u(t− θ1(t)), u(t− θ2(t))) , 2 ≤ α < 3, t > 0,

u (t) = ϕ(t), t ∈ [−τ, 0] ,
u00(0) = 0, limt→∞Dα−1

0+ u(t) = Γ(α)u(0),

where Dα
0+ denotes the standard Riemann-Liouville fractional derivative of

order α, the functions θi : [0,∞) → (0,∞) are continuous functions, such
limt→∞(t − θi(t)) = +∞, τ = −min0≤i≤2mint≥0(t − θi(t)). We assume
that q : [0,∞) → [0,∞), the function f is continuous on [0,∞) ×R2 and
ϕ is a continuous function on the interval [−τ, 0].

Delay fractional differential equations arise in models representing bio-
logical phenomena when the time delays occurring in these phenomena are
considered such as population dynamics, epidemiology, immunology, phys-
iology, and neural networks. The memory or time-delays in these models
are related to the duration of certain hidden processes, such as the stages
of a life cycle, the time between the infection period and the immune one...

Mathematical models involving integer order differential equations have
proven useful in understanding the dynamics of biological systems, however,
most biological, physical, and engineering systems have long-range tempo-
ral memory [2], and long-range space interactions [21] .

Moreover, for a physical process, the fractional order derivative is re-
lated to the whole space, while the integer order derivative describes the
local properties of a certain position, consequently and due to the proper-
ties of fractional derivatives and integrals such as their ability to describe
hereditary and memory properties in different processes that exist in most
biological systems, models of fractional order differential equations seem
more consistent with real phenomena than those of integer order, we refer
to [26-28] for some applications of fractional order systems in modeling and
control. Furthermore, It has been successfully applied to system biology
[7], physics [9,29], hydrology [22], medicine [15], and finance [8].

2. Preliminaries

In this section, we introduce some necessary definitions and lemmas that
will be used later and can be found in [18,23,25].

The Riemann fractional integral of order α > 0 of a function f is given
by

Iα0+f (t) =
1

Γ (α)

tZ
0

(t− s)α−1 f (s) ds

provided that the right side is pointwise defined on (0,+∞).
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The Riemann-Liouville fractional derivative of order α > 0 of a function
f is given by

Dα
0+f (t) =

dn

dtn

³
In−α0+ f (t)

´
,

provided that the right side is pointwise defined on (0,+∞), where n =
[α] + 1, [α] denotes the integer part of α.

Lemma 1. Let α > 0, then the fractional differential equation

Dα
0+u (t) = 0

has
u (t) = c1t

α−1 + c2t
α−2 + ...+ cnt

α−n, ci ∈ R, i = 1, 2, ..., n
as solution.

Lemma 2. The solution of the following linear fractional boundary value
problem

Dα
0+u (t) = e(t), 2 ≤ α < 3, t > 0,

u (t) = ϕ(t), t ∈ [−τ, 0] ,
u00(0) = 0, lim

t→∞
Dα−1
0+ u(t) = Γ(α)u(0),

is given by

u (t) =

⎧⎨⎩ ϕ(0)tα−1 +
∞R
0
G(t, s)e(s)ds, t > 0

u (t) = ϕ(t), t ∈ [−τ, 0]
,

where

G(t, s) =
1

Γ(α)

(
tα−1 − (t− s)α−1, 0 ≤ s ≤ t <∞
tα−1, 0 ≤ t ≤ s <∞ .

Proof. By Lemma 1, we have

u (t) = c1t
α−1 + c2t

α−2 + c3t
α−3 − Iα0+e(t).

Since u (0) = ϕ(0) and u00(0) = 0, we deduce that c3 = c2 = 0. Now,
from limt→∞Dα−1

0+ u(t) = Γ(α)u(0), we get

c1 = ϕ(0) +
1

Γ(α)

∞Z
0

e(s)ds,
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then the solution is

u (t) = ϕ(0)tα−1 +

∞Z
0

G(t, s)e(s)ds,

where

G(t, s) =
1

Γ(α)

(
tα−1 − (t− s)α−1, 0 ≤ s ≤ t <∞

tα−1, 0 ≤ t ≤ s <∞.

2

Lemma 3. The function G is continuous nonnegative and for all s, t ≥ 0
satisfies:

G(t, s)

1 + tα−1
≤ 1

Γ(α)
.

Proof. The proof is easy, so we omit it. 2

Denote by (X, k.k) the Banach space

X =

(
u ∈ C [−τ,∞) : sup

t∈[0,∞)

|u(t)|
1 + tα−1

<∞
)

according to the norm

kukX = kuk0 + kuk
0
∞ ,

where

kuk0 = max
t∈[−τ,0]

|u(t)| , kuk0∞ = sup
t∈[0,∞)

|u(t)|
1 + tα−1

.

Define the operator T : X → X as

Tu(t)=

⎧⎨⎩ ϕ(0)tα−1 +
∞R
0
G(t, s)q(s)f (s, u(s− θ1(s)), u(s− θ2(s))) ds, t > 0

ϕ(t), t ∈ [−τ, 0] .
Then the problem (P) has a solution if and only if the operator T has

a fixed point in X.
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3. Existence and uniqueness of a solution

Theorem 1. Assume that: (H1) there exist two nonnegative functions L1,
L2 ∈ L1 (0,∞) such that¯̄

f(t, (1 + tα−1)x1, (1 + tα−1)y1)− f(t, (1 + tα−1)x2, (1 + tα−1)y2)
¯̄

≤ L1(t) |x1 − x2|+ L2(t) |y1 − y2| ,(3.1)

for all x1, y1, x2, y2 ∈ R, t > 0 and

C = max

⎧⎨⎩
∞Z
0

q(s)L1(s)ds,

∞Z
0

q(s)L2(s)ds

⎫⎬⎭ <
Γ(α)

2
.(3.2)

(H2) There exist ti > 0, such that t− θi(t) < 0, if 0 ≤ t ≤ ti, t− θi(t) ≥ 0,
if t > ti, i = 1, 2. Then the nonlinear fractional boundary value problem
(P) has a unique solution in X.

Proof. Let u, v ∈ X, we have

kTu− Tvk0 = max
t∈[−τ,0]

|Tu(t)− Tv(t)| = 0.(3.3)

On the other hand, for t > 0 we get by computations

¯̄̄̄
Tu(t)− Tv(t)

1 + tα−1

¯̄̄̄
≤ 1

Γ(α)

∞Z
0

q(s) |f (s, u(s− θ1(s)), u(s− θ2(s)))

−f (s, v(s− θ1(s)), v(s− θ2(s)))| ds

≤ 1

Γ(α)

∞Z
0

q(s)

¯̄̄̄
¯f
Ã
s,

¡
1 + sα−1

¢
u(s− θ1(s))

1 + sα−1
,

¡
1 + sα−1

¢
u(s− θ2(s))

1 + sα−1

!

−f
Ã
s,

¡
1 + sα−1

¢
v(s− θ1(s))

1 + sα−1
,

¡
1 + sα−1

¢
, v(s− θ2(s))

1 + sα−1

!¯̄̄̄
¯ ds

≤ 1

Γ(α)

∞Z
0

q(s)L1(s)

¯̄̄̄
u(s− θ1(s))− v(s− θ1(s))

1 + sα−1

¯̄̄̄
ds

+
1

Γ(α)

∞Z
0

q(s)L2(s)

¯̄̄̄
u (s− θ2(s))− v (s− θ2(s))

1 + sα−1

¯̄̄̄
ds
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≤ 1

Γ(α)

t1Z
0

q(s)L1(s)

¯̄̄̄
u(s− θ1(s))− v(s− θ1(s))

1 + sα−1

¯̄̄̄
ds

+
1

Γ(α)

∞Z
t1

q(s)L1(s)

¯̄̄̄
u(s− θ1(s))− v(s− θ1(s))

1 + sα−1

¯̄̄̄
ds

+
1

Γ(α)

t2Z
0

q(s)L2(s)

¯̄̄̄
u(s− θ2(s))− v(s− θ2(s))

1 + sα−1

¯̄̄̄
ds

+
1

Γ(α)

∞Z
t2

q(s)L2(s)

¯̄̄̄
u(s− θ2(s))− v(s− θ2(s))

1 + sα−1

¯̄̄̄
ds

≤ 2C

Γ(α)
(ku− vk0 + ku− vk∞0 ) ,(3.4)

hence

kTu− Tvk0∞ ≤
2C

Γ(α)
ku− vkX .

Thanks to (3.3) and (3.4), it yields

kTu− TvkX ≤
2C

Γ(α)
ku− vkX .

Taking (3.2) into account, we deduce that T is a contraction and then
T has a unique fixed point in X that is the unique solution for problem
(P). 2

4. Stability of solution

In this section, we study the stability of the solution for the nonlinear
fractional boundary value problem (P). Let ũ be a solution of the following
fractional boundary value problem

( eP )
⎧⎪⎨⎪⎩

Dα
0+ũ (t)− q(t)f (t, ũ(t− θ1(t)), ǔ(t− θ2(t))) = 0, 2 ≤ α < 3, t > 0

ũ (t) = ϕ̃(t), t ∈ [−τ, 0]
ũ00(0) = 0, limt→∞Dα−1

0+ ũ(t) = Γ(α)ũ(0).

Definition 1. The solution of the fractional boundary value problem (P)
is stable if for any ε > 0, there exists δ > 0 such that for any two solutions
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u and ũ of problems (P) and ( eP ) respectively, one has kϕ− ϕ̃k0 ≤ δ, then
ku− ũkX < ε.

Theorem 2. Under the assumptions of Theorem 4, the solution of the
fractional boundary value problem (P) is stable.

Proof. Let u and ũ be solutions of problems (P) and ( eP ) respectively,
we have

ku− ũk0 = max
t∈[−τ,0]

|u(t)− ũ(t)| = max
t∈[−τ,0]

|ϕ(t)− ϕ̃(t)| = kϕ− ϕ̃k0 .(4.1)

On the other hand for t ≥ 0, we have¯̄̄̄
u(t)− ũ(t)

1 + tα−1

¯̄̄̄
≤ tα−1

1 + tα−1
|ϕ(0)− ϕ̃(0)|

+
1

Γ(α)

∞Z
0

q(s) |f (s, u(s− θ1(s)), u(s− θ2(s)))− f (s, ũ(s− θ1(s)), ũ(s− θ1(s)))| ds

≤ tα−1

1 + tα−1
|ϕ(0)− ϕ̃(0)|

+
1

Γ(α)

∞Z
0

q(s)L1(s)

¯̄̄̄
u(s− θ1(s))− ũ(s− θ1(s))

1 + sα−1

¯̄̄̄
ds

+
1

Γ(α)

∞Z
0

q(s)L2(s)

¯̄̄̄
u(s− θ2(s))− ũ(s− θ1(s))

1 + sα−1

¯̄̄̄
ds,

reasoning as in the proof of Theorem 4, we get

ku− ũk0∞ ≤
µ
1 +

2C

Γ(α)

¶
kϕ− ϕ̃k0 +

2C

Γ(α)
ku− ũk0∞ ,

hence

ku− ũk0∞ ≤
µ
Γ(α) + 2C

Γ(α)− 2C

¶
kϕ− ϕ̃k0 .(4.2)



Stability of solutions to fractional differential ... 269

In view of (4.1) and (4.2), we obtain

ku− ũkX ≤
µ

2Γ(α)

Γ(α)− 2C

¶
kϕ− ϕ̃k0 ,

therefore, for � > 0, we can find δ =
³

2Γ(α)
Γ(α)−2C

´−1
� such that if kϕ− ϕ̃k0 < δ

then ku− ũkX < �, which proves that then unique solution is stable. 2

Now we give a numerical example.

Example 3. Consider the following fractional boundary value problem

(P1)

⎧⎪⎨⎪⎩
Dα
0+u (t) = q(t)f (t, u(t− θ1(t)), u(t− θ2(t))) , t > 0,

u (t) = ϕ(t), t ∈ [−τ, 0] ,
u00(0) = 0, limt→∞Dα−1

0+ u(t) = Γ(α)u(0),

where α = 12
5 , f (t, x, y) =

e−t

6

³
x+ ty − 1

1+x2

´
, ϕ (t) = t2, q (t) = 1

1+tα−1 ,

θ1(t) =
t
2 +

1
2 , θ2(t) =

2t
3 +

1
3 , then τ = 1

2 . Let us check the hypotheses of

Theorem 4. -(H1) holds if we choose L1(t) =
e−t

6

³
1 + tα−1 +

¡
1 + tα−1

¢2´
,

L2(t) =
te−t(1+tα−1)

6 and then C = 0.540 36. -There exist t1 = t2 = 1, such
that t− θi(t) < 0, for 0 ≤ t ≤ 1, and t− θi(t) ≥ 0, if t > 1, i = 1, 2. Hence
the Hypothesis (H2) is satisfied.

By Theorems 4 and 5, we conclude that the problem (P1) has a unique
solution that is stable in X.
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