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1. Introduction

Mathematical chemistry is an area of research in chemistry in which math-
ematical tools are used to solve problems of chemistry. Chemical graph
theory is an important area of research in mathematically chemistry which
deals with topology of molecular structure such as the mathematical study
of isomerism and the development of topological descriptors or indices. In-
fect, TIs are real numbers attached with graph networks and graph of chem-
ical compounds and has applications in quantitative structure-property re-
lationships. TIs remain invariant upto graph isomorphism and help to
predict many properties of chemical compounds, networks and nanomate-
rials, for example, viscosity, boiling points, radius of gyrations, etc without
going to lab [3,5,24].

Other emerging field is Cheminformatics, in which we use QSAR and
QSPR relationship to guess biological activity and chemical properties of
nanomaterial and networks. In these investigations, some Physico-chemical
properties and TIs are utilized to guess the behavior of chemical net-
works [11]. Like TIs, polynomials also fund considerable applications in
network theory and chemistry, for example, Hosoya polynomial, which is
also known as Wiener polynomial, introduced in [13] plays an important
role in computation of distance-based TIs. M-polynomial [8] was defined
in 2015 and plays a similar role in computation of numerous degree-based
TIs [1,16,17,18,19]. The M-polynomial contains precious information about
degree-based TIs and many TIs can be computed from this simple algebraic
polynomial. The first TI was defined in 1947 by Weiner during studying
boiling point of alkanes [26]. This index is now known as Weiner index.
Thus Weiner established the framework of TIs and the Wiener index is
initially the first and most concentrated TI. For details about applications
of graph theory and TIs, see [12,15,23,25] and reference therein.

The other oldest TI is Randić index (RI), given by Milan Randi c [20] in
1975. After the success of Randić index, in the year 1988, the generalized
version of Randić index was introduced [4,7]. This version attracts both
the mathematicians and chemists [2,19].

The RI is a most mainstream regularly connected and most concen-
trated among all other TIs. Numerous research papers and text books are
published in different academic journals on this TI. Two surveys on RI was
written by Milan Randić and the reason behind the success of such a simple
TI is as yet a puzzle, although some conceivable clarifications were given.

After Randić index, the most studied TIs are 1st Zagreb index (ZI) and
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2nd ZI [14]. In this report we aim to study some Zagreb polynomials and
redefined Zagreb indices of OTIS (swapped and biswapped) networks.

2. Basic Notions

In mathematical chemistry, precisely speaking, in chemical-graph-theory
(CGT), a molecular graph and graph network is a simple and connected
graph, in which atoms represents vertices and chemical bonds represents
edges. We reserve G for simple connected graph, E for edge set and V
for vertex set throughout the thesis. The degree of a vertex u of graph
G is the number of vertices that are attached with u and is denoted by
dv. With the help of TIs, many properties of molecular structure can be
obtained without going to lab. The reality is, many research paper has been
written on computation of degree-based indices and polynomials of different
molecular structure and networks but only few work has been done so far on
distance based indices and polynomials. Our aim is to compute distance-
based as well as degree-based indices of understudy networks. The first and
the second ZIs (cf. [14]) are defined as

M1(G) =
X

uv∈E(G)
(du + dv)

and
M2(G) =

X
uv∈E(G)

(du × dv).

Considering the ZIs, Fath-Tabar in [10] introduced the following first
and the second Zagreb polynomials

M1(G,x) =
X

uv∈E(G)
xdu+dv(2.1)

and

M2(G,x) =
X

uv∈E(G)
xdu×dv .(2.2)

The properties of first and second Zagreb polynomials for some chemical
structures have been studied in the literature [21].

After the success of ZIs, the researchers in [9], introduced the following
third ZI

M3(G) =
X

uv∈E(G)
|du − dv|.
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and the third Zagreb polynomial

M3(G,x) =
X

uv∈E(G)
x|du+dv|.(2.3)

The other Zagreb type polynomials are introduced in [6] in 2016

M4(G,x) =
X

uv∈E(G)
xdu(du+dv),(2.4)

M5(G,x) =
X

uv∈E(G)
xdv(du+dv),(2.5)

Ma,b(G,x) =
X

uv∈E(G)
xadu+bdv ,(2.6)

M 0
a,b(G,x) =

X
uv∈E(G)

x(du+a)(dv+b).(2.7)

Redefined ZIs are defined in [22] by Ranjini et al.

ReZG1(G) =
X

uv∈E(G)

du + dv
dudv

,(2.8)

ReZG2(G) =
X

uv∈E(G)

dudv
du + dv

,(2.9)

ReZG3(G) =
X

uv∈E(G)
(du + dv)(dudv).(2.10)

3. Methodology

There are three kinds of invariants:
1) Degree-based TIs
2) Distance-based TIs
3) Spectral-based TIs
In this thesis, we focus on degree-based and distance-based graph invari-

ants. To compute degree-based invariants, we divide the edge set of graph
networks into classes based on the degree of the end vertices and compute
there cardinality. From this edge partition, we compute our desired results.

4. Computational results

Now we give our main results.
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Proof. The edge set of ORk has following two partitions,

E1(ORm) = {e = uv�E(ORm)|du = k, dv = k + 1},

E2(ORm) = {e = uv�E(ORm)|du = k + 1, dv = k + 1},
such that

|E1(ORm)| = nk,

|E2(ORm)| =
n2(k + 1)− n(1 + 2k)

2
,

1. Using the edge partition and definition 2.1, we have

M1(ORm, x) =
X

uv�E(ORm)

xdu+dv

=
X

uv�E1(ORm)(G)

x2m+1 +
X

uv�E2(ORm)

(ORm)x
2m+2

= |E1(ORm)|x2m+1 + |E2(ORm)|x2m+2

= nmx2m+1 +
n2(m+ 1)− n(1 + 2m)

2
x2m+2.

2. Using the edge partition and definition 2.2, we have

M2(ORm, x) =
X

uv�E(ORm)

xdu.dv

=
X

uv�E1(ORm)(G)

xm
2+m +

X
uv�M2(ORm)

(ORm)x
(m+1)2

= |E1(ORm)|xm
2+m + |E2(ORm)|x(m+1)

2

= nmxm
2+m +

n2(m+ 1)− n(1 + 2m)

2
x(m+1)

2
.

3. Using the edge partition and definition 2.3, we have

M3(ORm, x) =
X

uv�E(ORm)

x|du−dv|

=
X

uv�E1(ORm)(G)

x+
X

uv�E2(ORm)

x0

= |E1(ORm)|x1 + |E2(ORm)|x1

= nmx+
n2(m+ 1)− n(1 + 2m)

2
.
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4. Using the edge partition and definition 2.4, we have

M4(ORm, x) =
X

uv�E(ORm)

xdu(|du+dv|)

=
X

uv�E1(ORm)

xm(2m+1) +
X

uv�E2(ORm)

x(m+1)(2m+2)

= |E1(ORm)|xm
2+m + |E2(G)|x2(m+1)

2

= nmxm
2+m +

n2(m+ 1)− n(1 + 2m)

2
x2(m+1)

2
.

5. Using the edge partition and definition 2.5, we have

M5(ORm, x) =
X

uv�E(ORm)

xdv(|du+dv|)

=
X

uv�E1(ORm)

x(m+1)(2m+1) +
X

uv�E2(ORm)

x(m+1)(2m+2)

= |E1(ORm)|x2m
2+3m+1 + |E2(ORm)|x2(m+1)

2

= nmx2m
2+3m+1 +

n2(m+ 1)− n(1 + 2m)

2
x2(m+1)

2
.

6. Using the edge partition and definition 2.6, we have

Ma,b(ORm, x) =
X

uv�E(ORm)

x(adu+bdv)

=
X

uv�E1(ORm)

xam+b(m+1) +
X

uv�E2(ORm)

xa(m+1)+b(m+1)

= |E1(ORm)|xam+bm+b + |E2(ORm)|x(a+b)(m+1)

= nmxam+bm+b +
n2(m+ 1)− n(1 + 2m)

2
x(a+b)(m+1).

7. Using the edge partition and definition 2.7, we have

M
0
a,b(ORm, x) =

X
uv�E(ORm)

x(du+a)(dv+b)

=
X

uv�E1(ORm)

x(m+a)(m+1+b) +
X

uv�E2(ORm)

x(m+1+a)+(m+1+b)

= |E1(ORm)|x(m+a)(m+1+b) + |E2(ORm)|x(m+1+a)(m+1+b)

= nmx(m+a)+(m+1+b) +
n2(m+ 1)− n(1 + 2m)

2
x(m+1+a)(k+1+b).
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Theorem 4.5. Let OPn be the graph of OTIS swapped network. Then
we have

1. M1(OPn, x) = 5x
4 + (6n− 14)x5 + 3(n−2)(n−3)

2 x6.

2. M2(OPn, x) = 2x
3 + 3x4 + (6n− 14)x6 + 3(n−2)(n−3)

2 x9.

3. M3(OPn, x) = 2x
2 + (6n− 14)x+ 9(n−2)(n−3)

2 x6.

4. M4(OPn, x) = 2x
4 + 3x8 + (6n− 14)x10 + 3(n−2)(n−3)

2 x18.

5. M5(OPn, x) = 3x
8 + (6n− 12)x12 + 3(n−2)(n−3)

2 x18.

6. Ma,b(OPn, x) = 2x
a+3b+3x2a+2b+(6n−14)x2a+3b+ 3(n−2)(n−3)

2 x3a+3b.

7. M
0
a,b(OPn, x) = 2x

(1+a)(3+b) + 3x(2+a)(2+b) + (6n− 14)x(2+a)(3+b)

+ 3(n−2)(n−3)
2 x(3+a)(3+b).

Proof. The edge set of OPn has following two partitions,

E1(OPn) = [e = uv�E(OPn)|du = 1, dv = 3],

E2(OPn) = [e = uv�E(OPn)|du = 2, dv = 2],
E3(OPn) = [e = uv�E(OPn)|du = 2, dv = 3],
E4(OPn) = [e = uv�E(OPn)|du = 3, dv = 3],

such that
|E1(OPn)| = 2,
|E2(OPn)| = 3,

|E3(OPn)| = 6n− 14,

|E4(OPn)| =
3(n− 2)(n− 3)

2
,

1. Using the edge partition and definition 2.1, we have

M1(OPn, x) =
X

uv�E(OPn)

xdu+dv

=
X

uv�E1(OPn)(G)

x4 +
X

uv�E2(OPn)

x4 +
X

uv�E3(OPn)

x5 +
X

uv�E4(OPn)

x6

= |E1(OPn)|x4 + |E2(OPn)|x4 + |E3(OPn)|x5 + |E4(OPn)|x6

= 5x4 + (6n− 14)x5 + 3(n− 2)(n− 3)
2

x6.
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2. Using the edge partition and definition 2.2, we have

M2(OPn, x) =
X

uv�E(OPn)

xdu.dv

=
X

uv�E1(OPn)(OPn)

x3 +
X

uv�E2(OPn)

x4 +
X

uv�E3(OPn)

x6 +
X

uv�E4(OPn)

x9

= |E1(OPn)|x3 + |E2(OPn)|x4 + |E3(OPn)|x6 + |E4(OPn)|x9

= 2x3 + 3x4 + (6n− 14)x6 + 3(n− 2)(n− 3)
2

x9.

3. Using the edge partition and definition 2.3, we have

M3(OPn, x) =
X

uv�E(OPn)

x|du−dv |

=
X

uv�E1(OPn)

x2 +
X

uv�E2(OPn)

x0 +
X

uv�E3(OPn)

x1 +
X

uv�E4(OPn)

x0

= |E1(OPn)|x2 + |E2(OPn)|+ |E3(OPn)|x+ |E4(OPn)|

= 2x2 + (6n− 14)x+ 9(n− 2)(n− 3)
2

.

4. Using the edge partition and definition 2.4, we have

M4(OPn, x) =
X

uv�E(OPn)

xdu(|du+dv|)

=
X

uv�E1(OPn)

x4 +
X

uv�E2(OPn)

x8 +
X

uv�E3(OPn)

x10 +
X

uv�E4(OPn)

x18

= |E1(OPn)|x4 + |E2(OPn)|x8 + |E3(OPn)|x10 + |E4(OPn)|x18

= 2x4 + 3x8 + (6n− 14)x10 + 3(n− 2)(n− 3)
2

x18.

5. Using the edge partition and definition 2.5, we have

M5(OPn, x) =
X

uv�E(OPn)

xdv(|du+dv|)

=
X

uv�E1(OPn)

x12 +
X

uv�E2(OPn)

x8 +
X

uv�E3(OPn)

x15 +
X

uv�E4(OPn)

x18

= |E1(OPn)|x12 + |E2(OPn)|x8 + |E3(OPn)|x15 + |E4(OPn)|x18

= 2x12 + 3x8 + (6n− 14)x15 + 3(n− 2)(n− 3)
2

x18.
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6. Using the edge partition and definition 2.6, we have

M(a,b)(OPn, x) =
X

uv�E(OPn)

x(adu+bdv)

=
X

uv�E1(OPn)

xa+3b +
X

uv�E2(OPn)

x2a+2b

+
X

uv�E3(OPn)

x2a+3b +
X

uv�E4(OPn)

x3a+3b

= |E1(OPn)|xa+3b + |E2(OPn)|x2a+2b

+|E3(OPn)|x2a+3b + |E4(OPn)|x3a+3b

= 2xa+3b + 3x2a+2b + (6n− 14)x2a+3b + 3(n− 2)(n− 3)
2

x3a+3b.

7. Using the edge partition and definition 2.7, we have

M
0
(a,b)(OPn, x) =

X
uv�E(OPn)

x(du+a)(dv+b)

=
X

uv�E1(OPn)

x(1+a)(3+b) +
X

uv�E2(OPn)

x(2+a)(2+b)

+
X

uv�E3(OPn)

x(2+a)(3+b) +
X

uv�E4(OPn)

x(3+a)(3+b)

= |E1(OPn)|x(1+a)(3+b) + |E2(OPn)|x(2+a)(2+b)

+|E3(OPn)|x(2+a)(3+b) + |E4(OPn)|x(3+a)(3+b)

= 2x(1+a)(3+b) + 3x(2+a)(2+b) + (6n− 14)x(2+a)(3+b)

+
3(n− 2)(n− 3)

2
x(3+a)(3+b).

2

Theorem 4.6. Let OPn be the graph of OTIS swapped network. Then
we have

1. ReZG1(OPn) = n2.

2. ReZG2(OPn) =
6
5 −

81
20n+

9
4n
2.

3. ReZG3(OPn) = 78n
2 − 210n+ 120.
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