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1. Introduction

The foundations for the study of the connections between axiomatic ge-
ometry and algebraic structures were set forth by D. Hilbert [7], recently
elaborated and extended in terms of the algebra of affine planes in, for ex-
ample, [9], [4, IX.3, p.574]. Also great contributions in this direction have
been made by, E.Artin in [1], H. S. M. Coxeter, in [4], Marcel Berger in [2,3],
Robin Hartshrone in [6], etc. Even earlier, in my works [5,13,14,15,16,17,18,
19,20] I have brought up quite a few interesting facts about the association
of algebraic structures with affine planes and with ’Desargues affine planes’,
and vice versa.

In this paper, we will present a description of Endomorphisms of the
translation group in affine plane. We will define the addition and compo-
sition of the set of endomorphisms of the translation group in the affine
plane. We will specify the neutral elements associated with these two ac-
tions, which we will call, ’zero endomorphism’ and ’unitary endomorphism’,
and present the Endomorphism algebra of translations in affine plane. We
will distinguish, as a substructure of Endomorphisms algebra, the Trace-
preserving endomorphism algebra in affine planes, and prove that the set of
Trace-preserving endomorphism associated with the ’addition’ action forms
a commutative group, also prove that the set of trace-preserving endomor-
phism, together with the two actions, in it, ’addition’ and ’composition’
forms an associative and unitary ring.

In paper [20], we have done a detailed, careful description, of transla-
tions and dilations in affine planes. We have proven that the set of dila-
tions regarding the composition action is a group, and set of translations
is a commutative group. We have proved that translation group is a nor-
mal subgroup of the group of dilations. We have described and specified
what we would call a translation or dilation trace, we have also defined the
direction of an translation as an equivalence class of parallelism in affine
planes. This will help us in this paper, as trace-preserving endomorphisms
to retain those endomorphisms that operate on these equivalence classes
according to parallelism.

2. Preliminaries

Let P be a nonempty set, which is called set of points, L a nonempty subset
of P, which is called set of lines, and an incidence relation I ⊆ P ×L. For
a point P ∈ P and an line c ∈ L, the fact (P, c) ∈ I, (equivalent to PIc)
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The endomorphisms algebra of translations group and ... 825

we mark P ∈ c and read point P is incident with a line c or a line passes
through points P (contains point P ).

Definition 1. [1], [8], [16] Affine plane is called the incidence structureA =
(P,L, I) that satisfies the following axioms:

A.1 For every two different points P and Q ∈ P, there exists exactly one
line c ∈ L incident with that points.

A.2 For a point P ∈ P, and an line c ∈ L such that (P, c) /∈ I, there exists
one and only one line r ∈ L, incident with the point P and such that
c ∩ r = ∅.

A.2 In A there are three non-incident points with a line.

Whereas a line of the affine plane we consider as sets of points of affine
plane with her incidents. Axiom A.1 implicates that tow different lines of
L many have a common point, in other words tow different lines of L either
have no common point or have only one common point.

Definition 2. Two lines c,m ∈ L that are matching or do not have com-
mon point are called parallel and in this case is written c k m, and when
they have only one common point we say that they are expected.

Definition 3. Let it be A = (P,L,I) an affine plane and S={ψ : P →
P| where ψ−is bijection} set of bijections to set points P on yourself.
Collineation of affine plane A, called a bijection ψ ∈ S, such that

∀c ∈ L, ψ (c) ∈ L,(2.1)

Otherwise, a collineation of the affine plane A is a bijection of set P on
yourself, that preserves lines. It is known that the set of bijections to a set
over itself is a group on associated with the binary action ’◦’ of composition
in it, which is known as total group or symmetric groups.

Definition 4. [20] An point P of the affine plane A called fixed point his
associated with a collineation δ, if coincides with the image itself δ(P ),
briefly when, P = δ(P ).

Definition 5. [1, 20] A Dilation of an affine plane A = (P,L, I) called a
its collineation δ such that

∀P 6= Q ∈ P, δ (PQ) kPQ(2.2)
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Let it be DilA = {δ ∈ ColA|δ − is a dilation of A} the dilation set of
affine plane A = (P,L,I).

Theorem 1. [20, 13] The dilation setDilA of affine plane A forms a group
with respect to composition ◦.

Proof. See, Theorem 2.4, in [20].

Definition 6. Let it be δ an dilation of affine plane A = (P,L, I), and
P a point in it. Lines that passes by points P and δ(P ), called trace of
points P regarding dilation δ.

Every point of a traces of a not-fixed point, to an affine plane associated
with its dilation has its own image associated with that dilation in the same
traces (see [20]). We also know the result: If an affine plane A = (P,L, I),
has two fixed points about an dilation then he dilation is identical dilation
idP of his (Theorem 2.12 in [20]).

In an affine plane related to dilation δ 6= idP all traces Pδ (P ) for all
P ∈ P , or cross the by a single point, or are parallel between themselves
(see [12], [20]).

Definition 7. [1, 20] The Translation of an affine plane A = (P,L, I),
called the his identical dilation idP and every other of it’s dilation, about
which that the affine plane has not fixed points.

If σ is an translation different from identical translation idP , then, all
traces related to σ form the a set of parallel lines.

Definition 8. For one translation σ 6= idP , the parallel equivalence classes
of the cleavage π = L/k, which contained tracks by σ of points of the plane
A = (P,L, I) called the direction of his translation σ and marked with
π.0.σ.

So, for σ 6= idP , the direction πσ represented by single the trace (which
is otherwise called, representative of direction) by σ for every point P ∈ P,
for translation idP has undefined direction.

Let it be α : TrA −→ TrA, an whatever map of TrA, on yourself. For
every translation σ, its image α (σ) is again an translation, that can be
α (σ) = idP or α (σ) 6= idP . So there is a certain direction or indefinite.
The first equation, in the case where σ = idP , takes the view α (idP) = idP ,
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and the second α (σ) 6= idP , that it is not possible to α is map. To avoid
this, yet accept that for every map α : TrA −→ TrA, is true this,

α (idP) = idP .

Proposition 1. [20] If translations σ1 and σ2 have the same direction with
translation σ to an affine plane A = (P,L, I), then and composition σ2 ◦σ1
has the same the direction, otherwise

∀σ1, σ2, σ ∈ TrA, πσ1 = πσ2 = πσ =⇒ πσ2◦σ1 = πσ.(2.3)

Theorem 2. [20] Set TrA of translations to an affine plane A form a group
about the composition ◦, which is a sub-group of the group (DilA, ◦) to
dilations of affine plane A.

Theorem 3. [20] Group (TrA, ◦) of translations to the affine plane A is
normal sub- group of the group of dilations (DilA, ◦) of him plane.

∀δ ∈ DilA,∀σ ∈ TrA ⇒ δ−1 ◦ σ ◦ δ ∈ TrA.

Corollary 1. [20] For every dilation δ ∈ DilA and for every translations
σ ∈ TrA of affine plane A= (P,L,I), translations σ and δ−1 ◦ σ ◦ δ of his
have the same direction.

Corollary 2. The translations group (TrA, ◦) of an affine planeA is (Abelian)
commutative Group.

3. The Endomorphisms Algebra, of the Translation’s Group
and their trace-preserving Associative Unitary Ring

Consider the affine plane A = (P,L,I) and set of maps, of commuta-
tive Group (TrA, ◦) of affine plane A in itself (see [20]), so (TrA)

TrA =
{α|α : TrA → TrA}. Let be α, β two different maps, such. Then for every
σ ∈ TrA ⇒ α(σ) ∈ TrA, β(σ) ∈ TrA and [α ◦ β](σ) = α(β(σ)) ∈ TrA.
From the latter it turns out that the action of composition ’◦’ in the set
(TrA)

TrA , is action induced by the action of composition ’◦’ in the set
(P)P , of maps P → P of the affine plane A. If the associate translations
σ, the unique translation α(σ) ◦ β(σ), obtained a new map TrA → TrA,
which we call addition of α with β, and mark with α+ β.
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Definition 9. For every two maps α, β ∈ (TrA)TrA , the addition of them,
that is marked α+ β, is called the map ’α+ β : TrA → TrA’, defined by,

(α+ β)(σ) = (α)(σ) ◦ (β)(σ),∀σ ∈ TrA.(3.1)

Accompanying any two maps α, β their sum α + β, we obtain a new
binary action in TrA, that we call the addition of maps, of translations in
the affine plane A.

Thus obtained, algebra with two binary operations ((TrA)
TrA ,+, ◦),

where the sum of the two elements, whatsoever, its α, β in (TrA)
TrA , is

given by Definition 9, and their composition is given by,

[α ◦ β](σ) = α(β(σ)),∀σ ∈ TrA(3.2)

Definition 10. The Algebra
³
(TrA)

TrA ,+, ◦
´
, is called the algebra of,

maps of TrA on himself.

A map α : TrA −→ TrA, is an endomorphism of the group (TrA, ◦), on
himself (see [16], [13]), namely such that,

∀σ1, σ2 ∈ TrA, α(σ1 ◦ σ2) = α(σ1) ◦ α(σ2).(3.3)

Lemma 1. The addition of, each two endomorphisms of TrA on himself,
is a endomorphisms of TrA on himself.

Proof. Let them be α, β two endomorphisms of TrA on himself. Ac-
cording to 6, ∀σ1, σ2 ∈ TrA have,

α(σ1 ◦ σ2) = α(σ1) ◦ α(σ2) and β(σ1 ◦ σ2) = β(σ1) ◦ β(σ2).

Then, we have:
[α+ β](σ1 ◦ σ2) = α(σ1 ◦ σ2) ◦ β(σ1 ◦ σ2) (by, 4)

= [α(σ1) ◦ α(σ2)] ◦ [β(σ1) ◦ β(σ2)] (by, 6)
= [α(σ1) ◦ β(σ1)] ◦ [α(σ2)] ◦ β(σ2)] (by, 4)
= [α+ β](σ1) ◦ [α+ β](σ2) (by, 4).

Thus,
∀σ1, σ2 ∈ TrA,

[α+ β](σ1 ◦ σ2) = [α+ β](σ1) ◦ [α+ β](σ2).

Lemma 2. The composition of any two endomorphisms of TrA on himself,
is an endomorphisms of TrA on himself.

rvidal
Cuadro de texto
826



The endomorphisms algebra of translations group and ... 829

Proof. In the conditions when α and β are endomorphisms, by eq. 5
we have too

[α ◦ β](σ1 ◦ σ2) = α[β(σ1 ◦ σ2)] (by, 5)
= α[β(σ1) ◦ β(σ2)] (by, 6)
= α[β(σ1)] ◦ α[β(σ2)] (by, 6)
= [α ◦ β](σ1) ◦ [α ◦ β](σ2) (by, 5)

Thus,

∀σ1, σ2 ∈ TrA,

[α ◦ β](σ1 ◦ σ2) = [α ◦ β](σ1) ◦ [α ◦ β](σ2).

From Lemmas 1 & 2, based on the understanding of a substructure of
an algebraic structure (see [10], [11], [12]), we get this too,

Theorem 1. The set of endomorphisms of TrA on himself, regarding ac-
tions ’addition +’ and ’composition ◦’ in ti, is a substructure of algebra³
(TrA)

TrA ,+, ◦
´
of maps, of TrA on oneself.

We call it, the ’endomorphisms-algebra’ of the TrA group on ourselves
and mark with EndTrA .

Definition 11. The ’tracer-preserving’ endomorphism of the group (TrA, ◦)
above itself, it is called an endomorphism α ∈ EndTrA his, such that

∀σ ∈ TrA, πα(σ) = πσ,(3.4)

otherwise, any trace according to α(σ) is a trace according to σ.

The ’tracer-preserving’ endomorphism of the group (TrA, ◦) above it-
self, we will marked with, EndTPTrA

The map 0TrA : TrA −→ TrA, determined by

0TrA(σ) = idP ,∀σ ∈ TrA.(3.5)

is an endomorphism of the translation group TrA on himself because,

∀σ1, σ2 ∈ TrA,

0TrA(σ1 ◦ σ2) = idP = idP ◦ idP = 0TrA(σ1) ◦ 0TrA(σ2).

So,
0TrA ∈ EndTrA
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The endomorphism 0TrA call it, zero endomorphism of TrA on himself.
From eq. 8 also indicate that,

∀σ ∈ TrA, π0TrA (σ) = πσ.

so we have that,

0TrA ∈ EndTPTrA ,

thus is i true this,

Proposition 2. The zero endomorphism 0TrA of TrA on himself, is a
trace-preserving endomorphism of TrA on himself.

The identical map 1TrA : TrA −→ TrA, defined by

1TrA(σ) = σ,∀σ ∈ TrA,(3.6)

is also, an endomorphism of the translation group TrA on himself because,

∀σ1, σ2 ∈ TrA,

1TrA(σ1 ◦ σ2) = σ1 ◦ σ2 = 1TrA(σ1) ◦ 1TrA(σ2).

So,

1TrA ∈ EndTrA

The endomorphism 1TrA call it, unitary endomorphism of TrA on him-
self. From 9 we have immediately that

∀σ ∈ TrA, π1TrA (σ) = πσ,

so we have that,

1TrA ∈ EndTPTrA ,

thus is i true this,

Proposition 3. The unitary endomorphism ’1TrA ’ of TrA on himself, is a
trace-preserving endomorphism of TrA on himself.

Theorem 2. If α and β are two trace-preserving endomorphisms of TrA
on himself, then their sum α+ β is an trace-preserving endomorphism.
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Proof. In terms of Theorem, according to Lemma 1, the addition α+β
is an endomorphisms of TrA on himself. We note σ1 = α(σ) and σ2 = β(σ).
Given that α and β are two trace-preserving endomorphisms, according to
eq. 7, ∀σ ∈ TrA have,

πα(σ) = πσ1 = πσ and πβ(σ) = πσ2 = πσ(3.7)

From here, according to 3 we get

∀σ ∈ TrA, πα(σ)◦β(σ) = πσ1◦σ2 = πσ(3.8)

Then, by eq. 4 and eq. 11, have that

π(α+β)(σ) = πα(σ)◦β(σ) = πσ

Hence,
∀σ ∈ TrA, π(α+β)(σ) = πσ

Theorem 3. If α and β are two trace-preserving endomorphisms of TrA on
himself, then their composition α ◦β is an trace-preserving endomorphism.

Proof. In terms of Theorem, according to Lemma 2, the composition
α ◦ β is an endomorphisms of TrA on himself. We note σ1 = β(σ), given
that α and β are two trace-preserving endomorphisms, according to eq. 7,
∀σ ∈ TrA and for σ1 = β(σ), have

πα(σ1) = πσ1 and πβ(σ) = πσ(3.9)

Then, by eq. 5 and eq. 12, have that

π(α◦β)(σ) = πα(β(σ)) = πα(σ1) = πσ1 = πβ(σ) = πσ.

Hence,
∀σ ∈ TrA, π(α◦β)(σ) = πσ.

We note now, with ϕ : TrA −→ TrA, defined by

∀σ ∈ TrA, ϕ(σ) = σ−1(3.10)

is an endomorphism of the commutative group of translations TrA on him-
self, because ∀σ1, σ2 ∈ TrA, we have
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ϕ(σ1 ◦ σ2) = (σ1 ◦ σ2)−1 (by, 13)
= (σ2)

−1 ◦ (σ1)−1
= (σ1)

−1 ◦ (σ2)−1 (by, 2)
= ϕ(σ1) ◦ ϕ(σ2)

Also, we have that,

∀σ ∈ TrA, πσ = πσ−1 ⇒ πϕ(σ) = πσ−1 = πσ.

from this, we have prove this

Proposition 4. The endomorphisms ϕ : TrA −→ TrA, defined by ϕ(σ) =
σ−1,∀σ ∈ TrA, is an trace-preserving endomorphisms of TrA on himself.

Proposition 5. For a trace-preserving endomorphism α ∈ EndTPTrA , the
map −α : TrA −→ TrA, defined by,

∀σ ∈ TrA, (−α)(σ) = (α(σ))−1 ⇒ (−α) ∈ EndTPTrA(3.11)

well −α is an trace-preserving endomorphism of TrA on himself.

Proof. Note that ∀σ ∈ TrA,
(−α)(σ) = (α(σ))−1

= ϕ(α(σ)) (by, 13)
= (ϕ ◦ α)(σ) (by, 5)

which indicates that, −α = ϕ ◦ α and according to Theorem 6, he is a
trace-preserving endomorphism.

The endomorphism 0 − α0 we call it the additive inverse endomorphism
of endomorphism α. Consider now the set

EndTPTrA = {α ∈ EndTrA | α− is a trace-preserving endomrphism}(3.12)

of trace-preserving endomorphisms of TrA in itself. According to The-
orem 5 and Theorem 6, (EndTPA ,+, ◦) is a substructure of the algebra
(EndA,+, ◦), of endomorphisms related to addition and composition ac-
tions, therefore it is itself an algebra.

Theorem 4. The Grupoid (EndTPTrA ,+), is commutative (Abelian) Group.
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Proof. 1. ∀α, β, γ ∈ EndTPTrA , have

∀σ ∈ TrA, [(α+ β) + γ](σ) = (α+ β)(σ) ◦ (γ)(σ) (by, 4)
= [α(σ) ◦ (β)(σ)] ◦ (γ)(σ) (by, 4)
= α(σ) ◦ [(β)(σ) ◦ (γ)(σ)] (by, 2)
= α(σ) ◦ [(β + γ)(σ)] (by, 4)
= [α+ (β + γ)](σ) (by, 4)

So,

∀α, β, γ ∈ EndTPTrA , (α+ β) + γ = α+ (β + γ).

l α ∈ EndTPTrA , have

∀σ ∈ TrA, [α+ 0TrA ](σ) = α(σ) ◦ 0TrA(σ) (by, 4)
= α(σ) ◦ idP (by, 8)
= α(σ)

So exists, the zero element in EndTPTrA , which is zero endomorphism
0TrA for which, we have proven that it is a trace-preserving endomorphism,
and we have that,

∀α ∈ EndTPTrA ,∃0TrA ∈ EndTPTrA , α+ 0TrA = 0TrA + α = α.

3. ∀α ∈ EndTPTrA , have

∀σ ∈ TrA, [α+ (−α)](σ) = α(σ) ◦ (−α)(σ) (by, 4)
= α(σ) ◦ [α(σ)]−1 (by, 14)
= idP
= 0TrA . (by, 8)

So exists, the additive inverse element of α in EndTPTrA , which is −α for
which, we have proven that it is a trace-preserving endomorphism, and we
have that,

∀α ∈ EndTPTrA ,∃(−α) ∈ EndTPTrA , α+ (−α) = 0TrA .

4. ∀α, β ∈ EndTPTrA , have

∀σ ∈ TrA, [α+ β](σ) = α(σ) ◦ β(σ) (by, 4)
= β(σ) ◦ α(σ) (by, 2)
= [β + α](σ). (by, 4)

So,

∀α, β ∈ EndTPTrA , α+ β = β + α.

Theorem 5. The algebra (EndTPTrA ,+, ◦), is a associative unitary Ring.
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Proof. According to the Definition of a associative Unitary Ring [10],
[11], [12] we are required to prove the following conditions,
(1) The grupoid (EndTPTrA ,+), is commutative group, we have proved this
in the Theorem 7.
(2) The action ’◦’ is associative in EndTPTrA , truly, by definition of composi-
tion, we have
∀σ ∈ TrA, [(α ◦ β) ◦ γ](σ) = (α ◦ β)(γ(σ))

= α(β(γ(σ)))
= α[(β ◦ γ)(σ)]
= [α ◦ (β ◦ γ)](σ).

So we have that,

∀α, β, γ ∈ EndTPTrA , (α ◦ β) ◦ γ = α ◦ (β ◦ γ).

(3) The composition is ’distributive’ according to ’addition’, ie,

∀α, β, γ ∈ EndTPTrA ,

α ◦ (β + γ) = α ◦ β + α ◦ γ, and (α+ β) ◦ γ = α ◦ γ + β ◦ γ.

Really,
∀σ ∈ TrA, [α ◦ (β + γ)](σ) = α[(β + γ)(σ)] (by, 5)

= α[β(σ) ◦ γ(σ)] (by, 4)
= α[β(σ)] ◦ α[γ(σ)] (by, 6)
= [α ◦ β](σ) ◦ [α ◦ γ](σ) (by, 5)
= [α ◦ β + α ◦ γ](σ). (by, 4)

Hence
∀α, β, γ ∈ EndTPTrA , α ◦ (β + γ) = α ◦ β + α ◦ γ.

Also,
∀σ ∈ TrA, [(α+ β) ◦ γ](σ) = [α+ β](γ(σ)) (by, 5)

= α(γ(σ)) ◦ β(γ(σ)) (by, 4)
= [α ◦ γ](σ) ◦ [β ◦ γ](σ) (by, 5)
= [α ◦ γ + β ◦ γ](σ). (by, 4)

Hence
∀α, β, γ ∈ EndTPTrA , (α+ β) ◦ γ = α ◦ γ + β ◦ γ.

(4) In EndTPTrA , exist the unitary element, related to composition

∀α ∈ EndTPTrA , have,

∀σ ∈ TrA, [α ◦ 1TrA ](σ) = α[1TrA(σ)] (by, 5)
= α(σ) (by, 9).
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