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Abstract

In this work we investigate the existence and uniqueness of solu-
tions of boundary value problems for fractional differential equations
involving the Caputo fractional derivative with integral conditions and
the nonlinear term depends on the fractional derivative of an unknown
function. Our existence results are based on Banach contraction prin-
ciple and Schauder fixed point theorem. Two examples are provided
to illustrate our results.
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1. Introduction

Fractional differential equations are generalizations of the ordinary differ-
ential equations to an arbitrary non-integer order. They have attracted
considerable interest due to their ability to model complex phenomena in
various science and engineering fields [2, 7, 12]. In fact, the fractional differ-
ential equations are considered as alternative models to nonlinear differen-
tial equations which induced extensive researches in various fields including
the theoretical part [5, 9, 10, 11, 13, 16]. Some existence results for bound-
ary value problems with integral conditions can be found in [1, 8, 15].
In [3], Benchohra et al. established sufficient conditions for the existence
of solutions to a class of boundary value problem for fractional differential
equations using the techniques of some fixed point theorems.
By means of Banach contraction principle and Leray—Schauder nonlinear
alternative, Guezane-Lakoud et al.[6] proved the existence and uniqueness
of solutions for boundary value problems for a class of fractional differential
equations with fractional integral condition.
However, it is an essential condition that the nonlinear term depends on
the unknown function indicated in [3]. Thus, it is desirable to extend this
condition which leading to a more difficult and complicated case, in which
the aim of the present paper is to overcome these difficulties. Inspired
by these works in [3, 6] and the references therein, the present study was
aimed to investigate the existence and uniqueness of solutions of boundary
value problems for the fractional differential equations with integral con-
ditions and the nonlinear term depends on the fractional derivative of an
unknown function. Hence, we consider the following fractional boundary
value problem of the form

cDq
0+u(t) = f(t, u(t),cDσ

0+u(t)), 0 < t < 1,(1.1)

u(0)− u0(0) =
Z 1

0
η1(s)u(s) ds,(1.2)

u(1)− u0(1) =
Z 1

0
η2(s)u(s) ds,(1.3)

where cDq
0+ is the Caputo fractional derivative of order q, 1 < q ≤ 2

and 0 < σ < 1, f : [0, 1] × R × R → R and η1, η2 are the continuous
functions which will be specified later. In this paper, we firstly derive
the corresponding Green’s function. Consequently, problem (1.1)—(1.3) is
reduced to equivalent Fredholm integral equation of second kind. Finally,
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using Banach contraction principle and Schauder fixed point theorem the
existence and uniqueness of solutions are obtained. The other parts of the
paper are organized as follows: In Section 2, we list some definitions and
lemmas to be used later. In section 3, we present and prove our main results
which consist of the uniqueness and existence theorems. At the end of this
section, two examples are also provided to illustrate the main results.

2. Preliminaries

In this section, we give some basic definitions and lamas of fractional cal-
culus [9, 16] which will be used in this paper.
Let us denote by L1([0, 1],R) the Banach space of Lebesgue integrable
functions f : [0, 1]→ R with the norm

kykL1 =
Z 1

0
|y(t)| dt.

Definition 2.1. [16] A function ϕ(x) is called absolutely continuous on an
interval Ω, if for any ε > 0 there exists a δ such that for any finite set
of pairwise nonintersecting intervals [ak, bk] ⊂ Ω, k = 1, 2, . . . , n, such thatPn

k=1 (bk − ak) < δ the inequality
Pn

k=1 |f((bk)− f(ak))| < ε holds. The
space of these functions is denoted by AC(Ω).

Definition 2.2. [16] For n ∈ N = {1, 2, . . .}, we denote by ACn(Ω) the
space of functions ϕ(x) which have continuous derivatives up to order n−1
on Ω with ϕ(n−1)(x) ∈ AC(Ω).
In particular, AC1(Ω) = AC(Ω).

Definition 2.3. [9] The Riemann-Liouville fractional integral of order α >
0 for a continuous function ϕ ∈ C[a, b] is defined as

Iαa+ϕ(t) =
1

Γ(α)

Z t

a
ϕ(s)(t− s)(α−1) ds,(2.1)

where Γ is the gamma function.

Definition 2.4. [9] For a function ϕ ∈ ACn[a, b], the Riemann-Liouville
fractional derivative of order α ≥ 0 of ϕis defined as

Dα
a+ϕ(t) =

1

Γ(n− α)

µ
d

dt

¶n Z t

a
ϕ(s)(t− s)(n−α−1) ds,(2.2)

exists almost everywhere on [a, b] where n = [α] + 1 and [α] is the integer
part of α.
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Definition 2.5. [9] For a function ϕ ∈ ACn[a, b], the Caputo fractional
derivative of order α ≥ 0 of ϕ is defined as

cDα
a+ϕ(t) =

1

Γ(n− α)

Z t

a
ϕ(n)(s)(t− s)(n−α−1) ds,(2.3)

exists almost everywhere on [a, b] where n = [α] + 1 and [α] is the integer
part of α.

Lemma 2.6. [9] Letα > 0,β > 0,f ∈ L1[0, 1]. Then the operatorIα has the
semigroup property

Iα0+I
β
0+f(t) = Iα+β0+ f(t),

= Iβ0+I
α
0+f(t),

for all t ∈ [0, 1].

Lemma 2.7. (Lemma 10, [6]) Let β > 0 and f ∈ L1[0, 1]. Then

Iβ+10+ f(t) ≤
°°°Iβ0+f°°°L1 ,

for allt ∈ [0, 1].

Lemma 2.8. [9] Let β > α and f ∈ L1[0, 1]. Then

cDα
0+I

β
0+f(t) = Iβ−α0+ f(t),

and
cDα

0+I
αf(t) = f(t),

for allt ∈ [0, 1].

Lemma 2.9. [9] Let α > 0, n − 1 ≤ α < n, β ∈ {0, . . . , n− 1} and
f(t) = (t− a)β, then

cDα
a+f(t) = 0.

Moreover, if β > n− 1, then

cDα
a+f(t) =

Γ(β + 1)

Γ(β − α+ 1)
(t− a)β−α.

In particular

cDα
0+t

β−1 =
Γ(β)

Γ(β − α)
tβ−α−1, β > n,
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Lemma 2.10. [9] The solution to the fractional differential equation
cDα

a+ϕ(t) = 0,
with α > 0 and ϕ ∈ ACn[0, 1] has the following form:

ϕ(t) = c1 + c2t+ c3t
2 + . . .+ cnt

n−1,

where ci ∈ R, i = 0, . . . , n and n = [α] + 1.

Lemma 2.11. [9] Let α > 0 and ϕ ∈ ACn[0, 1]. Then

IαcDα
a+ϕ(t) = ϕ(t) + c0 + c1t+ c2t

2 + . . .+ cn−1t
n−1,

for arbitrary ci ∈ R, i = 0, . . . , n and n = [α] + 1.

The following Banach space plays a fundamental role in our analysis.
We let C([0, 1],R) denote the space of all continuous functions defined on
[0, 1]. The space

E = {u : y ∈ C([0, 1],R),cDσ
0+y ∈ C([0, 1],R), 0 < σ < 1} ,

endowed with the norm

kukE = max
t∈[0,1]

|u|E + max
t∈[0,1]

|cDσ
0+u|E ,

is a Banach space.

Lemma 2.12. (Lemma 3.2, [15]) (E, k.kE) is a Banach space.

To study the existence of solution of the problem (1.1)—(1.3), we need
the following lemma.

Lemma 2.13. Given ψ, η1, η2 ∈ C([0, 1],R) and 1 < q ≤ 2, 0 < σ < 1.
Then the unique solution of the boundary value problem⎧⎪⎨⎪⎩

cDq
0+u(t) = ψ(t), 0 < t < 1,

u(0)− u0(0) =
R 1
0 η1(s)u(s) ds,

u(1)− u0(1) =
R 1
0 η2(s)u(s) ds,

(2.4)

is given by

u(t) =

Z 1

0
G(t, s)ψ(s)ds,(2.5)

where
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G(t , s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t−s)q−1
Γ(q) + (k1−k2−k3t)

Γ(q)

R 1
s η1(r)(r − s)q−1dr

+ (k4+k5t)
Γ(q)

R 1
s η2(r)(r − s)q−1dr

− (k4+k5t)Γ(q−1) (1− s)α−2 − (k4+k5t)
Γ(q) (1− s)q−1, 0 ≤ s ≤ t ≤ 1.

(k1−k2−k3t)
Γ(q)

R 1
s η1(r)(r − s)q−1dr + (k4 + k5t)

R 1
s η2(r)(r − s)q−1dr

− (k4+k5t)Γ(q−1) (1− s)q−2 − (k4+k5t)
Γ(q) (1− s)q−1, 0 ≤ t ≤ s ≤ 1,

(2.6)

and G(t,s) is called the Green’s function of the boundary value problem
(1.1)—(1.3).

Here

k1 =
1
p1
, k2 =

p2p3
p21p5

, k3 =
p3
p1p5

,

k4 =
p2
p1p5

, k5 =
1
p5
, p1 = 1−

R 1
0 η1(s)ds,

p2 = 1 +
R 1
0 sη1(s)ds, p3 = 1−

R 1
0 η2(s)ds, p4 = 2−

R 1
0 sη2(s)ds,

p5 = (p4 +
p2p3
p1
),

where p1, p2, p3, p4, p5 > 0.

Proof. Assume that u is a solution of the boundary value problem
(2.4). Then, according to Lemma 2.11, we can reduce the problem (2.4) to
an equivalent integral equation

u(t) = c0 + c1t+
1

Γ(q)

Z t

0
(t− s)q−1ψ(s)ds,(2.7)

for some constants c0, c1 ∈ R.
Taking the fractional integral conditions u(0)− u0(0) =

R 1
0 η1(s)u(s)ds and

u(1)− u0(1) =
R 1
0 η2(s)u(s)ds into account, it yields

c0 − c1 =

Z 1

0
η1(s)u(s)ds.(2.8)

and

c0+2c1+
1

Γ(q)

Z 1

0
(1−s)q−1ψ(s)ds+ 1

Γ(q − 1)

Z 1

0
(1−s)q−2ψ(s)ds =

Z 1

0
η2(s)u(s)ds.

(2.9)
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From (2.7), we have by integration using Fubini’s integral theorem and
(2.8) and (2.9), we get

c1 = − p3
p1p5Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1ψ(s)drds− 1

p5Γ(q)

R 1
0 (1− s)q−1ψ(s)ds

− 1
p5Γ(q−1)

R 1
0 (1− s)q−2ψ(s)ds+ 1

p5Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1ψ(s)drds.

(2.10)

and

c0 =
³

1
p1Γ(q)

− p2p3
p21p5Γ(q)

´ R 1
0

R 1
s η1(r)(r − s)q−1ψ(s)drds

+ p2
p1p5Γ(q)

R 1
0

R 1
s η2(r)(1− s)q−1ψ(s)ds

− p2
p1p5Γ(q−1)

R 1
s (1− s)q−2ψ(s)ds− p2

p1p5Γ(q)

R 1
0 (1− s)q−1ψ(s)ds.

(2.11)

Hence the unique solution of problem (2.4) is found by substituting c0 and
c1 by their values in (2.7). This yields

u(t) = 1
Γ(q)

R t
0(t− s)q−1ψ(s)ds

+ (k1−k2−k3t)
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1ψ(s)drds

+ (k4+k5t)
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1ψ(s)drds

− (k4+k5t)Γ(q−1)
R 1
0 (1− s)q−2ψ(s)ds

− (k4+k5t)Γ(q)

R 1
0 (1− s)q−1ψ(s)ds

=
R 1
0 G(t, s)ψ(s)ds.

(2.12)

This completes the proof. 2

Lemma 2.14. Assume that f ∈ C([0, 1) ×R ×R,R). Then u ∈ E is a
solution of the fractional boundary value problem (1.1)—(1.3) if and only if
Θu(t) = u(t), for all t ∈ [0, 1].

Proof. Let u(t) ∈ E be a solution of problem (1.1)—(1.3). Then, using
the same method as used in Lemma 2.13, we can obtain that u is a solution
of the following integral equation

u(t) =

Z 1

0
G(t, s)f(s, u(s),cDσ

0+u(s))ds.(2.13)

Conversely, let u ∈ E be a solution of integral equation (2.13). We
denote the right-hand side of the first equation in (2.13) by z(t)
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z(t) = Iq0+f(s, u(s),
cDσ

0+u(s))

+ (k1−k2−k3t)
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1f(s, u(s),cDσ

0+u(s))drds

+ (k4+k5t)
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1f(s, u(s),cDσ

0+u(s))drds

− (k4+k5t)Γ(q−1)
R 1
0 (1− s)q−2f(s, u(s),cDσ

0+u(s))ds

− (k4+k5t)Γ(q)

R 1
0 (1− s)q−1f(s, u(s),cDσ

0+u(s))ds.

Using Lemma 2.8 and Lemma 2.9, we have

cDq
0+z(t) =c Dq

0+I
q
0+f(s, u(s),

cDq
0+u(s))

+
cDq

0+
(k1−k2−k3t)
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1f(s, u(s),cDσ

0+u(s))drds

+
cDq

0+
(k4+k5t)

Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1f(s, u(s),cDσ

0+u(s))drds

−
cDq

0+
(k4+k5t)

Γ(q−1)
R 1
0 (1− s)q−2f(s, u(s),cDσ

0+u(s))ds

−
cDq

0+
(k4+k5t)

Γ(q)

R 1
0 (1− s)q−1f(s, u(s),cDσ

0+u(s))ds,

= f(s, u(s),cDq
0+u(s))

namely, cDq
0+u(t) = f(s, u(s),cDq

0+u(s)). Also it easy to verify that u
satisfies conditions (1.2) and (1.3). Hence, u ∈ E is a solution of the
problem (1.1)—(1.3). This achieves the proof. 2

Let Θ : E → E be the operator defined as

Θu(t) =

Z 1

0
G(t, s)f(s, u(s),cDσ

0+u(s))ds.

Therefore by Lemma (2.14), the fixed point of operator Θ coincides with
the solution of problem (1.1)—(1.3).

3. Main results

In this section, we prove the existence and uniqueness of solution of the
boundary vale problem (1.1)—(1.3) in the Banach space E by applying Ba-
nach contraction principle [16] and Schauder fixed point theorem [16].

We need the following assumptions to establish our results:

(H1) The function f : [0, 1)×R×R→ R is continuous.

(H2) There exists a constant L > 0 such that: |f(t, x, x̄)− f(t, y, ȳ)| ≤
L(|x− y|+ |x̄− ȳ|), for all x, x̄, y, ȳ ∈ R and t ∈ [0, 1].
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(H3) There exists a nonnegative function β ∈ L[0, 1] such that: |f(t, x, y)| ≤
β(t)+α1 |x|σ1+α2 |y|σ2 , where α1, α2 ≥ 0 and 0 < σi < 1 for i = 1, 2.

(H4) There exists a nonnegative function β ∈ L[0, 1] such that:

|f(t, x, y)| ≤ β(t) + α1 |x|σ1 + α2 |y|σ2 ,
where α1, α2 ≥ 0 and σ1, σ2 > 1.

For convenience, we define the following notations:

ω1 = 1
qΓ(q) +

k1+k2+k3
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1drds

+k4+k5
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1drds+ (k4 + k5)

³
1

Γ(q) +
1

Γ(q+1)

´
,

ω2 = 1
Γ(q) +

k3
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1drds

+ k5
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1drds

+ k5
Γ(q) +

k5
Γ(q+1) ,

ω3 = k3
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1β(s)drds

+ k5
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1β(s)drds

+ k5
Γ(q−1)

R 1
0 (1− s)q−2β(s)ds+ k5

Γ(q)

R 1
0 (1− s)q−1β(s)ds,

ω4 =max
0≤t≤1

R 1
0 |G(t, s)β(s)| ds.

Theorem 3.1. Assume that (H1) and (H2) hold. If

L.

µ
ω1 +

ω2
Γ(2− σ)

¶
< 1.(3.1)

Then the boundary value problem (1.1)—(1.3) has a unique solution u ∈ E.

Proof. We prove by using Banach contraction principle [16] and Lemma
2.14 the boundary value problem (1.1)—(1.3) has a unique solution if and
only if the operator Θ has a fixed point in E. For this, we need to verify
that Θ is a contraction. Let u, v ∈ E, in view of (2.12) and Lemma (2.14)
we get

Θu(t)−Θv(t) =
Z 1

0
G(t, s)(f(s, u(s),cDσ

0+u(s))− f(s, v(s),cDσ
0+v(s)))ds.



1126 Ahcene Boukehila

According to (H2), we obtain

|Θu(t)−Θv(t)| ≤
R 1
0 G(t, s)(f(s, u(s),

cDσ
0+u(s))− f(s, v(s),cDσ

0+v(s)))ds,

≤ L
R 1
0 |G(t, s)| |u(s)− v(s)| ds

+L
R 1
0 |G(t, s)|

¯̄
cDσ

0+u(s)−c Dσ
0+v(s)

¯̄
ds,

≤ L max
0≤t≤1

|u(s)− v(s)|
R 1
0 |G(t, s)| ds

+L max
0≤t≤1

¯̄
cDσ

0+u(s)−c Dσ
0+v(s)

¯̄ R 1
0 |G(t, s)| ds.

(3.2)
Indeed, let us estimate the term

R 1
0 |G(t, s)| ds, using (2.6) we haveR 1

0 |G(t, s)| ds ≤ 1
qΓ(q) +

k1+k2+k3
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1drds

+k4+k5
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1drds

+(k4 + k5)
³

1
Γ(q) +

1
Γ(q+1)

´
.

(3.3)

Consequently (3.2), can be written using the above notation

|Θu(t)−Θv(t)| ≤ Lω1( max
0≤t≤1

|u(t)− v(t)|+ max
0≤t≤1

¯̄
cDσ

0+u(t)−c Dσ
0+v(t)

¯̄
)

≤ Lω1 ku(t)− v(t)k .
(3.4)
Since on the other hand we have

cDσ
0+Θu(t)−c Dσ

0+Θv(t) =
1

Γ(1− σ)

Z t

0

(Θu)0(s)− (Θv)0(s)
(t− s)σ

ds,

where

(Θu)0(t) =
Z 1

0

∂G(t, s)

∂t
f(s, u(s),cDσ

0+u(s))ds,

and

∂G(t, s)

∂t
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(t−s)q−2
Γ(q−1) −

k3
Γ(q)

R 1
s η1(r)(r − s)q−1dr + k5

Γ(q)

R 1
s η2(r)(r − s)q−1dr

− k5
Γ(q−1)(1− s)q−2 − k5

Γ(q)(1− s)q−1, 0 ≤ s ≤ t ≤ 1,
− k3

Γ(q)

R 1
s η1(r)(r − s)q−1dr + k5

Γ(q)

R 1
s η2(r)(r − s)q−1dr

− k5
Γ(q−1)(1− s)q−2 − k5

Γ(q)(1− s)q−1, 0 ≤ t ≤ s ≤ 1.

(3.5)

So we get that
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cDσ
0+Θu(t)−c Dσ

0+Θv(t)

= 1
Γ(1−σ)

R t
0

R 1
0 (t− s)−σ ∂G(s,r)∂s (f(r, u(r),cDσ

0+u(r)

−f(r, v(r),cDσ
0+v(r)))drds.

Using (H2) yields¯̄
cDσ

0+Θu(t)−c Dσ
0+Θv(t)

¯̄
≤ L

max
0≤t≤1

|u(t)−v(t)|

Γ(1−σ)
R t
0

R 1
0 (t− s)−σ

¯̄̄
∂G(s,r)

∂s

¯̄̄
drds

+L
max
0≤t≤1

¯̄
cDσ

0+
u(t)−cDσ

0+
v(t)
¯̄

Γ(1−σ)
R t
0

R 1
0 (t− s)−σ

¯̄̄
∂G(s,r)

∂s

¯̄̄
drds.

(3.6)

The term
R 1
0

¯̄̄
∂G(s,r)

∂s

¯̄̄
dr in (3.6) admits the following estimateR 1

0

¯̄̄
∂G(s,r)

∂s

¯̄̄
dr ≤ 1

Γ(q) +
k3
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1drds

+ k5
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1drds

+ k5
Γ(q) +

k5
Γ(q+1) .

Using the notation given above, (3.6) becomes¯̄
cDσ

0+Θu(t)−c Dσ
0+Θv(t)

¯̄
≤ Lω2

Γ(2−σ) max0≤t≤1
|u(t)− v(t)|

+ Lω2
Γ(2−σ)0 ≤ t ≤ 1max

¯̄
cDσ

0+u(t)−c Dσ
0+v(t)

¯̄
,

≤ Lω2
Γ(2−σ) ku(t)− v(t)k ,

(3.7)
then

kΘu(t)−Θv(t)kE =max0≤t≤1
|Θu(t)−Θv(t)|+ max

0≤t≤1
|cDσ

0+Θu(t)−c Dσ
0+Θv(t)| .

(3.8)
Thus, it follows from this that

kΘu(t)−Θv(t)k ≤ L

µ
ω1 +

ω2
Γ(2− σ)

¶
ku(t)− v(t)k .(3.9)

Using the condition (3.1), we conclude that Θ is a contraction mapping,
hence Banach contraction principle guarantees that Θ has a fixed point
which is the unique solution of the boundary value problem (1.1)—(1.3).
The proof is complete. 2
The existence result can be obtained by the well-known Schauder fixed
point theorem [16].

Theorem 3.2. Assume that (H1) and (H3) hold. Then the boundary value
problem (1.1)—(1.3) has a solution.
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Proof. In view of the continuity of f and G, the operator Θ defined
above is continuous.

Firstly, we prove that Θ :W →W. Let W = {u ∈ E : ku(t)kE ≤ R, t ∈
[0, 1]} be a bounded subset in E, and choose
R ≥ max{3ω5, (3α1ω6)

1
1−σ1 , (3α2ω6)

1
1−σ2 }. For u ∈W, and using (H3), we

obtain

|Θu(t)| ≤
R 1
0 |G(t, s)|

¯̄
f(s, u(s),cDσ

0+u(s))
¯̄
ds,

≤
R 1
0 |G(t, s)β(s)| ds+ (α1Rσ1 + α2R

σ2)
R 1
0 |G(t, s)| ds.

(3.10)

Using the notation given above, this becomes

|Θu(t)| ≤ ω4 + (α1R
σ1 + α2R

σ2)ω1.(3.11)

In addition

|(Θu(t))0| ≤
R 1
0

¯̄̄
∂G(t,s)

∂t

¯̄̄ ¯̄
f(s, u(s),cDσ

0+u(s))
¯̄
ds,

≤
R 1
0

¯̄̄
∂G(t,s)

∂t

¯̄̄
β(s)ds+ (α1R

σ1 + α2 |R|σ2)
R 1
0

¯̄̄
∂G(t,s)

∂t

¯̄̄
ds.

(3.12)

The term
R 1
0

¯̄̄
∂G(t,s)

∂t

¯̄̄
β(s)ds in (3.12) is estimated using (3.5) and Lemma

2.7 with the above notation, leading to

R 1
0

¯̄̄
∂G(t,s)

∂t

¯̄̄
β(s)ds ≤ Iq−10+ β(t) + k3

Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1β(s)drds

+ k5
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1β(s)drds

+ k5
Γ(q−1)

R 1
0 (1− s)q−2β(s)ds

+ k5
Γ(q)

R 1
0 (1− s)q−1β(s)ds,

≤
°°°Iq−20+ β

°°°
L1
+ ω3.

(3.13)

Then we obtain¯̄
(Θu(t))0

¯̄
≤
°°°Iq−20+ β

°°°
L1
+ ω3 + (α1R

σ1 + α2 |R|σ2)ω2.(3.14)

Consequently, we have
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|cDσ
0+Θu(t)| ≤

1

Γ(2− σ)

³°°°Iq−20+ β
°°°
L1
+ ω3

´
+

1

Γ(2− σ)
(α1R

σ1+α2R
σ2)ω2).

(3.15)

Then

kΘu(t)kE =max0≤t≤1
|Θu(t)|+ max

0≤t≤1
|cDσ

0+Θu(t)| .

Therefore, we have

kΘu(t)kE ≤ ω4 +
1

Γ(2−σ)

³°°°Iq−20+ β
°°°
L1
+ ω3

´
+
³

1
Γ(2−σ)ω2 + ω1

´
(α1R

σ1 + α2R
σ2)

≤ ω5 + ω6(α1R
σ1 + α2R

σ2),

≤ R
3 +

R
3 +

R
3 = R,

where ω5 = ω4+
1

Γ(2−σ)

³°°°Iq−20+ β
°°°
L1
+ ω3

´
and ω6 =

1
Γ(2−σ)ω2+ω1. There-

fore we conclude that kΘu(t)kE ≤ R. Since |Θu(t)| and
¯̄
cDσ

0+Θu(t)
¯̄
are

continuous on [0, 1], hence Θ :W→W.

Now, we show that Θ is completely continuous operator. In fact, let
M =max

0≤t≤1

¯̄
f(t, u(t),cDσ

0+u(t))
¯̄
where 0 ≤ t ≤ 1 and kuk ≤ R, then for

all t1, t2 ∈ [0, 1], t1 < t2 and u ∈W, we have

|Θu(t1)−Θu(t2)| =
R 1
0 |G(t1, s)−G(t2, s)|

¯̄
f(t, u(t),cDσ

0+u(t))
¯̄
ds,

≤M
R 1
0 |G(t1, s)−G(t2, s)| ds,

≤ M|tq1−tq2|
Γ(q+1) +

Mk3|t1−t2|
Γ(q)

R 1
0

R 1
s η1(r)(r − s)q−1drds

+Mk5|t1−t2|
Γ(q)

R 1
0

R 1
s η2(r)(r − s)q−1drds

+Mk5|t1−t2|(q+1)
Γ(q+1) .

(3.16)

In addition

¯̄
cDσ

0+Θu(t1)−c Dσ
0+Θu(t2)

¯̄
=
¯̄̄

1
Γ(1−σ)

³R t1
0 (t1 − s)−σ(Θu(s))0ds−

R t2
0 (t2 − s)−σ(Θu(s))0ds

´¯̄̄
,

≤ 1
Γ(1−σ)

³R t1
0 ((t1 − s)−σ − (t2 − s)−σ) |(Θu(s))0| ds

´
+ 1

Γ(1−σ)
R t2
t1
(t2 − s)−σ |(Θu(s))0| ds.

(3.17)
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From (3.14), we obtain¯̄
cDσ

0+Θu(t1)−c Dσ
0+Θu(t2)

¯̄
≤
°°Iq−2

0+
β
°°
L1
+ω3+(α1Rσ1+α2|R|σ2)ω2

Γ(1−σ)

³R t1
0 ((t1 − s)−σ − (t2 − s)−σ)ds

´
,

≤
°°Iq−2

0+
β
°°
L1
+ω3+(α1Rσ1+α2|R|σ2)ω2

Γ(2−σ) ((t1−σ1 − t1−σ2 ) + 2(t2 − t1)
1−σ),

(3.18)

Since the functions tq1− t
q
2, t1− t2, t1−σ1 − t1−σ2 and (t2− t1)1−σ are uniformly

continuous on [0,1], we conclude that ΘW is equicontinuous. Also, ΘW is
uniformly bounded set. So ΘW ⊂W. By the Arzela-Ascoli Theorem [16],
Θ : W → W is completely continuous. Hence, the Schauder fixed point
theorem implies the existence of a solution in W for the boundary value
problem (1.1)—(1.3). The proof is complete. 2

Theorem 3.3. Assume that (H1) and (H4) hold. Then the nonlinear
boundary value problem (1.1)-(1.3) has a solution.

Proof. The proof is similar to that of Theorem 3.2, so it is omitted. 2

4. Examples

0In this section, two examples are given to demonstrate the applicability
of the above results.

4.1. Example

Consider the following boundary value problem

cD
3
2

0+u(t) =
2+u(t)+cD

1
2
0+

u(t)

(13
√
π+1)(3+u(t)+cD

1
2
0+

u(t))
, 0 < t < 1,(4.1)

u(0)− u0(0) =
Z 1

0
su(s)ds,(4.2)

u(1)− u0(1) =
Z 1

0
s2u(s)ds.(4.3)
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We have

f(t, u(t),cD
1
2

0+u(t)) =
2 + u(t) +c D

1
2

0+u(t)

(13
√
π + 1)(3 + u(t) +c D

1
2

0+u(t))
.

Here q = 3
2 , σ =

1
2 , η1(s) = s, η2(s) = s2, then we can compute

k1, k2, k3, k4, k5, p1, p2, p3, p4, p5:
p1 = 1−

R 1
0 sds = 0.5 > 0, p2 = 1 +

R 1
0 s

2ds = 1.3333333 > 0,

p3 = 1−
R 1
0 s

2ds = 0.6666666 > 0, p4 = 2−
R 1
0 s

3(s)ds = 1.75 > 0,
p5 = p4 +

p2p3
p1

= 3.5277777 > 0, k1 = 1
p1
= 2 > 0,

k2 = p2p3
p21p5

= 1.0078738 > 0, k3 = p3
p1p5

= 0.3779527 > 0,

k4 = p2
p1p5

= 0.7590553 > 0, k5 = 1
p5
= 0.2834645 > 0.

Set

f(t, x, y) =
2 + x+ y

(13
√
π + 1)(3 + x+ y)

(t, x, y) ∈ [0, 1]×R×R.

It is clear that f is continuous.
For all x, x̄, y, ȳ ∈ R and t ∈ [0, 1], we have

f(t, x, y)− f(t, x̄, ȳ) = 1
(13
√
π+1)

¯̄̄
2+x+y
3+x+y −

2+x̄+ȳ
3+x̄+ȳ

¯̄̄
,

≤ 1
(13
√
π+1)

¯̄̄
x−x̄+y−ȳ

(3+x+y)(3+x̄+ȳ)

¯̄̄
,

≤ 1
(13
√
π+1)

(x− x̄+ y − ȳ),

≤ 1
(13
√
π+1)

(x− x̄+ y − ȳ).

Then the assumption (H2) holds with L = 1
(13
√
π+1)

= 0.0415940

In addition, let us estimate the term
³
ω1 +

ω2
Γ(2−σ)

´
. We have

³
ω1 +

ω2
Γ(2−σ)

´
= 1

Γ(2−σ)Γ(q)
+
³
k1+k2+k3

Γ(q) + k3
Γ(2−σ)Γ(q)

´ R 1
0

R 1
s η1(r)(r − s)q−1drds

+
³
k4+k5
Γ(q) +

k5
Γ(2−σ)Γ(q)

´ R 1
0

R 1
s η2(r)(r − s)q−1drds+ (k4+k5)(q+1)

Γ(q+1)

+ k5(q+1)
Γ(2−σ)Γ(q+1) ,

= 1
Γ(2−σ)Γ(q)

+
³
k1+k2+k3

Γ(q) + k3
Γ(2−σ)Γ(q)

´ R 1
0

R s
0 η1(s)(s− r)q−1drds

+
³
k4+k5
Γ(q) +

k5
Γ(2−σ)Γ(q)

´ R 1
0

R s
0 η2(s)(s− r)q−1drds+ (k4+k5)(q+1)

Γ(q+1)

+ k5(q+1)
Γ(2−σ)Γ(q+1) .

(4.4)

By substituting values for k1, k2, k3, k4, k5, p1, p2, p3, p4, p5, q, σ, η1 and η2,
we obtain



1132 Ahcene Boukehila

1
Γ(2−σ) =

1
Γ(2− 1

2
)
= 2√

π
= 1.1283791, 1

Γ(q) =
1

Γ( 3
2
)
= 1.1283791, 1

Γ(q+1)

= 1
Γ( 5

2
)
= 4

3
√
π
= 0.7522526, with

R 1
0

R s
0 η1(s)(s − r)q−1drds =

R 1
0

R s
0 s(s −

r)q−1drds = 0.1904761, and
R 1
0

R s
0 η1(s)(s− r)q−1drds

=
R 1
0

R s
0 s

2(s − r)q−1drds = 0.1481481, in (4.4) we get the estimated term

as:
³
ω1 +

ω2
Γ(2−σ)

´
= 5.6346356. By computations, we can obtain

L
³
ω1 +

ω2
Γ(2−σ)

´
= 0.2343670 < 1. Hence condition (3.1) is satisfied. Thus

Theorem ?? guarantees the uniqueness of a solution for the boundary
(4.1)—(4.3) defined on [0,1].

4.2. Example

Consider the following boundary value problem

cD
3
2

0+u(t) =
(2t− 3

4
)23t

2+t4 + sinπt
2
√
π+1

u(t)σ1 + 3−2t

7+cD
1
2
0+

u(t)

c
D

1
2

0+u(t)
σ2 ,

0 < t < 1,

(4.5)

u(0)− u0(0) =
Z 1

0
su(s)ds,(4.6)

u(1)− u0(1) =
Z 1

0
s2u(s)ds.(4.7)

We have

f(t, u(t),cD
1
2

0+u(t)) =
(2t− 3

4
)23t

2+t4 + sinπt
2
√
π+1

u(t)σ1

+ 3−2t

7+cD
1
2
0+

u(t)

c
D

1
2

0+u(t)
σ2 .

It is clear that f is continuous.

Here q = 3
2 , σ =

1
2 η1(s) = s, η2(s) = s2. Using the same calculations to

get the same values, in accordance with the previously mentioned example
p1 = 0.5 > 0, p2 = 1.3333333 > 0, p3 = 0.6666666 > 0, p4 = 1.75, p5 =
3.5277777 > 0, , k1 = 2, k2 = 1.0078738 > 0, k3 = 0.3779527 > 0, k4 =
0.7590553 > 0, k5 = 0.2834645 > 0.
Therefore

f(t, u(t),cD
1
2

0+u(t)) < β(t) + α1x(t)|σ1 + α2y(t)
σ2 ,

where β(t) =
(2t− 3

4
)23t

2+t4 , α1 =
1

2
√
π
, α2 =

3
7 . For 0 < σ1, σ2 < 1, the

assumption (H3) holds, and for σ1, σ2 > 1 the assumption (H4) holds.
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Hence by Theorem 3.2 and Theorem 3.3, the boundary value problem (4.5)—
(4.7) has a solution defined on [0,1].
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