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1. Introduction

In theoretical chemistry molecular graphs [19,12] are often used to model
different molecular structures. Molecular graphs are actually a graphical
representation of molecular structure through vertices and edges so that
each vertex corresponds to atoms and the edges represent the bonds be-
tween them. Throughout this article, we consider only the molecular graph.
Let V (G) and E(G) be the vertex and edge sets of a graph G respectively.
Here we use the notation V (Gi), E(Gi), ni and mi for vertex set, edge
set, order and size of Gi respectively. Here δG(v) represents the totality of
degrees of all neighbors of v in G. By neighbors of v, we mean the vertices
that are connected to v. Kn and Cn represent complete and cycle graph
with n vertices respectively. By Ḡ, we mean the complement of any graph
G.

Graph theory provides an important tool called topological index to
correlate the physiochemical behavior of chemicals with their molecular
structure. Topological index is nothing but a numeric amount gotten
from molecular graphs that describes the topology of the molecular graph
and is invariant for isomorphic graphs. It is widely used in various fields
of chemistry, biochemistry and nanotechnology in isomer discrimination,
QSAR, QSPR and pharmaceutical medication plan and so forth. Utiliza-
tion of such indices in chemistry and biology started in 1947 when chemist
Harold Wiener [20] presented the wiener index for searching boiling points
of alkane. One of the most well used topological indices is the Zagreb index
first introduced by Gutman and Trinajestić [13], where they investigated
the total π-electron energy dependency on molecular structure.

The first Zagreb index M1(G) and the second Zagreb index M2(G) for
a molecular graph (G) are as follows:

M1(G) =
X

v∈V (G)
degG(v)

2 =
X

uv∈E(G)
[degG(u) + degG(v)],

M2(G) =
X

uv∈E(G)
degG(u)degG(v).

Following first Zagreb index, we introduced a novel topological index
named as neighborhood Zagreb index (MN) [16]. To determine the useful-
ness of a topological index to predict physiochemical behavior of chemical
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compound, we compute correlation coefficient (r) between physiochemi-
cal properties and topological indices. Topological indices for which r2 is
greater than or equal to 0.8 is very useful in QSPR/QSAR analysis. In
[16], it is shown that the correlations of neighborhood Zagreb index with
Entropy (r2 = 0.98915) and Acentric factor (r2 = 0.907460) are excel-
lent. Thus MN can predict Entropy and Acentric factor with power full
accuracy. The above correlations ensure the compatibility of the index
in QSPR/QSAR analysis. A disadvantage of most topological indices is
degeneracy, i.e. more than one isomer have same index. In case octane
isomers,MN index yields well response (mean isomer degeneracy = 1) [16].
It confirms the isomer-discrimination ability of this index with high accu-
racy. Consequently it is worth to discuss the mathematical properties of
this chemically interesting index.

In [2,4,7], different bounds for topological descriptors are discussed. An-
alytical expressions of topological indices under some graph operations are
derived in [1,6,8,15]. In this regard we obtain some bounds of the neigh-
borhood Zagreb index and compute some exact expressions for the index
under some graph operations. Also we apply them on some composite and
chemically interesting graphs.

2. Some bounds of neighborhood Zagreb index

Throughout this section we obtain some upper and lower bounds of the
neighborhood Zagreb index using some standard inequalities.

Lemma 1. For a graph G, we have

(i)
nP
i=1

δG(vi) =M1(G),

(ii)
nP
i=1

δG(vi)degG(vi) = 2M2(G).

Lemma 2. (Quadratic mean ≥ Arithmetic mean) For n positive numbers
x1, x2,...,xn, we haves

x21 + x22 + ...+ x2n
n

≥ x1 + x2 + ...+ xn
n

,(2.1)

where equality holds iff x1 = x2 = ... = xn.

rvidal
Cuadro de texto
...801



806 S. Mondal, M. A. Ali, N. De and A. Pal

Proposition 1. For a graph G with n vertices, we have

MN(G) ≥
M1(G)

2

n
,(2.2)

where equality holds iff G is regular.

Proof 1. Considering xi = δG(vi) for i = 1, 2, ..., n, inequality (2.1) be-
comes s

δG(v1)2 + δG(v2)2 + ...+ δG(vn)2

n
≥ δG(v1) + δG(v2) + ...+ δG(vn)

n
(2.3)

Using lemma 1 and the definition of MN index, we have from (2.2),

s
MN (G)

n
≥ M1(G)

n
,(2.4)

after squaring both sides of (2.4) we get the required result.
The equality in (2.2) holds iff δG(v1) = δG(v2) = ... = δG(vn). Hence
equality in (2.2) holds iff G is regular.

Lemma 3. (Cauchy-Schwartz inequality) [14] Let xi and yi be real num-
bers for all 1 ≤ i ≤ n. Then

(
nX
i=1

xiyi)
2 ≤ (

nX
i=1

x2i )(
nX
i=1

y2i ).(2.5)

Equality holds iff xi = kyi for some constant k and for each 1 ≤ i ≤ n.

Proposition 2. For a graph G, we have

MN (G) ≥
4M2(G)

2

M1(G)
,(2.6)

where equality holds iff δG(vi) = kdegG(vi) for some constant k and for
each 1 ≤ i ≤ n.

Proof 2. . For each i = 1, 2, ..., n, putting xi = δG(vi) and yi = degG(vi)
in (2.5), we have

(
nX
i=1

δG(vi)degG(vi))
2 ≤

nX
i=1

δG(vi)
2

nX
i=1

degG(vi)
2,(2.7)
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applying lemma 1 and the definition of MN and M1 index, we can rewrite
the inequality (2.7) as

4M2(G)
2 ≤MN (G)M1(G),(2.8)

which gives the inequality (2.6).
Equality in (2.7) holds iff δG(vi) = kdegG(vi) for some constant k and for
each 1 ≤ i ≤ n. Hence Equality in (2.6) holds iff δG(vi) = kdegG(vi) for
some constant k and for each 1 ≤ i ≤ n.

Lemma 4. (Bhatia and Davis’s bound on variance)[3] Let x1, x2,...,xn be

real numbers such that m ≤ xi ≤M for all 1 ≤ i ≤ n and µ =

nP
i=1

xi

n . Then

nP
i=1
(xi − µ)2

n
≤ (M − µ)(µ−m),(2.9)

where equality holds iff each xi is either M or m.

If we consider xi = δG(vi) for each i(= 1, 2, ..., n),m = δN andM = ∆N ,

then µ = M1(G)
n and inequality (2.9) gives the following bound.

Proposition 3. Let G be a graph with n vertices. Also consider

∆N = max{δG(v) : v ∈ V (G)},

δN = min{δG(v) : v ∈ V (G)}.

Then we have

MN(G) ≤
2

n
M1(G)

2 + (δN +∆N )M1(G)− nδN∆N ,(2.10)

where equality holds iff each δG(vi) (1 ≤ i ≤ n) is either δN or ∆N .

Lemma 5. (Diaz-Metcalf inequality)[9] Let xi and yi be two sequence of
real numbers with xi 6= 0(i = 1, 2, ..., n) and such that mxi ≤ yi ≤ Myi,
then we have

nX
i=1

y2i +mM
nX
i=1

x2i ≤ (M +m)
nX
i=1

xiyi,(2.11)

where equality holds iff either yi = mxi or yi =Mxi ∀i = 1, 2, ..., n.
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808 S. Mondal, M. A. Ali, N. De and A. Pal

If we consider xi = degG(vi), yi = δG(vi), m = 1, M = ∆N , inequality
(2.11) yields the following bound.

Proposition 4. Let G be a graph with ∆N = max{δG(v) : v ∈ V (G)},
then we have

MN(G) ≤ 2(∆N + 1)M2(G)−∆NM1(G),(2.12)

where equality holds iff δG(vi) = degG(vi) or δG(vi) = ∆NdegG(vi) ∀i =
1, 2, ..., n.

Lemma 6 (18). Let (x1, x2, ..., xn) be positive n-tuple such that there ex-
ists positive numbers A, a satisfying 0 ≤ a ≤ xi ≤ A, then we have

n
nP
i=1

x2i

(
nP
i=1

xi)2
≤ 1
4
(

√
A√
a
+

√
a√
A
)2,(2.13)

where equality holds iff a = A or q =
A
a

A
a
+1

n is an integer and q of the

numbers xi coincide with a and the remaining (n − q) of the x0is coincide
with A(6= a).

Considering xi = δG(vi), a = δN and A = ∆N in lemma 6, we obtain
the following upper bound of MN .

Proposition 5. Let G be a graph with n vertices. Also consider

∆N = max{δG(v) : v ∈ V (G)},

δN = min{δG(v) : v ∈ V (G)}.

Then we have

MN (G) ≤
M2
1 (G)(δN +∆N)

2

4nδN∆N
,(2.14)

where equality holds iff δN = ∆N or q =
∆N
δN

∆N
δN

+1
n is an integer and q of the

numbers xi coincide with δN and the remaining (n− q) of the x0is coincide
with ∆N(6= δN).
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Lemma 7 (5). Let �x = (x1, x2, ..., xn) and �y = (y1, y2, ..., yn) be sequences
of real numbers. Also let �z = (z1, z2, ..., zn) and �w = (w1, w2, ..., wn) be
non-negative sequences. Then

nX
i=1

wi

nX
i=1

zix
2
i +

nX
i=1

zi

nX
i=1

wiy
2
i ≥ 2

nX
i=1

zixi

nX
i=1

wiyi,(2.15)

in particular, if zi and wi are positive, then the equality holds iff �x = �y = �k,
where �k = (k, k, ..., k), a constant sequence.

Proposition 6. For a graph G with n vertices and m edges, we have

MN (G) >
4m− n

n
M1(G).(2.16)

Proof 3. Considering xi = δG(vi), yi = degG(vi), zi = 1, wi = 1 in lemma
7, we have

nX
i=1

1
nX
i=1

δG(vi)
2 +

nX
i=1

1
nX
i=1

degG(vi)
2 ≥ 2

nX
i=1

degG(vi)
nX
i=1

δG(vi).(2.17)

Now applying definition of MN index, Handshaking lemma and inequality
(2.17), we have the following result

MN (G) ≥
4m− n

n
M1(G).(2.18)

From lemma 7, it is clear that equality in (2.18) is impossible. Hence the
proof.

3. Neighborhood Zagreb index of graph operations

In this section, we discuss about different graph operations namely join,
corona product, strong product, splice, link, disjunction and symmetric
difference of graphs and explore the neighborhood Zagreb index for those
operations. We start with the following obvious lemma.

Lemma 8. For a graph G, we have

(i)
P

v∈V (G)
δG(v) =M1(G),

(ii)
P

v∈V (G)
degG(v)δG(v) = 2M2(G).

rvidal
Cuadro de texto
...805
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3.1. Join

The join [15] of G1 and G2 having V1 and V2 as disjoint vertex sets, is
the graph G1 + G2 which contains V1 ∪ V2 as vertex set and E1 ∪ E2∪
{uv : u ∈ V1, v ∈ V2} as edge set. Clearly we have the following lemma.

Lemma 9. For join of two graphs G1 and G2, we have

δG1+G2(u) =

(
n2degG1(u) + δG1(u) + n1n2 + 2m2, if u ∈ V1

n1degG2(u) + δG2(u) + n1n2 + 2m1, if u ∈ V2.

Now we obtain the neighborhood Zagreb index of join of two graphs.

Proposition 7. The neighborhood Zagreb index of G1 +G2 is given by

MN (G1 +G2) = n21n
2
2[n1 + n2] + 8n1n2[n1m2 + n2m1] + 8m1m2[n1 + n2] +

4[n1m
2
2 + n2m

2
1] +MN (G1) +MN(G2) + [n

2
1M1(G2) +

n22M1(G1)] + 2n1n2[M1(G1) +M1(G2)] + 4[n1M2(G2) +

n2M2(G1)] + 4[m1M1(G2) +m2M1(G1)].

Proof 4. From the definition of neighborhood Zagreb index and using
lemma 9, we have

MN (G1 +G2) =
X

u∈V1∪V2
δ2G1+G2(u)

=
X
u∈V1

δ2G1+G2(u) +
X
u∈V2

δ2G1+G2(u)

=
X
u∈V1

[n2degG1(u) + δG1(u) + n1n2 + 2m2]
2

+
X
u∈V2

[n1degG2(u) + δG2(u) + n1n2 + 2m1]
2

= Z1 + Z2.

Where Z1 and Z2 are the results of the terms above orderly. Then Z1 and
Z2 will be computed individually. Now,

Z1 =
X
u∈V1

[n2degG1(u) + δG1(u) + n1n2 + 2m2]
2

=
X
u∈V1

[n21n
2
2 + 4m

2
2 + δG1(u)

2 + degG1(u)
2n22 + 4n1n2m2 + 2n1n2δG1(u) +

2n1n
2
2degG1(u) + 4δG1(u)m2 + 4degG1(u)n2m2 + 2degG1(u)δG1(u)n2].
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Applying lemma 8, we get

Z1 = n31n
2
2 + 4n1m

2
2 +MN(G1) + n22M1(G1) + 4n

2
1n2m2 + 2n1n2M1(G1)

+4n1n
2
2m1 + 4m2M1(G1) + 8m1n2m2 + 4n2M2(G1).

Similarly,

Z2 =
X
u∈V2

[n1degG2(u) + δG2(u) + n1n2 + 2m1]
2

= n21n
3
2 + 4n2m

2
1 +MN(G2) + n21M1(G2) + 4n1n

2
2m1 + 2n1n2M1(G2)

+4n21n2m2 + 4m1M1(G2) + 8m1n1m2 + 4n1M2(G2).

Addition of Z1 and Z2 yield the required result.

Example 1. We can express the complete bipartite graph (Kn,t) as the
join of K̄n and K̄t. So the above proposition gives Mn(Kn,t) = n2t2(n+ t).

By suspension of any graph G, we mean the join of G and a single
vertex (K1). So we have the corollary stated below followed directly from
the above proposition.

Corollary 1. The neighborhood Zagreb index for suspension of a graph
G is given by

MN (G+K1) = |V (G)|2(|V (G)|+ 1) + 8|V (G)||E(G)|+ 4|E(G)|2 +MN (G)

+M1(G)[1 + 2|V (G)|] + 4M2(G).

Example 2. The suspension of K̄n produces the star graph Sn having (n+
1) vertices (Figure 1). So its neighborhood Zagreb index can be computed
using the above corollary as follows:

MN(Sn) = n2(n+ 1).

Example 3. The suspension of Cn yields the wheel graph Wn containing
n + 1 vertices (Figure 1). So by the above corollary the neighborhood
Zagreb index of Wn is given by

MN(Wn) = n3 + 21n2 + 36n.

Example 4. Considering the suspension of Pn, we get the Fan graph Fn
having (n + 1) vertices (Figure 1). So using the corollary above, we can
derive the following result.

MN (Fn) = n3 + 21n2 + 8n− 72, n ≥ 4.
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812 S. Mondal, M. A. Ali, N. De and A. Pal

Figure 3.1: The example of star, fan and wheel graphs on n+ 1 vertices.

3.2. Corona product

For corona product [17] of G1 and G2, firstly one copy of G1 and n1 copies
of G2 are taken and then each node of ith copy of G2 is joined to ith node
of G1, where 1 ≤ i ≤ n1. For such operation we denote ith copy of G2 as
G2,i and ith vertex of G1 as ui. We can state the following lemma.

Lemma 10. For corona product of two graphs G1, G2, we have

δG1¯G2(u) =

⎧⎨⎩ δG1(u) + 3n2 + 2m2, if u ∈ V (G1)

δG2,i(u) + degG2,i(u) + degG1(ui) + n2, if u ∈ V (G2,i).

We obtain MN index of corona product of two graphs in the following
proposition.

Proposition 8. The neighborhood Zagreb index for corona product is
given by

MN (G1 ¯G2) = MN (G1) + n1MN (G2) + (7n2 + 4m2)M1(G1) + (n1 + 2n1n2 +

4m1)M1(G2) + 4n1M2(G2) + n1n
3
2 + 9n1n

2
2 + 4n1m

2
2 + 4n

2
2m1

+16n1n2m2 + 8m1m2.

pc
1
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Proof 5. Applying the definition of neighborhood Zagreb index and using
lemma 10, we have

MN (G1 ¯G2) =
X

v∈V (G1¯G2)
δG1¯G2(v)

2

=
X

v∈V (G1)
δG1¯G2(v)

2 +
n1X
i=1

X
v∈V (G2,i)

δG1¯G2(v)
2

=
X

v∈V (G1)
(δG1(v) + 2m2 + 3n2)

2

+
n1X
i=1

X
v∈V (G2,i)

(δG2,i(v) + degG2,i(v)) + degG1(vi) + n2)
2

= C1 + C2.

Where C1 and C2 are the above sums orderly. So applying lemma 8, we
have

C1 =
X

v∈V (G1)
[δG1(v)

2 + 6n2δG1(v) + 4m2δG1(v) + 9n
2
2 + 12n2m2 + 4m

2
2]

= MN(G1) + (6n2 + 4m2)M1(G1) + 9n1n
2
2 + 4n1m

2
2 + 12n1n2m2.

C2 =
n1X
i=1

X
v∈V (G2,i)

[δG2,i(v)
2 + degG2,i(v)

2 + degG1(vi)
2 + n22 + 2δG2,i(v)degG2,i(v)

2δG2,i(v)degG1(vi) + 2n2δG2,i(v) + 2degG2,i(v)degG1(vi) + 2n2degG2,i(v) +

2n2degG1(vi)]

= n1M1(G2) + n1MN (G2) + n2M1(G1) + n1n
3
2 + 4n1M2(G2) + 8m1m2 +

4n1n2m2 + 4m1M1G2 + 2n1n2M1(G2) + 4n
2
2m1.

Adding C1 and C2, we obtain the required result.

Corollary 2. The bottleneck graph of a graph G is nothing but the corona
product of K2 and G. By the proposition 8, MN index of this graph is
derived bellow.

MN (K2 ¯G) = 2MN(G) + (6 + 4|V (G)|)M1(G) + 8M2(G) + 2|V (G)|3 + 22|V (G)|2

+8|E(G)|2 + 32|V (G)||E(G)|+ 14|V (G)|+ 16|E(G)|+ 2.

rvidal
Cuadro de texto
...809



814 S. Mondal, M. A. Ali, N. De and A. Pal

Corollary 3. The t-fold bristled graph Brst(G) of a graph G is obtained
by the corona product of G and K̄t. Such type of graph is also called as
t-throny graph. Using the proposition 8, the MN index of t-throny graph
is evaluated here.

MN (G¯ K̄t) = MN(G) + 7tM1(G) + t3|V (G)|+ 9t2|V (G)|+ 4t2|E(G)|.

Figure 3.2: The t-throny graphs of Pn.

Figure 3.3: The t-throny graph of Cn.

pc
figu2

pc
figu-3
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Example 5. The neighborhood Zagreb index of t-throny graph of path
(figure 2) and cycle (figure 3) graphs on n vertices are computed bellow.

(i) MN(Pn ¯ K̄t) = nt3 + 13nt2 − 4t2 + 28nt+ 16n− 42t− 38, n ≥ 4.

(ii) MN(Cn ¯ K̄t) = nt3 + 13nt2 + 28nt+ 16n, n ≥ 3.

The MN index of complete bipartite graph, t-throny graph of path and
cycle graphs are depicted in Figure 3.4.

Figure 3.4: Plotting of MN indices for Kn,t, Brst(Pn) and Brst(Cn) from
left to right respectively.

3.3. Strong product

The strong product [8] G1G2 of G1, G2 is a graph with node set V1×V2 and
(u1, v1) is adjacent with (u2, v2) iff [u1 = u2 and v1v2 ∈ E2] or [v1 = v2 and
u1u2 ∈ E1] or [u1u2 ∈ E1 and v1v2 ∈ E2]. Clearly we have the following
lemma.

pc
figu4
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816 S. Mondal, M. A. Ali, N. De and A. Pal

Lemma 11. For strong product of G1, G1, we have

δG1G2(u, v) = δG1(u) + δG2(v) + δG1(u)δG2(v) + 2degG1(u)δG2(v)

+2degG2(v)δG1(u) + 2degG1(u)degG2(v),

where u ∈ V (G1), v ∈ V (G2).

We obtain the neighborhood Zagreb index of strong product of two
graphs in the following proposition.

Proposition 9. The neighborhood Zagreb index of strong product of two
graphs is given by

MN (G1G2) = (n2 + 8m2)MN(G1) + (n1 + 8m1)MN (G2) +MN(G1)MN(G2) +

6[M1(G1)MN(G2) +MN (G1)M1(G2)] + 8[M2(G1)MN (G2) +

MN(G1)M2(G2)] + 16[m2M2(G1) +m1M2(G2)] + 6M1(G1)

M1(G2) + 48M2(G1)M2(G2) + 24M1(G1)M2(G2) + 24M2(G1)M1(G2).

Proof 6. The proof is directly followed from the definition of neighborhood
Zagreb index and lemma 8 and lemma 11.

3.4. Splice

The splice [10] of G1 and G2 by nodes v1 ∈ V1 and v2 ∈ V2, denoted
by (G1.G2)(v1, v2), is constructed by identifying the vertices v1 and v2 in
G1 ∪G2. Thus we have the following lemma.
Lemma 12. For splice of two graphs, we have

δ(G1.G2)(v1,v2)(u) =

⎧⎪⎪⎨⎪⎪⎩
δG1(v1) + δG2(v2), if u = vi, vi ∈ V (Gi), i = 1, 2

δGi(u) + degGj
(vj), if u ∈ NGi(vi), i 6= j, i, j = 1, 2

δGi(u), if u ∈ V (Gi), u /∈ NGi(vi), u 6= vi, i = 1, 2.

We calculate the newly introduced index in the following proposition.

Proposition 10. The neighborhood Zagreb index of splice of two graphs
is given by

MN ((G1.G2)(v1, v2)) = MN(G1) +MN (G2) + |NG1(v1)|degG2(v2)2

+|NG2(v2)|degG1(v1)2 + 2[degG2(v2)
X

u∈NG1
(v1)

δG1(u)

+degG1(v1)
X

u∈NG2
(v2)

δG2(u)] + 2δG1(v1)δG2(v2).
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Proof 7. Applying the definition of neighborhood Zagreb index and using
lemma 12, we have

MN ((G1.G2)(v1, v2)) =
X

u∈V ((G1.G2)(v1,v2))
δ(G1.G2)(v1,v2)(u)

2

= (δG1(v1) + δG2(v2))
2 +

X
u∈NGi

(vi),i6=j,i,j=1,2
[δGi(u) + degGj (vj)]

2

+
X

u∈V (Gi),u/∈NGi
(vi),u6=vi,i=1,2

δGi(u)
2

= MN(G1) +MN (G2) + |NG1(v1)|degG2(v2)2 + |NG2(v2)|degG1(v1)2

+2[degG2(v2)
X

u∈NG1
(v1)

δG1(u) + degG1(v1)
X

u∈NG2
(v2)

δG2(u)] +

2δG1(v1)δG2(v2).

Hence the proof.

3.5. Link

The link [10] of G1, G2 by nodes v1 ∈ V1 and v2 ∈ V2, written as (G1 ∼
G2)(v1, v2), is defined by joining the nodes v1 and v2 with an edge inG1∪G2.
The following lemma is clear from above definition.

Lemma 13. For link of two graphs G1, G2 by nodes v1 ∈ V1 and v2 ∈ V2,
we have

δ(G1∼G2)(v1,v2)(u) =

⎧⎪⎪⎨⎪⎪⎩
δGi(vi) + degGj

(vj) + 1, if u = vi, vi ∈ V (Gi), i 6= j, i, j = 1, 2

δGi(u) + 1, if u ∈ NGi(vi), i = 1, 2

δGi(u), if u ∈ V (Gi), u /∈ NGi(vi), u 6= vi, i = 1, 2.

TheMN index for link of graphs is obtained in the following proposition.

Proposition 11. The neighborhood Zagreb index for link of two graphs
is given by

MN ((G1 ∼ G2)(v1, v2)) = MN(G1) +MN (G2) + [degG1(v1)
2 + degG2(v2)

2]

+3[degG1(v1) + degG2(v2)] + 2[δG1(v1) + δG2(v2)]

+2[δG1(v1)degG2(v2) + δG2(v2)degG1(v1)]

+2[
X

u∈NG1
(v1)

δG1(u) +
X

u∈NG2
(v2)

δG2(u)] + 2.
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Proof 8. Applying the definition of neighborhood Zagreb index and using
lemma 13, we have

MN ((G1 ∼ G2)(v1, v2)) =
X

u∈V ((G1∼G2)(v1,v2))
δ(G1∼G2)(v1,v2)(u)

2

=
X

i 6=j,i,j=1,2
[δGi(vi) + δGj (vj) + 1]

2 +
X

u∈NGi
(vi),i=1,2

[δGi(u) + 1]
2

+
X

u∈V (Gi),u/∈NGi
(vi),u6=vi,i=1,2

δGi(u)
2

= MN(G1) +MN (G2) + [degG1(v1)
2 + degG2(v2)

2]

+3[degG1(v1) + degG2(v2)] + 2[δG1(v1) + δG2(v2)]

+2[δG1(v1)degG2(v2) + δG2(v2)degG1(v1)]

+2[
X

u∈NG1
(v1)

δG1(u) +
X

u∈NG2
(v2)

δG2(u)] + 2.

Hence the proof.

Example 6. Using link of graphs we can obtain the molecular graph of
the nanostar dendrimers Dn as shown in Figure DC 5. Thus using above
proposition we have the following result.

MN(Dn) = 624n− 102.

Figure 3.5: The molecular graph of the nanostar dendrimers Dn and D1.
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Figure 3.6: Plotting of MN indices for Sn, Wn, Fn, and Dn.

The MN indices of star graph, wheel graph, fan graph and nanostar
dendrimer are depicted in Figure 3.6.

3.6. Disjunction

The disjunction [15] G1∨G2 of two graphs G1, G2 is the graph having node
set V1 × V2 and (u1, v1) is adjacent with (u2, v2) iff u1u2 ∈ V1 or v1v2 ∈ V2.
Clearly we can state the following lemma.

Lemma 14. For disjunction of two graphs

δG1∨G2(u, v) = (n22 − 2m2)δG1(u) + (n
2
1 − 2m1)δG2(v) + 2n2m1degG2(v)

+2n1m2degG1(u)− n2δG1(u)degG2(v)− n1degG1(u)δG2(v)

+δG1(u)δG2(v),

where u ∈ V (G1), v ∈ V (G2).

The MN index for disjunction of two graphs can be computed like pre-
vious operations in the following proposition.
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Proposition 12. The neighborhood Zagreb index of disjunction of two
graphs is given by

MN (G1 ∨G2) = [(n22 − 2m2)(n
3
2 − 6n2m2)]MN(G1) + [(n

2
1 − 2m1)(n

3
1 − 6n1m1)]

MN(G2) + [4n
2
1n2m

2
2 + 8n2m1m2(n

2
2 − 2m2)]M1(G1) + [4n1n

2
2m

2
1

+8n1m1m2(n
2
1 − 2m1)]M1(G2) + [8n1m2(n

2
2 − 2m2)− 16n1n2m2

2]

M2(G1) + [8n2m1(n
2
1 − 2m1)− 16n1n2m2

1]M2(G2) + [3n
2
1 − 4m1]

M1(G1)MN (G2) + [3n
2
2 − 4m2]MN (G1)M1(G2)− 4[n1M2(G1)

MN(G2) + n2MN (G1)M2(G2)] + [2(n
2
2 − 2m2)(n

2
1 − 2m1)− 4n22m1

−4n21m2]M1(G1)M1(G2) + [16n2m1 − 4n21n2]M1(G1)M2(G2) +

[16n1m2 − 4n1n22]M2(G1)M1(G2) + 8n1n2M2(G1)M2(G2) +

MN(G1)MN(G2) + 32n1n2m
2
1m

2
2.

3.7. Symmetric difference

The symmetric difference [11] G1⊕G2 of two graphs G1 and G2 is the graph
with node set V1×V2 and edge set E(G1⊕G2) = { (u1, v1)(u2, v2) : u1u2 ∈
E1 or v1v2 ∈ E2 but not both }. Clearly we have the following lemma.

Lemma 15. For symmetric difference of two graphs

δG1⊕G2(u, v) = (n22 − 4m2)δG1(u) + (n
2
1 − 4m1)δG2(v) + 2n2m1degG2(v)

+2n1m2degG1(u)− 2n2δG1(u)degG2(v)− 2n1degG1(u)δG2(v)
+4δG1(u)δG2(v),

where u ∈ V (G1), v ∈ V (G2).

In the following proposition, the Neighborhood Zagreb index of sym-
metric difference of two graphs can be achieved as before.

Proposition 13. The neighborhood Zagreb index of symmetric difference
of two graphs is given by

MN (G1 ⊕G2) = [(n22 − 4m2)(n
3
2 − 12n2m2)]MN (G1) + [(n

2
1 − 4m1)(n

3
1 − 12n1m1)]

MN (G2) + [4n
2
1n2m

2
2 + 8n2m1m2(n

2
2 − 4m2)]M1(G1) + [4n1n

2
2m

2
1

+8n1m1m2(n
2
1 − 4m1)]M1(G2) + [8n1m2(n

2
2 − 4m2)− 32n1n2m2

2]

M2(G1) + [8n2m1(n
2
1 − 4m1)− 32n1n2m2

1]M2(G2) + [12n
2
1 −
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