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1. Introduction

Throughout the paper, let E be a closed, convex subset of real Hilbert
space H. h., .i and k.k are inner product and induced norm, respectively.

For M : E × E → R, the equilibrium problem (for short, EP ) is of
finding u ∈ E such that

M(u, v) ≥ 0, ∀v ∈ E. (1.1)

If EP (M) is set of all solutions of above (1.1), then

EP (M) = {u ∈ E :M(u, v) ≥ 0, ∀v ∈ E}. (1.2)

Blum and Oettli [2] introduced Equilibrium problems which has helped
to develop and solve many problems of game theory, economics and op-
timization problems. Recently many researchers studied and used its ap-
plications in many important areas, see for example [1, 2, 3, 4, 7, 8, 9,
10, 12, 15, 17, 18, 19, 20]. To solve various class of equilibrium problems
different useful iterative results have been introduced; see for examples
[1, 2, 3, 4, 7, 9, 10, 12, 15, 17, 18, 19, 20] and references therein.

Now we consider following generalized equilibrium problems: For each
i = 1, 2, ..., N , let Mi : E × E → R be a bifunction and ai ∈ (0, 1) with
NP
i=1

ai = 1. Consider a mapping
NP
i=1

aiMi : E × E → R. The generalized

equilibrium problems (for short, GEP) is of finding u ∈ E such that

³ NX
i=1

aiMi

´
(u, v) ≥ 0, ∀v ∈ E. (1.3)

It has been introduced by Suwannaut and Kangtunyakarn [17] and later on
GEP (1.3) further generalized Bnouhachem [1] and Kazmi et al. [6].

Generalized equilibrium problem GEP (1.3) solutions set is denoted by

EP
³ NP
i=1

aiMi

´
, i.e.,

EP
³ NX
i=1

aiMi

´
=
n
u ∈ E :

³ NX
i=1

aiMi

´
(u, v) ≥ 0, ∀v ∈ E

o
. (1.4)
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Convergence analysis for combination of equilibrium problems... 645

For each i = 1, 2, ..., N we have Mi = M , above problem reduces to
EP (1.1).

Let the Hausdorff metric defined on the family of compact subsets
CO(E) is given by

H(U, V ) = max
n
sup
u∈U

d(u, V ), sup
v∈V

d(v, U)
o
, for all U,V ∈ CO(E),

where d(u, V ) = inf
b∈V

ku − bk. An element p ∈ E is called a fixed point of

T : E → E (resp. T : E → CO(E)) if p = Tp (resp. p ∈ Tp). F (T ) is the
set of all fixed points of T .

Mann [13], in 1953, introduced and studied the iterative sequence {un}
which is given by

un+1 = αnun + (1− αn)Tun, (1.5)

where u0 ∈ E is arbitrarily chosen and real sequence {αn} ∈ [0, 1]. Mann’s
iterative method (1.5) is most extensively explored and successful method
which is capable in constructing and handling nonexpansive mapping’s fixed
points. Recently, many authors extensively investigated and studied non-
expansive mappings by using various modified Mann’s iterative methods.
In 2003, Nakajo and Takahashi [14] studied a modified Mann’s iterative
method where the sequence {un} is generated by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1 ∈ E,
vn = αnun + (1− αn)Tun, (1.6)
En = {z ∈ E : kvn − zk ≤ kun − zk},
Kn = {z ∈ E : hu1 − un, z − uni ≤ 0},
un+1 = PEn∩Knu1, n ≥ 1,

{αn} ⊂ (0, 1). Nakajo and Takahashi shown that above sequence converges
strongly to PF (T )x1, where PF (T ) is projection of metric on F (T ).

For finding a common solutions of EP(1.1)and the set of fixed points
problems, in 2007, Tada and Takahashi [19], proposed the following scheme
in H : Given x1 = x ∈ H, the sequences {xn} and {un} generated by the
scheme⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

un ∈ E such that M(un, y) +
1
rn
hy − un, un − xni ≥ 0, ∀y ∈ E,

yn = αnxn + (1− αn)Tun, (1.7)
En = {z ∈ H : kyn − zk ≤ kxn − zk},
Kn = {z ∈ H : hx1 − xn, z − xni ≤ 0},
xn+1 = PEn∩Knx1, n ≥ 1,
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646 S. A. Khan, K. R. Kazmi, W. Cholamjiak and H. Dutta

{αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfies lim inf
n→∞

rn > 0. Then {xn}
converges strongly to PΩx1, where Ω := EP (G) ∩ F (T ).

Kohsaka and Takahashi [11], in 2008, introduced a mapping T : E → E
known as nonspreading if

2kTu− Tvk2 ≤ kTu− vk2 + kTv − uk2, for all u, v ∈ E.

Inspired by Iemoto et al. [5] and Liu [12], recently, Suantai et al. [15]
proposed generalized k-nonspreading set-valued mappings by using Haus-
dorff metric. T : E → CO(E) is a k-nonspreading set-valued mapping if for
k > 0

H(Tu, Tv)2 ≤ k
³
d(Tu, v)2 + d(u, Tv)2

´
, for all u, v ∈ E. (1.8)

We can easily observe that for all u ∈ E, k ∈ (0, 1) and p ∈ F (T ), (1.8)
implies

H(Tu, Tp) ≤
s

k

1− k
ku− pk. (1.9)

In particular, if T is a 1
2 -nonspreading and F (T ) 6= ∅, then T is quasi-

nonexpansive. To find a common solution of the split equilibrium problem
and the fixed point problem for a 1

2 -nonspreading set-valued mapping in
Hilbert spaces, Suantai et al. [15] established a weak convergence result.

It is well known that strong convergence behaviour of iteration is more
desirable than weak convergence, therefore in this paper, we propose shrink-
ing projection hybrid method for finding a common solution of the set of
GEP (1.3), a combination of CQ-method and shrinking projection method
and the set of fixed points of a k-nonspreading set-valued mapping with
k ∈ (0, 12 ], which is more general than

1
2 -nonspreading set-valued mapping

and we prove a strong convergence result. Finally by giving an numerical
example we have verified that our proposed iterative method is more faster
and effective than the results given in [6, 14, 15, 16, 17, 19].

2. Preliminaries

Now, we give some basic definitions and results before proving our main
result.

Lemma 2.1 For u, v ∈ H and α ∈ [0, 1], we have:
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Convergence analysis for combination of equilibrium problems... 647

(i) kαu+ (1− α)vk2 = αkuk2 + (1− α)kvk2 − α(1− α)ku− vk2;

(ii) ku+ vk2 ≤ kuk2 + 2hv, u+ vi;

(iii) For a sequence {un} which converges weakly to z ∈ H, then

lim sup
n→∞

kun−vk2 = lim sup
n→∞

kun−zk2+kz−vk2.

Lemma 2.2 Let H be a Hilbert space and E be a closed, convex subset of
H and let PE be the metric projection of H onto E. Let u ∈ H and z ∈ E.
Then z = PEu if and only if

hu− z, v − zi ≤ 0, ∀v ∈ E.

Condition (A) A set-valued mapping T : E → CO(E) is said to satisfy
Condition (A), if kx− pk = d(x, Tp), for all x ∈ H and p ∈ F (T ).

Lemma 2.3 Let H be a Hilbert space and E be a closed, convex subset
of H. Let T : E → CO(E) be a k-nonspreading set-valued mapping with
k ∈ (0, 12 ] and F (T ) 6= ∅, then F (T ) is closed. Also F (T ) is convex, if T
satisfies Condition (A).

Proof. Let un → u as n→∞, then it follows that

d(u, Tu) ≤ ku− unk+ d(un, Tu) ≤ ku− unk+H(Tun, Tu)

≤ ku− unk+
s

k

1− k

°°°un − u
°°°,

which implies d(u, Tu) = 0 as n→∞. Therefore u ∈ F (T ).

Now, let x = sx1 + (1− s)x2, where x1, x2 ∈ F (T ) and s ∈ (0, 1). Let
w ∈ Tp. It follows from (1.8) and Lemma 2.1 that

kx− wk2 = ks(w − x1) + (1− s)(w − x2)k2

= skw − x1k2 + (1− s)kw − x2k2 − s(1− s)kx1 − x2k2

= sd(w, Tx1)
2 + (1− s)d(w, Tx2)

2 − s(1− s)kx1 − x2k2

≤ sH(Tx, Tx1)
2 + (1− s)H(Tx, Tx2)

2 − s(1− s)kx1 − x2k2
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648 S. A. Khan, K. R. Kazmi, W. Cholamjiak and H. Dutta

≤ θ[skx− x1k2 + (1− s)kx− x2k2]− s(1− s)kx1 − x2k2

= s(1− s)2kx1−x2k2+(1− s)s2kx1−x2k2− s(1− s)kx1−x2k2

= 0,

where θ =
q

k
1−k < 1 and hence x = w. Therefore, x ∈ F (T ). This

completes the proof.

Lemma 2.4 [15] Let Let H be a Hilbert space and E be a closed, convex
subset of H. Let T : E → CO(E) be a k-nonspreading set-valued mapping
such that k ∈ (0, 12 ]. If u, v ∈ E and a ∈ Tu, then there exists b ∈ Tv such
that

ka− bk2 ≤ H(Tu, Tv)2 ≤ k

1− k

³
ku− vk2 + 2hu− a, v − bi

´
.

Lemma 2.5 [15] Let H be a Hilbert space and E be a closed, convex subset
of H. Let T : E → CO(E) be a k-nonspreading set-valued mapping such
that k ∈ (0, 12 ]. Let {xn} be a sequence in E which converges weakly to p
and lim

n→∞
kxn − ynk = 0 for some yn ∈ Txn. Then p ∈ Tp.

Theorem 2.1 [2] Let M : E × E → R is a mapping with M(u, u) =
0, ∀u ∈ E. If M is monotone, upper hemicontinuous and for each u ∈ E
fixed, the function v → M(u, v) is convex and lower semicontinuous, then
for fixed r > 0 and z ∈ E, there exists a nonempty compact convex subset
K of H and u ∈ E ∩K such that

M(v, u) +
1

r
hv − u, u− zi < 0, ∀v ∈ E\K.

Lemma 2.6 [4] Let for each u ∈ H and r > 0, a mapping Tr : H → E is
given by

Tr(u) =

½
z ∈ E : M(z, v)+

1

r
hv−z, v−ui ≥ 0, ∀v ∈ E

¾
, u ∈ H .

If M : E ×E → R satisfies Theorem 2.1., then the following hold:

(i) Tr is nonempty and firmly nonexpansive, i.e., for any u, v ∈ H,

kTru−Trvk2 ≤ hTru−Trv, u−vi;
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Convergence analysis for combination of equilibrium problems... 649

(ii) F (Tr) = EP (M) and EP (M) is convex and closed.

Lemma 2.7 [17] Let H be a Hilbert space and E be a closed, convex subset
of H. For each i ∈ N , let a mapping Mi : E×E → R follows Theorem 2.1

with
NT
i=1

EP (Mi) 6= ∅.
Then

EP
³ NX
i=1

aiMi

´
=

N\
i=1

EP (Mi),

where ai ∈ (0, 1) for i = 1, 2, ...,N and
NP
i=1

ai = 1.

Example 2.1 Let

M1(u, v) =
1

2
(u− 1)(5v2 − u2 − 4uv),

M2(u, v) = (u− 1)(v2 − u2),

M3(u, v) = (u− 1)(uv + v2 − 2u2), ∀u, v ∈ R,
where Mi : R×R→ R for i = 1, 2, 3. It can be seen that Mi(u, v) satisfies

Theorem 2.1 for each i and
3T

i=1
EP (Mi) = {0, 1}.

If we take a1 =
1
4 , a2 =

1
12 and a3 =

2
3 , then

3X
i=1

aiMi(u, v) =
1

24
(u− 1)(4uv + 33v2 − 37u2),

which yields EP
³ NP
i=1

aiMi

´
= {0, 1}.

Remark 2.1 [17] From Lemma 2.6, we obtain

F (T

P
r ) = EP

³ NX
i=1

aiMi

´
=

N\
i=1

EP (Mi),

where

T

P
r (u) =

½
z ∈ E :

³ NX
i=1

aiMi

´
(z, v)+

1

r
hv−z, z−ui ≥ 0, ∀v ∈ E

¾
,

and ai ∈ (0, 1), for each i and
NP
i=1

ai = 1.
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3. Main Result

Now we give our main Theorem of finding strong convergence result for
common solutions of GEP (1.3) and the fixed points of a k-nonspreading
set-valued mapping.

Theorem 3.1 Let H be a Hilbert space and E be a closed, convex subset
of H. For each i ∈ N , suppose Mi : E×E → R be a bi mapping satisfying
Theorem 2.1. Let T : E → CO(E) be a k-nonspreading set-valued mapping

with k ∈ (0, 12 ]. Assume Ω =
NT
i=1

EP (Mi) ∩ F (T ) 6= ∅. For given initial
point x1 ∈ H with K1 = E, let {un}, {yn} and {xn} are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

un ∈ E such that
NP
i=1

aiMi(un, y) +
1
rn
hy − un, un − xni ≥ 0, ∀y ∈ E,

yn ∈ αnun + (1− αn)Tun, (3.1)
En = {z ∈ E : kyn − zk ≤ kxn − zk},
Kn = {z ∈ Kn−1 : hx1 − xn, z − xni ≤ 0}, n ≥ 2,
xn+1 = PEn∩Knx1, n ≥ 1,

If T satisfies Condition (A) and {rn} ⊂ (0,∞) satisfies lim inf
n→∞

rn > 0

with {αn} ⊂ (0, 1), then {xn} converges strongly to PΩx1.

Proof. The proof can be divided into the following steps.

Step 1. We claim that {xn} is well defined.
It can easily seen from the definition that En is closed and Kn is closed
and convex for every n ∈ N. We claim that En is convex. Since En = {z ∈
E : kyn − zk ≤ kxn − zk} which can be given as

En = {z ∈ E : kyn − xnk2 + 2hyn − xn, xn − zi ≤ 0},

which implies that En is convex. Therefore, En ∩Kn is closed and convex
subset of H for each n ∈ N. Hence PEn∩Knx1 is well defined and as a result
{xn} is well defined.

From Lemma 2.6 and Remark 2.1 it can be concluded that EP (
NP
i=1

aiMi) is

closed and convex. Further from Lemma 2.3, it can be concluded that F (T )
is closed and convex. Consequently, Ω is closed and convex and therefore
PΩx1 is well defined.
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Convergence analysis for combination of equilibrium problems... 651

Step 2. We claim that Ω ⊂ En ∩Kn.

Let p ∈
NT
i=1

EP (Mi)∩F (T ), then by using Lemma 2.6, we have un = T

P
rn xn

and

kun − pk = kT
P
rn xn − T

P
rn pk ≤ kxn − pk

(3.2)
for all n ∈ N. Now we have

kyn − pk = kαnun + (1− αn)zn − pk

≤ αnkun − pk+ (1− αn)kzn − pk
= αnkun − pk+ (1− αn)d(zn, Tp)

≤ αnkun − pk+ (1− αn)H(Tun, Tp)

≤ αnkun − pk+ (1− αn)θkun − pk
≤ kun − pk, (3.3)

for all zn ∈ Tun, where θ =
q

k
1−k < 1. So, we have p ∈ En and hence

N\
i=1

EP (Mi)∩F (T ) ⊂ En, for all n ∈ N. (3.4)

Further, we claim that

N\
i=1

EP (Mi)∩F (T ) ⊂ En∩Kn, for all n ∈ N. (3.5)

It can be proved by using induction. For n = 1, we have
NT
i=1

EP (Mi) ∩

F (T ) ⊂ E1 and K1 = H, we get
NT
i=1

EP (Mi) ∩ F (T ) ⊂ E1 ∩ K1. Let

NT
i=1

EP (Mi) ∩ F (T ) ⊂ En ∩Kn for some n. Since xn+1 = PEn∩Knx1, then

xn+1 ∈ En ∩Kn and

hx1 − xn+1, z − xn+1i ≤ 0, for all z ∈ En ∩Kn.

Since
NT
i=1

EP (Mi) ∩ F (T ) ⊂ En ∩Kn, for all z ∈
NT
i=1

EP (Mi) ∩ F (T )

hx1 − xn+1, z − xn+1i ≤ 0,
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652 S. A. Khan, K. R. Kazmi, W. Cholamjiak and H. Dutta

and hence z ∈ Kn+1. So, we get

N\
i=1

EP (Mi) ∩ F (T ) ⊂ Kn+1 for all n ∈N.

By using (3.4) we have

N\
i=1

EP (Mi) ∩ F (T ) ⊂ En+1 ∩Kn+1, for all n ∈ N.

Hence Ω ⊂ En ∩Kn, for all n ∈ N.

Step 3. We claim that lim
n→∞

kxn − x1k exists.
Since nonempty set Ω is closed and convex therefore there exists a unique
v ∈ Ω in H such that v = PΩx1. From xn+1 = PEn∩Knx1, it follows that

kxn+1−x1k ≤ kz−x1k, for all z ∈ En∩Kn and all n ∈N.

Since v ∈ Ω ⊂ En ∩Kn, we have

kxn+1 − x1k ≤ kv − x1k, for all n ∈N.
(3.6)

Therefore, {xn} is bounded. Again (3.2) and (3.3) {un} and {yn} are
bounded.
Since xn = PKnx1 and xn+1 ∈ Kn, for all n, we have

kxn − x1k ≤ kxn+1 − x1k, for all n ∈ N. .

As {xn} is bounded, therefore {kxn − x1k} is nondecreasing and bounded.
Therefore lim

n→∞
kxn − x1k exists.

Step 4. We claim that lim
n→∞

xn = w ∈ E.

Since m > n, therefore from Kn we have Km ⊂ Kn. Since xm = PKmx1 ⊂
Kn and xn = PKnx1, it follows from (2.1) that

kxm − xnk2 ≤ kxm − x1k2 − kxn − x1k2.

Since lim
n→∞

kxn − x1k exists, above inequality gives

lim
n→∞

kxm − xnk = 0, (3.7)
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Convergence analysis for combination of equilibrium problems... 653

therefore {xn} is a Cauchy sequence in E and there exists w ∈ E such that
lim
n→∞

xn = w. Particularly if m = n+ 1, then (3.7) gives

lim
n→∞

kxn − xn+1k = 0. (3.8)

Step 5. We claim that w ∈ F (T ).
As xn+1 ∈ En, therefore

kxn − ynk ≤ kxn − xn+1k+ kxn+1 − ynk ≤ 2kxn − xn+1k.

Since lim
n→∞

kxn − xn+1k = 0, therefore we get

lim
n→∞

kxn − ynk = 0. (3.9)

Since p ∈
NT
i=1

EP (Mi) ∩ F (T ) and T

P
r is firmly nonexpansive, we have

kun−pk2 = kT
P
rn xn−T

P
rn pk2 ≤ hT

P
rn xn−T

P
rn p, xn−pi

= hun − p, xn − pi

=
1

2

n
kun − pk2 + kxn − pk2 − kxn − unk2

o
.

Hence,

kun − pk2 ≤ kxn − pk2 − kxn − unk2.
(3.10)

For zn ∈ Tun, it follows from (3.2) that

kyn − pk2 ≤ αnkun − pk2 + (1− αn)kzn − pk2

≤ αnkxn − pk2 + (1− αn)d(zn, Tp)
2

≤ αnkxn − pk2 + (1− αn)H(Tun, Tp)
2

≤ αnkxn − pk2 + (1− αn)θ
2kun − pk2.

Since α < 1, it follows from (3.10) that

kyn− pk2 ≤ kxn− pk2− (1−αn)θ
2kxn− unk2,
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654 S. A. Khan, K. R. Kazmi, W. Cholamjiak and H. Dutta

which can be written as

(1−αn)θ2kxn−unk2 ≤ kxn−pk2−kyn−pk2.

≤ kxn − ynk(kxn − pk+ kyn − pk). (3.11)

Since (1− αn)θ
2 > 0, it follows from (3.9) and (3.11) that

lim
n→∞

kxn − unk = 0. (3.12)

Since yn ∈ αnun + (1− αn)Tun, then for any zn ∈ Tun we have

(1−αn)kzn−unk = kyn−unk ≤ kyn−xnk+kxn−unk. (3.13)

Since (1− αn) > 0, it follows from (3.9), (3.12) and (3.13) that

lim
n→∞

kzn − unk = 0. (3.14)

It follows from (3.12) and (3.14) that the sequences {xn}, {un} and {zn}
all have the same asymptotic behaviour and hence un → w and zn → w as
n→∞. Hence, by Lemma 2.5, we have w ∈ F (T ).

Step 6. We claim that w ∈
NT
i=1

EP (Mi).

Since un = T

P
rn xn, we have

NX
i=1

aiMi(un, y) +
1

rn
hy − un, un − xni ≥ 0, ∀y ∈ E.

From monotonicity of Theorem 2.1, above can be written as

1

rn
hy − un, un − xni ≥

NX
i=1

aiMi(y, un), ∀y ∈ E. (3.15)

Since lim inf
n→∞

rn > 0, there exists r > 0 such that rn > r, ∀n. Hence , it
follows that

lim
n→∞

kun − xnk
rn

< lim
n→∞

kun − xnk
r

= 0. (3.16)

It follows from (3.12), (3.15), (3.16) and Theorem 2.1 that

NX
i=1

aiMi(y,w) ≤ 0, ∀y ∈ E.
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Convergence analysis for combination of equilibrium problems... 655

For s ∈ (0, 1] and y ∈ E, assume ys := sy + (1− s)w. For each y ∈ E, we

have ys ∈ E and therefore
NP
i=1

aiMi(ys, w) ≤ 0. Now we have

0 =
NX
i=1

aiMi(ys, ys)

=
NX
i=1

aiMi(ys, sy + (1− s)w)

≤ s
NX
i=1

aiMi(ys, y) + (1− s)
NX
i=1

aiMi(ys, w))

≤ s
NX
i=1

aiMi(ys, y).

After dividing by s, it follows that

NX
i=1

aiMi(ty+(1−t)w, y) ≥ 0 ∀y ∈ E.

From Theorem 2.1 and taking t ↓ 0, we have

NX
i=1

aiMi(w, y) ≥ 0 ∀y ∈ E.

Which implies, w ∈ EP (
NP
i=1

aiMi). By using Lemma 2.7,

EP (
NX
i=1

aiMi) =
N\
i=1

EP (Mi).

Therefore, we obtain w ∈
NT
i=1

EP (Mi) ∩ F (T ).

Step 7. We claim that w = PΩx1.

Since xn = PKnx1 and w ∈
NT
i=1

EP (Mi) ∩ F (T ) ⊂ Kn, we have

hx1 − xn, xn − pi ≥ 0, ∀p ∈ Kn. (3.17)
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656 S. A. Khan, K. R. Kazmi, W. Cholamjiak and H. Dutta

Applying n→∞ in (3.17), we have

hx1 −w,w − pi ≥ 0, ∀p ∈ Kn.

Since Ω ⊂ Kn, we have

hx1 − w,w − pi ≥ 0, ∀p ∈ Ω,
which gives w = PΩx1.

Based on Theorem 3.1, we have following consequences.

Corollary 3.1 Let H be a Hilbert space and E be a closed, convex subset
of H. Let M : E × E → R satisfying Theorem 2.1 such that EP (M) 6= ∅.
For a given initial point x1 ∈ H with K1 = E, let {un} and {xn} is given
by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
un ∈ E such that M(un, y) +

1
rn
hy − un, un − xni ≥ 0, ∀y ∈ E,

En = {z ∈ E : kyn − zk ≤ kxn − zk},
Kn = {z ∈ Kn−1 : hx1 − xn, z − xni ≤ 0}, n ≥ 2,
xn+1 = PEn∩Knx1, n ≥ 1,

where {rn} ⊂ (0,∞) satisfies lim inf
n→∞

rn > 0. Then {xn} converges strongly
to PEP (M)x1.

Proof. By takingMi =M, for each i and T = I with αn = 1, the Theorem
3.1, reduces to Corollary 3.1.

Corollary 3.2 Let H be a Hilbert space and E be a closed, convex subset
of H. Let T : E → CO(E) be a k-nonspreading set-valued mapping with
k ∈ (0, 12 ] such that F (T ) 6= ∅. For a given initial point x1 ∈ H with
K1 = E, let the sequences {un}, {yn} and {xn} are given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

un ∈ E such that hy − un, un − xni ≥ 0, ∀y ∈ E,
yn ∈ αnun + (1− αn)Tun,
En = {z ∈ E : kyn − zk ≤ kxn − zk},
Kn = {z ∈ Kn−1 : hx1 − xn, z − xni ≤ 0}, n ≥ 2,
xn+1 = PEn∩Knx1, n ≥ 1,

where {αn} ⊂ (0, 1). If T satisfies condition (A), then {xn} converges
strongly to PF (T )x1.

Proof. By taking Mi = 0, for each i with rn = 1 the Theorem 3.1 reduces
to Corollary 3.2.
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4. Numerical Illustrations

Now, an example to understand and verify the convergence nature of main
result 3.1 is given as follows:

Example 4.1 Let Mi : [1, 4]× [1, 4]→ R be defined by

Mi(x, y) = i(y2 − 2x2 + xy + 3x− 3y), for all x, y ∈ [1, 4],

for each i ∈ N and R = H,E = [1, 4]. Further, let ai =
4
5i
+ 1

N5N
such that

NP
i=1

ai = 1, where i ∈ N . Now

NX
i=1

aiMi(x, y) =
NX
i=1

µ
4

5i
+

1

N5N

¶
i(y2−2x2+xy+3x−3y) = Ψ(y2−2x2+xy+3x−3y),

where Ψ =
NP
i=1

µ
4
5i
+ 1

N5N

¶
i. It can be easily seen that

NP
i=1

aiMi satisfies

Theorem 3.1 and

EP
³ NX
i=1

aiMi

´
=

N\
i=1

EP (Mi) = {1}.

Let be a mapping T : E → CO(E) by

Tx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{1}, x ∈ [1, 3]

[ x
x+1 , 1], x ∈ (3, 4].

Now, we show that T is 1
2 -nonspreading set-valued mapping. In fact, we

have the following cases:
Case 1: if x, y ∈ [1, 3], then H(Tx, Ty) = 0.
Case 2: if x ∈ [1, 3] and y ∈ (3, 4], then

2H(Tx, Ty)2 = 2
³
1− y

y + 1

´2
< 2 < d(Tx, y)2+d(x, Ty)2.

Case 3: if x, y ∈ (3, 4], then

2H(Tx, Ty)2 = 2
³ x

x+ 1
− y

y + 1

´2
< 2 < d(Tx, y)2+d(x, Ty)2,
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which shows that T is 12 -nonspreading set-valued mapping.

It is easy to see that
NT
i=1

EP (Mi) ∩ F (T ) = {1}.

Step 1. Find {un} in E = [1, 4].
For rn > 0, we have {xn} and {un} in E such that

NX
i=1

aiMi(un, y)+
1

rn
hy−un, un−xni ≥ 0, ∀y ∈ E,

it can be written as

S(y) := Ψrny
2+(Ψunrn+un−xn−3Ψrn)y+3Ψrnun−u2n−2Ψrnu2n+unxn ≥ 0, ∀y ∈ E.

As S(y) = ay2 + by + c ≥ 0, for all y ∈ E then b2 − 4ac = (un − 3Ψrn +
3Ψrnun − xn)

2 ≤ 0. Therefore, (un − 3Ψrn + 3Ψrnun − xn)
2 = 0 which

implies that

un =
xn + 3Ψrn
1 + 3Ψrn

.

Therefore, un = T

P
rn xn =

xn+3Ψrn
1+3Ψrn

for each rn > 0.

Step 2. Find yn ∈ αnun + (1− αn)Tun.
By choosing αn = rn =

n
100n+1 , we have yn ∈

n
100n+1un + (1−

n
100n+1)zn,

where

zn ∈

⎧⎪⎨⎪⎩
{1}, un ∈ [1, 3]

[ un
un+1

, 1], un ∈ (3, 4].
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