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Abstract:

Network theory as an important role in the field of electronic and electrical
engineering, for example, in signal processing, networking, communication
theory, etc. The branch of mathematics known as Graph theory found re-
markable applications in this area of study. A topological index (TI) is a real
number attached with graph networks and correlates the chemical net-
works with many physical and chemical properties and chemical reactivity.
The Optical Transpose Interconnection System (OTIS) network has re-
ceived considerable attention in recent years and has a special place among
real world architectures for parallel and distributed systems. In this report,
we compute redefined first, second and third Zagreb indices of OTIS
swapped and OTIS biswapped networks. We also compute some Zagreb
polynomials of understudy Networks.
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1. Introduction

Mathematical chemistry is an area of research in chemistry in which math-
ematical tools are used to solve problems of chemistry. Chemical graph
theory is an important area of research in mathematically chemistry which
deals with topology of molecular structure such as the mathematical study
of isomerism and the development of topological descriptors or indices. In-
fect, T1Is are real numbers attached with graph networks and graph of chem-
ical compounds and has applications in quantitative structure-property re-
lationships. TIs remain invariant upto graph isomorphism and help to
predict many properties of chemical compounds, networks and nanomate-
rials, for example, viscosity, boiling points, radius of gyrations, etc without
going to lab [3,5,24].

Other emerging field is Cheminformatics, in which we use QSAR and
QSPR relationship to guess biological activity and chemical properties of
nanomaterial and networks. In these investigations, some Physico-chemical
properties and TIs are utilized to guess the behavior of chemical net-
works [11]. Like TIs, polynomials also fund considerable applications in
network theory and chemistry, for example, Hosoya polynomial, which is
also known as Wiener polynomial, introduced in [13] plays an important
role in computation of distance-based TIs. M-polynomial [8] was defined
in 2015 and plays a similar role in computation of numerous degree-based
TIs [1,16,17,18,19]. The M-polynomial contains precious information about
degree-based TIs and many T1Ts can be computed from this simple algebraic
polynomial. The first TT was defined in 1947 by Weiner during studying
boiling point of alkanes [26]. This index is now known as Weiner index.
Thus Weiner established the framework of TIs and the Wiener index is
initially the first and most concentrated TI. For details about applications
of graph theory and TIs, see [12,15,23,25] and reference therein.

The other oldest TT is Randi¢ index (RI), given by Milan Randic [20] in
1975. After the success of Randié¢ index, in the year 1988, the generalized
version of Randi¢ index was introduced [4,7]. This version attracts both
the mathematicians and chemists [2,19].

The RI is a most mainstream regularly connected and most concen-
trated among all other TIs. Numerous research papers and text books are
published in different academic journals on this TI. Two surveys on RI was
written by Milan Randi¢ and the reason behind the success of such a simple
TI is as yet a puzzle, although some conceivable clarifications were given.

After Randi¢ index, the most studied TIs are 1st Zagreb index (ZI) and
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2nd ZI [14]. In this report we aim to study some Zagreb polynomials and
redefined Zagreb indices of OTIS (swapped and biswapped) networks.

2. Basic Notions

In mathematical chemistry, precisely speaking, in chemical-graph-theory
(CGT), a molecular graph and graph network is a simple and connected
graph, in which atoms represents vertices and chemical bonds represents
edges. We reserve G for simple connected graph, E for edge set and V
for vertex set throughout the thesis. The degree of a vertex u of graph
G is the number of vertices that are attached with u and is denoted by
dy. With the help of TTs, many properties of molecular structure can be
obtained without going to lab. The reality is, many research paper has been
written on computation of degree-based indices and polynomials of different
molecular structure and networks but only few work has been done so far on
distance based indices and polynomials. Our aim is to compute distance-
based as well as degree-based indices of understudy networks. The first and
the second ZIs (cf. [14]) are defined as

M(G)= > (du+dy)
uweE(G)

and

My(G) = Y (dy X dy).
weF(G)

Considering the ZIs, Fath-Tabar in [10] introduced the following first
and the second Zagreb polynomials

(2.1) M (G,z) = Z ghutdv
weE(Q)

and

(2.2) M>(G,x) = Z gduxdo,
weE(G)

The properties of first and second Zagreb polynomials for some chemical
structures have been studied in the literature [21].
After the success of ZIs, the researchers in [9], introduced the following
third ZI
Ms(G)= > |dy—du.
weE(G)
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and the third Zagreb polynomial

(2.3) M3(G,z)= Y glhtdl
weE(Q)

The other Zagreb type polynomials are introduced in [6] in 2016

(2.4) My(Gra) = ¥ auldutd),
weB(G)

(2.5) Ms(Gyz) = 3 afldutd)
weB(G)

(2.6) M, (G, z) = Z pdutbds,
weE(Q)

(2.7) wp(Gox) = Z p(duta)(dotb)
weE(G)

Redefined ZIs are defined in [22] by Ranjini et al.

(2.8) ReZGi(G) = Y Tt
dyd,
weE(G)
(2.9) ReZGy(G) = Y duy
. 2 - du+dv7
weE(G)
(2.10) ReZG3(G) = Y (du+dy)(dudy).
weE(G)

3. Methodology

There are three kinds of invariants:

1) Degree-based TIs

2) Distance-based TIs

3) Spectral-based TIs

In this thesis, we focus on degree-based and distance-based graph invari-
ants. To compute degree-based invariants, we divide the edge set of graph
networks into classes based on the degree of the end vertices and compute
there cardinality. From this edge partition, we compute our desired results.

4. Computational results

Now we give our main results.
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4.1. Topological indices of OR; OTIS swapped networks

Let Ry be k-regular graph on n vertices and O Ry, be OTIS swapped network
with basis network Rjy. Figure 1 depicts an example of OTIS swapped
network O R5. Now we calculate certain degree based topological indices of
OTIS swapped network ORj.

58 =3

Figure 4.1: ORs OTIS swapped network

Theorem 4.2. Let OR; be the graph of OTIS swapped network. Then
we have

e . 1 220 L) =1 L) o
1. Mi(ORpm, ) = nma@r s 4 S e =il g e 2,

2. My(ORpm, x) = nma* tF 4+ nQ(mH)gn(HZm):c(mH)Z.

3. M3(ORp,x) = nkx + n2(m+1);n(1+2m)‘

4. My(ORp,z) = nma® % + n2(m+1);n(1+2m)x2(m+1)2‘

5. M5(ORy,,x) = nka2k?+3k+1 4 n2(m+1);n(1+2m)x2(m+1)2'

6. Mqp(ORpn,x) = nkgomtbmtb | n(mil)on(em) , (atb)(m+1),

7. M;’b(ORm,;g) = nmx(m+1)(m+1+b)+nQ(mH)gn(le)x(m+1+a)(m+1+b)’
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Proof. The edge set of ORj has following two partitions,

E1(ORy,) = {e = weE(ORy,)|dy = k,dy, = k + 1},

Ey(OR,,) = {e =weE(ORy)|dy =k +1,d, =k + 1},

such that

|E2(ORm)| =

|E1(ORy,)| = nk,
n?(k +1) — n(1 + 2k)
2 )

1. Using the edge partition and definition 2.1, we have

Mi(OR,, x)

Z xd“ +dy

uwveE(ORp)
Z 1,2m+1 + Z (ORm)x2m+2
uwveE1 (ORm)(G) uveE2(ORy,)

|E1(OR,,)|2*™ ™ + | Eo(OR,,)| 2™ 2

- n*(m+1) ; n(1+2m) 242

n

2. Using the edge partition and definition 2.2, we have

MQ(ORm,l‘)

Z l‘d“ .dy

weE(ORm)
Z xm2+m + Z (ORm)$(m+1)2
wveE1 (ORm)(G) uveM2(ORm)

|E1(ORp) 2™ ™ + | B2 (OR,,) |z +Y?

2
gt tm 4 (m+1) ; n(l+ Qm)z(m+1)2.

3. Using the edge partition and definition 2.3, we have

M3(ORy,,z) = Z /4]
wveE(ORy,)
= Z x + Z xO
uveE1 (ORm ) (G) uwveE2(ORy,)

= |E1(ORp)|z" + |E2(ORy,) |2t
n?2(m+1) —n(1 +2m)
5 .

= nmx+
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4. Using the edge partition and definition 2.4, we have

MiORpz) = Y bl
uwveE(ORm)
_ Z xm(2m+l)+ Z x(m+l)(2m+2)
wveE1 (ORp) uveE2(ORm)

= |E1(ORy)|z™ +™ + | By (@) |22+ D)
m2+m i n2(m —+ ]_) ; 'I’l(]_ + 2m) $2(m+1)2.

= nmx

5. Using the edge partition and definition 2.5, we have

uwveE(ORp)
= Z 2(m+1)(2m+1) + Z p(m+1)(2m+2)
wveE1 (ORm) wveEy(ORm)

_ ‘El(ORm)‘{E2m2+3m+l + |E2(0Rm)|$2(m+1)2

L2 H3mAL n?(m+1) —n(1 +2m) 2(m+1)?
5 .

= nm

6. Using the edge partition and definition 2.6, we have

Moy (ORy,x) = Z p(adu-+bdy)
uwveE(ORy,)
= Z $am+b(m+1)+ Z xa(m+1)+b(m+1)
wveE1(ORm) uveFa(ORm)

— |E1(0Rm)|l.am+bm+b + |E2(0Rm)|l‘(a+b)(m+l)

— mgemtbmtb | n*(m+1) —n(1l+ 2m)x(wb)(mﬂ)_

2

7. Using the edge partition and definition 2.7, we have

M,y (ORm,z) = 3 glbta)dtd)
weE(ORy,)
wveE1 (ORm) uveE2(ORy,)

= |E1(ORy,)|z Mt m+140) 4 By (OR,,)|a(mH1Fa)(m+140)

(meta)+(m+1+b) n*(m+1) —n(l+ Qm)x(m-l—l—l—a)(k—l—l-i—b).
2

= nmx
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Theorem 4.3. Let OR,, be the graph of OTIS swapped network. Then
we have

1. ReZG1(ORy,) = n?.

TLQ m —n m
2. ReZG5(ORy,) = (nm)rgfniqw _ ( ( +1)2 (1+2 )) m;—1.

3. ReZG3(ORy,) = (nm) (2m3 + 3m?*m)+n?(m+1)—n(1+2m)(m+1)3.

Proof.
1. Using the edge partition given in Theorem 4.2 and definition 2.8, we
have
dy +d
ReZGy(ORy,) = Y St
dy.dy
uwveE(Q)
-y nimil y o milimed
uwveE1 (ORy,) m(m + 1) wveEy (ORm) (m + 1)(m + 1)
2m+1 2
= |B m E )| ———
|E1(OR )|m2+m+| 2(OR )m+1
= n?

Figure 4.2: Plot of first redefined Zagreb index
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2. Using the edge partition given in Theorem 4.2 and definition 2.9, we

have
dy,.dy
ReZG3(ORp) = > 7 td
weE(ORm) ¥ v
1 1 1
_ Z m(m + )1 I Z (m+1 )(m + 1)
uwveE1 (ORm) ™o+ m welz(ORm) met b
m? +m m+1

m? +m (nz(m—l—l)—n(l—i—Zm)) m+ 1
2 2

. 2m + 1

Figure 4.3: Plot of second redefined Zagreb index ( 3D (left), for k=1
(middle), for n=1 (right)

3. Using the edge partition given in Theorem 4.2 and definition 2.10, we

have
ReZG3(OR,,) = > (dudy)(dy + dy)
wveE(ORp,)
= Y (mm+1)(m+m+1)
uveE1 (ORm)

+ Y (m+1).(m+1)(m+1+m+1)
uwveE2(ORm)
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|E1(OR,,)|(2m® + 3m2m) + 2| Fa(ORyy,)|(m 4 1)3
= nm.(2m® + 3m2m) + n?(m + 1) — n(1 + 2m)(m + 1)>.

Figure 4.4: Plot of third redefined Zagreb index ( 3D (left), for k=1 (mid-
dle), for n=1 (right)

4.4. Topological induces of OF,, OTIS swapped Networks

Let P, be path on n vertices and OF,, be OTIS swapped network with
basis network P,. An OTIS swapped network with the basis network O Py

is shown in Figure 5.
1'1 12 13 4 15 16
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Theorem 4.5. Let OP, be the graph of OTIS swapped network. Then

we have

1. Ml(OPn,SU) = 5zt + (67”1, _ 14)$5 + 3("*2)@*3)1:6‘

2.

=

/
a,

=

M(
Ms(

4. My(OP,,x) = 2% + 328 + (6n — 14)z10 + 20=2n=3) ;18
Ms(

2

OP,,z) = 223 + 3z* + (6n — 14)26 4 20=2=3) ;9.

2

OP,,z) = 2a% + (6n — 14)z + 20=2(=3) 16

OP,,r) = 328 + (6n — 12)x'2 + wgﬂg.
a,b(OPna SE) — 2$a+3b+3x2a+2b+(6n_14)1,2a+3b_|_ 3("*2%("*3) p3a+3b.

(0P, x) = 2z (1+a)(3+b) 4 32,(2+a)(2+0) 4 (6, — 14)(2+0)(3+0)
3(n72%(n73) 2 (B3+a)(3+b)

Proof. The edge set of OF, has following two partitions,

El(OPn) = [6 = ’LL’UGE(OPn)’du = 1,dv - 3]7
Esop,) = le = weE(OP,)|dy, = 2,d, = 2],
Esop,) = e = wweE(OF,)|dy = 2,d, = 3],
Eyop,) = [e = weE(OR,)|dy = 3,dy = 3],
such that
[E1(OF,)| = 2,
|E2(OF,)| = 3,
|E5(OP,)| = 6n — 14,
— 9N (n —
(o) = 2220 8)

1. Using the edge partition and definition 2.1, we have

MI(OPTL7 .’L')

Z .’Ed“+dv

weE(OP,)
Z zt 4 Z ot + z° + 8
uwveE1 (OP,)(G) uveEs(OPy,) uveE3(OPy,) uwveE4(OPy,)

|E1(OP,)|z* + |E2(OP,)|z* + |E3(OP,)|z® + |E4(OP,)|x5
3(n — 2;(71 -3) 6

5z 4 (6n — 14)2° +
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2. Using the edge partition and definition 2.2, we have

MQ(OPn,SE)

Z l‘d“ .dy

uwveE(OP,)
Z a3 + z* + 25+
uveE1 (OP,)(OPy) uveE2(OPy) uveE3(OPy) wveE4(OPy)
|E1(OP,)|2% + |E2(OP,)|z* + |E3(OP,)|x% + |E4(OP,)|z°
3(n—2)(n—-3
=23

223 + 3z + (6n — 14)2°® +

3. Using the edge partition and definition 2.3, we have

Mg(OPn,(E)

3 gl

weE(OP,)

o2+ Y 2+ > 2t a0
uveE1 (OPy) uveE>(OPy) uveE3(OPy,) uwveE4(OPy,)
|E1(OP,)|2% + | Eo(OP,)| + |E3(OP,)|x + |E4(OP,)|
9(n —2)(n—13)

222 + (6n — 14)z + 5

4. Using the edge partition and definition 2.4, we have

M4(0Pn7 ':E)

3 pdu(|dutdo])

uwveE(OP,)
ooty Y B+ > 20 Y B
uveE1 (OPy) uveEs(OPy) uveE3(OPy) uveE4(OPy)

|E1(OP,)|z* + |E2(OP,)|2® + |E3(OP,) |z + |E4(OP,)|z!8
3(n — 2;(71 — 3)1}18.

22 + 328 + (6n — 14)2'0 +

5. Using the edge partition and definition 2.5, we have

M5(0Pn7 .’L')

S ptelldutd)

weE(OP,)
Z $12 4 Z $8 + Z .1715 4 Z x18
uveE1 (OPy) uveE2(OPy,) uveE3(OPy) uveE4(OPy)

|E1(OP,)|z'2 + |Eo(OP,)|2® + |E3(OP,)|z + |E4(OP,)|z'®

3(n —2)(n — 3)9618
5 .

222 + 328 + (6n — 14)2'® +
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6. Using the edge partition and definition 2.6, we have

M p)(OPy, ) = Z pladu+bd,)
uwveE(OP,)
uwveE (OPy) uveE2(OPy)
+ Z 22030 | Z Bat3b
uveE3(OP,) wveE4(OP,)

= |E1(OP,)|z" ™" + |E3(OR,) |22
+|E3(0Pn)|l‘2a+3b + |E4(0Pn)|:133a+3b

= 9g0F3b 4 342042 4 (G _ 14)p20+30 4 3(n—2)(n — 3)$3a+3b‘

2
7. Using the edge partition and definition 2.7, we have
M(/a,b)(OinT) = > 7 (duta)(dutb)
weE(OP,)
= Z p1+a)B+0) 4 Z 2(2+a)(2+D)
U’UEE]. (OPn) UUEEZ(OPn)
+ Z x(2+a)(3+b) + Z $(3+a)(3+b)
uveE3(OPy) uveE4(OP,)

= |E1(0Pn)|$(1+a)(3+b) + |E2(0Pn)|1,(2+a)(2+b)
+|E3(OP,) |26+ 4 | By(OP,)|zG+(3+0)
= 9p(1+a)(3+b) 4 3,.(2+a)(2+0) | (6n — 14)x(2+“)(3+b)

+3(n - 2;(7”& —3) (3+a)(3+b).

Theorem 4.6. Let OPF,, be the graph of OTIS swapped network. Then
we have

1. ReZG1(OP,) = n?.
2. ReZG5(OP,) = & — 8in+ n?.

3. ReZG3(OP,) = 78n? — 210n + 120.
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Proof.

1. Using the edge partition given in Theorem 4.5 and definition 2.8, we

have

ReZG1(OP,)

dy+d
Z U v
uveE(OP,) dy-dy
4 4 )
)RS D DR LD DR -S D
uwveE1 (OP,) uveEs(OP,) uveE3(OP,) uveE4(OP,)

4 5 2
|E1(0Pn)|§ + | E2(OP,)| + |E3(0Pn)|6 + \E4(0Pn)|§

n?.

\ ]

Figure 4.6: Plot of first redefined Zagreb index

2. Using the edge partition given in Theorem 4.5 and definition 2.9, we

have

RGZGQ(OPn)

Z dy.d,
uwweE(OP,) dy + dy

NS SV VIR P

uveF1(OPy) uveEs(OP,,) uveE3(OP,,) uveE4(OPy,)

3 6 3
[EV(OPW)I; + [E2(OPW)| + |E3(OPW)5 + [Es(OPW) 5



Molecular descriptors of certain OTILS interconnection networks 783

Figure 4.7: Plot ot second redehined Zagreb index

3. Using the edge partition given in Theorem 4.5 and definition 2.10, we

have

ReZGs3(OP,)

S (dudy)(dy + dy)

wveE(OP,)
o124 > 16+ Y 30+ D 54
uwveE1 (OPy) uveEs(OPy) uwveE3(OPy) uveE4(OPy)

|E1(OP,)12 + | E2(OP,)|16 4 | E3(OP,)|30 + |E4(OP,)|54
78n% — 210n + 120.

10000

Figure 4.8: Plot of third redefined Zagreb index
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Conclusion

It is important to calculate topological indices of networks, because it is
proved fact that topological indices help to predict many properties without
going to the wet lab. There are more than 148 topological indices but none
of them can completely describe all properties of a chemical compound.
Therefore there is always room to define and study new topological indices.
Redefined Zagreb indices are one step in this direction and are very close
to Zagreb indices. Zagreb indices are very well studied by chemists and
mathematician due to its huge applications in chemistry. It is an interesting
problem for researchers to study chemical properties and bonds of redefined
Zagreb indices.
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