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1. Introduction

Let Ω be a bounded open domain in Rn, n ≥ 2 and 0 < T < ∞ is
given; we recall that ΩT is defined as the cylinder Ω × (0;T ) this part is
devoted to establish Leray-lions existence results for parabolic problems in
divergence form of type (QPS)(ω). In this paper, the aims of this text is
to prove existence results under relaxed monotonicity, in particular under
strict quasi-monotonicity. The main technical tool we advocate and use
throughout the proof are Young measures. By applying a Galerkin schema,
we obtain easily an approximating sequence uk. The Ball’s theorem and
especially the resulting tools mode available by Hungerbühler [9] to partial
differential equation theory give then a sufficient control on the gradient
approximating sequence Duk to pass to the limit. This method is used by
Dolzmann, Muller and Mainly by Hungurbühler to get the existence of a
weak solution for the quasi-linear elliptic system and quasi-linear parabolic.
Among the authors who have studied the existence of a solution of parabolic
equations, we find Dominique Blandand and Redwane Hicham [5]. This
paper can be seen as generalization of Hungurbühler. This problem was
made by, Hungerbühler N, see [9] in a space of sobolev without weight,
with p ∈] 2nn+2 ; ∞[.

2. functional framework

Definition 2.1. : Let X be a Banach space and 0 < T < ∞, the space
Lp(0, T,X) with 1 ≤ p ≤ ∞ consists of all measurable functions (identified
modulo the relation ”equal almost everywhere”) u : (0;T )→ X for which

kukLp(0,T,X) =
ÃZ T

0
ku(t)kpXdt

! 1
p

, if p ≥ 1;

kukLp(0,T,X) = ess sup
t∈(0;T )

ku(t)kX , if p =∞ holds.

Again, equipped with the norm k.kLp(0,T,X); Lp(0, T,X) is a Banach
space. In the special case where p = 2 and X is a Hilbert space L2(0, T,X)

equipped with the inner product hu, vi =
Z T

0
hu(t), v(t)iXdt; for all u; v ∈

L2(0, T,X) is a Hilbert space, Moreover; if 1 ≤ q ≤ ∞ the following
Hölder inequality holds for all v ∈ Lp0(0, T,X 0) and all u ∈ Lp(0, T,X).Z T

0
| hu(t), v(t)i | dt ≤k v kLp0(0,T,X0) . k u kLp(0,T,X)
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Existence of solution for some quasilinear parabolic systems with... 551

and Lq(0, T,X) → Lp(0, T, Y ), for all X,Y such that X → Y .
Ck([0;T ],X) are dense in Lp(0, T,X) as p ≤ ∞.
Ck([0;T ],X) → Lp(0, T,X) is continuous. If 1 ≤ p < ∞ and X is sepa-
rable; so is Lp(0, T,X). If 1 < p < ∞, Lp(0, T,X) is uniformly convex in
the case where X is uniformly convex, and, reflexive, separable when X is
reflexive and separable Banach space.

Definition 2.2. (Lebesgues and Sobolev spaces with weight): For 1 ≤ p ≤
∞ and k ∈ N; we consider the weight spaces:

Lp(Ω, ω0,R
m) ≡

(
u = u(x); ujω

1
p

0j ∈ Lp(Ω,Rm)

)

with, ω0 = (ω0j)1≤j≤m.

W k,p(Ω, ωα,R
m) ≡

(
u ∈ Lp(Ω, ωα,R

m); Dαu ∈ Lp(Ω, ωα,R
m); for 0 ≤| α |≤ k

)
.

Dαu is the weak derivative of u.
The weighted functions ωα defined by:

ωα =

⎧⎪⎨⎪⎩
ω0 = (ω0j)1≤j≤m if | α |= 0,

ω = (ωij)1≤i≤n; 1≤j≤m if | α |= 1,
arbitrary weight functions if 2 ≤| α |≤ k.

And ω∗ij = w1−p
0

ij is the conjugate of ωij . We defined the inner product

in L2(Ω, ω0,R
m) by: hu, vi2,ω0 =

mX
j=1

Z
Ω
((w0j)

1
2uj)((w0j)

1
2 vj)dx,

for all u; v in L2(Ω, ω0,R
m). And for all u; v inW r,2

0 (Ω, ωα,R
m) we denotes

the inner product by:

hu, viW r,2(ωα) = hu, vi2,ω0 +
n;mX
i;j=1

Z
Ω
(w

1
2
ijDiju)(w

1
2
ijDijv)dx

+
X

2≤|α|≤r

Z
Ω
(w

1
2
αD

αu)(w
1
2
αD

αv)dx.

We denoteW k,p
0 (Ω, ωα,R

m) the closure of C∞0 (Ω,R
m) inW k,p(Ω, ωα,R

m),
where the norm is k.kk,p,ωα is given by:
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552 Elhoussine Azroul, Abdelkrim Barbara and El Houcine Rami

kukk,p,ωα =
Ã X
0≤|α|≤k

k Dαu kp ωα
! 1

p

.

We have:

W k,p
0 (Ω, ωα,R

m) →W k,p(Ω, ωα,R
m) → Lp(Ω, ω0,R

m).

(W k,p
0 (Ω, ωα,R

m))
0 ≡W−k,p0(Ω, ω∗α,R

m).
Mm×n denotes the space of real m×n matrices equipped with inner prod-
uct M : N = MijNij ( we use the usual summation convention) and the
tensor product a ⊗ b of two vectors a, b ∈ Rn is defined to be the matrix
(aibj)i,j=1,...,m.

Definition 2.3. let Ω be a measurable subset of Rn, (µk)k∈N and µ be
a sequence and respectively an element in M(Ω,Rm). we say that (µk)
converges weakly ∗ to µ, which is denoted by µk ∗ µ, if:Z

Ω
fdµk →

Z
Ω
fdµ, for all f ∈ Cc(Ω,R

m).

Theorem 2.1. (Ball) Let Ω be Lebesgue measurable of Rn, let k ⊂ Rm

be closed, and let
uj : Ω → Rm, j ∈ N, be a sequence of Lebesgue measurable functions
satisfying uj → K in measure as j →∞, i.e: given any open neighborhood
U of k in Rm such that:
limj→∞ |{x ∈ Ω : uj(x) 6∈ U}| = 0.
Then there exist a sequences uk of uj and a family ϑx, of positive measure
on Rm, depending measurably on x such that:

• i) k ϑx k=
Z
Ω
dϑx ≤ 1, for a.e. x ∈ Ω.

• ii) Suppϑx ⊂ K, for a.e. x ∈ Ω.

• iii) f(uk) ∗ hϑx, fi =
Z
Rn

f(λ)dϑx(λ), in L
∞(Ω); for each f contin-

uous functions

f : Rn → R satisfying lim
|λ|→∞

f(λ) = 0.

Lemma 2.1. (Fatou) Let F : Ω ×Rm ×Mm×n → R be a carathéodory
functions and uk : Ω → Rm a sequence of measurable functions such that
Duk generates the Young measure ϑx with k ϑx k= 1 for almost every
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554 Elhoussine Azroul, Abdelkrim Barbara and El Houcine Rami

(P1) σ : Ω×]0, T [×Rm ×Mm×n −→ Mm×n is a Carathéodory functions,
i.e:
(x, t) 7−→ σ(x, t, u, F ) is measurable for every (u, F ) ∈ Rm ×Mm×n

and
(u, F ) ∈ Rm ×Mm×n 7−→ σ(x, t, u, F ) is continuous for almost every
(x, t) ∈ ΩT .

(P2) (Coercivity and growth): There exist constants c1, c2, β > 0 and

λ1 ∈ Lp
0
(ΩT ,R

m), λ2 ∈ L1(ΩT ,R
m), λ3 ∈ L(

p
α
)
0
(ΩT ), 0 < α < p,

1 < q <∞, such that, for all 1 ≤ r ≤ n, and 1 ≤ s ≤ m:

|σrs(x, t, u, F )| ≤ βω
1
p
rs[λ1 + c1

mX
j=1

γ
1
p0
j |uj |

q
p0 + c1

X
i,j

ω
1
p0
ij |Fij |p−1]

σ(x, t, u, F ) : F ≥ −λ2(x, t)−
mX
j=1

λ3(x, t)ω
α
p

1j |uj |α + c2
X
i,j

ωij |Fij |p.

(P3) (Monotonicity): σ satisfies one of the following conditions:

• (a) For all (x, t) ∈ ΩT and all u ∈ Rm, the map: F 7→ σ(x, t, u, F )
is a C1- functions and is monotone.

• (b) There exist a function: W : ΩT ×Rm ×Mm×n → R, such
that
σ(x, t, u, F ) = ∂W

∂F (x, t, u, F ), and F 7→ W (x, t, u, F ) is convex
and C1- function.

• (c) For all (x, t) ∈ ΩT and all u ∈ Rm, the map: F 7→ σ(x, t, u, F )
is strictly monotone .

• (d) σ is strictly -p quasi monotone in F i.e:Z
Mm×n

(σ(x, t, u, λ)− σ(x, t, u, λ) : (λ− λ)dϑ(λ) > 0

(P0) (The Hardy-Type inequalities); There exist c > 0, one weighted
function
γ = (γj)1≤j≤m, and the parameter 1 < q, such that:⎛⎝ mX

j=1

Z
Ω
γj | uj |q dx

⎞⎠ 1
q

≤ c

⎛⎝X
i,j

Z
Ω
wij | Diju |p dx

⎞⎠ 1
p

and the expression

⎛⎝X
i,j

Z
Ω
wij | Diju |p dx

⎞⎠ 1
p

is a norm equiv-

alent to the norm k.k1;p:ω in W 1,p
0 (Ω, ω,Rm).
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Existence of solution for some quasilinear parabolic systems with... 555

(F0) (continuity) f : ΩT×Rn → Rm is a Carathéodory function, i.e.(x, t) 7→
f(x, t, u) is measurable for every u ∈ Rn and u 7→ f(x, t, u) is contin-
uous for almost every (x, t) ∈ ΩT .

(F1) (Growth) There exist 0 < γ < p − 1, b1 ∈ Lp
0
(ΩT ) and b2 ∈

Lγ∓(0, T, L
n
p (Ω)), such that:

| fk(x, t, u) |≤ b1ω
1
p

0k +
Pm

j=1 b2|uj |γω
p−1
p∗
0j ω

1
p∗
0k : k = 1; 2; ....;m.

γ∓ = ( p
p−1−γ )

0
is the Hölder conjugate of p

γ+1 .

(G0) (continuity)g : ΩT ×Rn →Mm×n is a Carathéodory function.

(G1) (Growth) There exist 0 < η < p − 1, b4 ∈ Lp
0
(ΩT ) and b5 ∈

L∞(0, T, L
n

p−1 (Ω)), such that:

| grs(x, t, u) |≤ b4ω
1
p
rs +

Pm
j=1 b5|uj |ηω

n−p+1
np0

0j ω
n−p+1
np

rs

Remark 3.1.

(P1) ( Carathéodory condition) ensures that σ(x, t, u(x, t), U(x, t)) is mea-
surable on ∂ΩT for measurable functions:
u : ΩT → Rm

U : ΩT →Mm×n.
The growth condition and coercivity

(P2) is standard it is used in the construction of approximate solutions by
a Galerkin method and when we pass to the limit. Although the strict
monotonicity condition (c) in (P3) ensure existence of a weak solution by
standard method see e-g [11], the main point is that we do not require strict
monotonicity or monotonicity in the variables (u,F ) in (a), (b) and (d) as
it is usually assumed in previous works see-e-g [3], [11],[1]. Under these
mild assumptions and using again Young measures, Hungerbühler shows in
[9] that initial and boundary value problem (QPS)ω has a weak solution
u ∈ Lp(0, T,W 1,p

0 (Ω, ω,Rm) in following sense.

Definition 3.1. We say that: u : ΩT → Rm is weak solutions of:

(QPS)ω

⎧⎪⎨⎪⎩
∂tu− divσ(x, t, u,Du) = v(x, t) + f(x, t, u) + divg(x, t, u) in ΩT

u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) on Ω

where v ∈ Lp0(0, T,W−1,p0
0 (Ω, ω∗,Rm)) if:
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556 Elhoussine Azroul, Abdelkrim Barbara and El Houcine Rami

• (i) u belongs to L1(0, T,W 1,1
0 (Ω, ω,Rm)).

• (ii) σ(., u(.),Du(.)) belongs to L1(ΩT ,M
m×n).

• (iii) The initial condition u(x, 0) = u0(x) on Ω is fulfilled.

• (iv) The equation:P
j

Z
ΩT

∂tu
j .ϕj(x, t)ω0jdxdt+

Z
ΩT

σ(x, t, u,Du) : Dϕ(x, t)dxdt = hv, ϕi+Z
ΩT

f(x, t, u).ϕ(x, t)dxdt−
Z
ΩT

g(x, t, u) : Dϕ(x, t)dxdt,

holds for every function ϕ ∈ C∞(ΩT ,R
m) which is zero in a neigh-

borhood of
(∂Ω×]0, T [) ∪ (Ω× {0;T}).

Remark 3.2. • (a) In definition the boundary condition u = 0 on
(∂Ω×]0, T [) is interpreted in the sense of (i) .

• (b) The condition (iv) is understood in the sense that the Galerkin
approximations converge to u0 in L2(Ω, ω0).

Theorem 3.1. If p ∈] 2nn+2 ,∞[ and if σ satisfies the conditions (P1)− (P3)
then the parabolic system (QPS)ω has a weak solution u ∈ Lp(0, T,W 1,p

0 (Ω, ω,Rm))
for every v ∈ Lp0(0, T,W 1,p

0 (Ω, ω∗,Rm)) every f satisfying (F0) − (F1), g
satisfying (G0)− (G1) and (n ≥ 2).

4. A first parabolic div-curl inequality

We state here the first set of hypothesis:

• (A1): The sequence (uk) is uniformly bounded in Lp(0, T,W 1,p
0 (Ω, ω,Rm))

for some
p ∈] 2nn+2 ; ∞[ and hence (Bay the Elberlem Suljan theorem: see [2].

A subsequence converges weakly in Lp(0, T,W 1,p
0 (Ω, ω,Rm)) to an

element denoted by u.

• (A2): The sequence ∂tuk is uniformly bounded in Lp0(0, T, (W r,2
0 (Ω, ω,Rm))

0
)

for some 2 < r < p∗ if p < n and 2 < r <∞ if p ≥ n.

• (A3): σ : Ω×]0, T [×Rm×Mm×n −→Mm×n is a Carathéodory func-
tion.
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558 Elhoussine Azroul, Abdelkrim Barbara and El Houcine Rami

and B1 ≡ (W r,2
0 (Ω, ωα,R

m))
0
. Since we assumed that p ∈] 2nn+2 ; ∞[, we

have the following chain of continuous injections:

B0 →i B →i0 L2(Ω, ω0,R
m)) ∼= (L2(Ω, ω0,Rm))

0 →i1 B1;(4.2)

here (L2(Ω, ω0,R
m))

0 ≡ (L2(Ω, ω0,R
m)) is the canonical isomorphism θ

of the Hilbert space L2(Ω, ω0,R
m) and its, for ı : B0 → B we take

simply the injection mapping, and for j : B → B1 we take the con-
catenation of injections and the canonical isomorphism given bay 4.2 i.e:
j = ı1 o θ o ı0. Then (uk) is a bounded sequence in Lp(0, T,B0) by (A1).
Next observe that (∂tuk) or rather (∂t j o i o uk) is a bounded sequence in
(Lp0(0, T, (W r,2

0 (Ω, ωα,R
m))

0
)) by (A2). Hence, from 4.1, we may conclude

that there exists a subsequence, which we still denote by uk, having the
property that the second part of 4.1 hold. Notice that in order to have
the strong convergence simultaneously for all r < p∗, the usual diagonal
sequence procedure applies finally, as p > 1, the sequence converges in
measure see, e-g.[7] (proposition 2-29). Which end the proof.

Lemma 4.2. (div-curl inequality) Suppose (A1 − A6) and assume ( after
passing to a suitable subsequence if necessary) that (Duk) generates the
young measure ϑ(x,t). Then the following inequality hold:

Z
ΩT

Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)dxdt ≤
Z
ΩT

Z
Mm×n

σ(x, t, u, λ) : Dudϑ(x,t)(λ)dxdt

(4.3)

Proof of lemma 4.2 Let us consider the sequence:

Ik =

Ã
σ(x, t, uk,Duk) : (Duk −Du)

!
=

Ã
σk : Duk

!
−
Ã
σk : Du

!
.

By conditions (A4) and (A5), the negative part I
−
k of Ik is equiintegrable.

Hence, in view of (A3), we may use the (Fatou - Lemma ) which gives that

X = lim inf
k→∞

(

Z
ΩT

Ikdxdt ≥
Z
ΩT

Z
Mm×n

σ(x, t, u, λ) : (λ−Du)dϑ(x,t)(λ)dxdt

X = lim inf
k→∞

(

Z
ΩT

σk : (Duk −Dvk)dxdt+

Z
ΩT

σk : (Dvk −Du)dxdt)

= lim inf
k→∞

(

Z
ΩT

σk : (Dvk − Du)dxdt ≤ c. lim inf
k→∞

k σk kLp0 (ΩT ,ω∗)k vk −
u kLp(0,T,W1,p

0 (Ω,ω,Rm))

= 0 by the Hölder inequality and (A4). Thus the conclusion follows.
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5. A second parabolic div-curl inequality

We state here the second set of conditions:

• (c1) : uk ∈ L1(0, T,W 1,p
0 (Ω, ω,Rm)) for all; k ∈ N, and there exists

some c > 0 and ρ > 0 such that:

sup
k

X
ij

Z
ΩT

|Dijuk|ρωijdxdt ≤ c.

• (c2): The sequence uk converges in measure to some function u and
u(., t) is almost everywhere approximately differentiable a.e. t ∈]0, T [.

• (c3) : σ : ΩT ×Rm ×Mm×n −→Mm×n and
τ [e] : ΩT ×Rm ×Mm×n −→Mm×n; e ∈ N are Carathéodory condi-
tions.

• (c4) : σ and τ [e], satisfy all the angle structure conditions or satisfies
all the sign structure conditions:
(Angle condition) For all (x, t) ∈ ΩT , u ∈ Rm and M ;F ∈ Mm×n,
with M of the form Id − a ⊗ a where a ∈ Rm satisfies | a |≤ 1;
σ(x, t, u, F ) :MF ≥ 0, for all matrix.
M ∈Mm×m of the form M = Id− a⊗ a with |a| ≤ 1.
(The sign condition ) For all (x, t) ∈ ΩT , u ∈ Rm and F ∈Mm×n, we
have
σj(x, t, u, F ) : Fj ≥ 0, for all 1 ≤ j ≤ m with
Fj and σj are the cologne j of matrix F and σ.(this conditions is
verifies for τ [e] )

• (c5): The sequence σk(x, t) = σ(x, t, uk,Duk) is equiintegrable.

• (c6): The sequence τk(x, t) ≡ τ [k](x, t, uk,Duk); and converges weakly
to 0 in the space L1(ΩT ,M

m×n).

• (c7): The sequence gk = −div(σk+g(x, t, uk)+τk)−v−f is bounded
in L1(ΩT ,R

m).

• (c8): Duk ∈ Li
loc(ΩT , ω,M

m×n) and (σk+g(x, t, uk)+τk) ∈ Li
0

loc(ΩT , ω
∗,Mm×n).

for some i; 1 < i <∞.

Lemma 5.1. (Second div-curl inequality) Suppose (C1)−(C2), and assure
( after passing to a suitable subsequence if necessary ) that Duk generates

rvidal
Cuadro de texto
539



560 Elhoussine Azroul, Abdelkrim Barbara and El Houcine Rami

a Young measure ϑ(x,t). Then (after passing to a subsequence), the σk
converges weakly in L1(ΩT ,M

m×n) and the weak limit σ is given by:
σ(x, t) = hϑ(x,t);σ(x, t, u(x, t), .)i, moreover the following inequality holdZ
Mm×n

σ(x, t, u(x, t), λ) : λdϑ(x,t)(λ) ≤ σ(x, t) : apDu(x, t). for a.e. (x, t) ∈
ΩT .

Proof of lemma 5.1 Proof of lemma is a slightly modification of the
corresponding in lemma (6− 2− 1) in [6] pages (54-61).

Remark 5.1. If the sequence Duk is equiintegrable then
Du(x, t) = apDu(x, t) = hϑ(x,t); idi almost everywhere. by the Ball’s theo-
rem.

The parabolic div-curl inequality will be the key ingredient to pass the
limit in the different cases, but we need some additional information on the
Young measure ϑ(x,t) generated by the sequence of the gradients DuK to
exploit lemma (div-curl inequality) these properties are the following:

• (N1): ϑx,t is a probability measure for almost every (x, t) ∈ ΩT .

• (N2): ϑx,t is a homogeneous W 1,P− gradient young measure for al-
most every
(x, t) ∈ ΩT .

• (N3): ϑx,t satisfies < ϑ(x,t), id >= apDu(x, t) almost everywhere in
ΩT .

Note that these properties hold if the condition (A1) is fulfilled .

Lemma 5.2. Assume that the sequence uk satisfies (A1); then the Young
measure ϑ(x,t) generated by the sequence of the gradient Duk satisfies
(N1)− (N3).

Proof of lemma 5.2

Noting that (A1) implies that apDu(x, t) = Du(x, t), follows exactly as
in [8] (prop 4-3). We mention that the properties, also hold if the conditions
(C1) − (C2) and a particular estimate are fulfilled as shown in [4] (lemma
9), with a slight modifications.
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Existence of solution for some quasilinear parabolic systems with... 561

Lemma 5.3. Assume that the sequence (uk) satisfies (C1)− (C2) and
supk∈N

P
i,j

Z
|uk|<R

| Dijuk |ρ ωijdxdt ≤ c, for all R > 0; for some ρ > 1.

Then the Young measure ϑ(x,t) generated by the sequence of the gradients
Duk satisfies (N1)− (N3).

Proof of lemma 5.3 The proof of lemma is a slightly modification of the
corresponding in lemma (11-3-2) in [6]

6. Passage to the limit for σ

Proposition 6.1. Suppose that (A1)−(A6) or (C1)−(C8) hold further as-
sume that the Young measure ϑ(x,t) generated by the gradientsDuk satisfies
(N1)−(N3) and that one of the following conditions holds (a)−(b)−(c)−(d)
then(after passage to a subsequence ) the sequence σk converges weakly in
L1(ΩT ;M

m×n) and the weak limit σ is given by:
σ(x, t) = σ(x, t, u(x, t),Du(x, t)). If (b)− (c) or (d) holds, then:
σ(x, t, uk,Duk)→ σ(x, t, u,Du) in L1(ΩT ;M

m×n)
In case (c) and (d); it follows in addition that Duk → Du in measure and
thus also almost everywhere in ΩT .

Before to prove proposition, we note that by proceeding exactly as in
the elliptic case, we get the analogous result to lemma (6 − 4 − 2) see [6]
and [1].

Lemma 6.1. Suppose that (A1) − (A6) or (C1) − (C8) hold. Further as-
sume that ϑ(x,t) is the Young measure generated by the gradients Duk and
satisfies (N1) − (N3). If the map F 7→ σ(x, t, u, F ) is monotone for all
(x, t, u) ∈ Ω×]0;T [×Rm then:

Sptϑ(x,t) ⊂ {λ/[σ(x, t, u, λ)− σ(x, t, u,Du)] : (λ−Du) = 0}.(6.1)

Proof of lemma 6.1
The proof of lemma is a slightly modification of the corresponding in

lemma (11-4-2) see:[6].
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562 Elhoussine Azroul, Abdelkrim Barbara and El Houcine Rami

Proof of proposition 6.1 We start with the easiest case:

Case (c): since σ is monotone by assumption, 6.1 hold by lemma, by strict
monotonicity, it follows from 6.1 that
ϑ(x,t) = δDu(x,t) for almost all (x, t) ∈ ΩT ; and hence Duk → Du in measure
for k → ∞ by proposition (4 − 2 − 1) in [6], since we have already that
uk → u in measure for k →∞ by (A1); (A2) and proposition 4.1 or by (C2)
we may infer that (after extraction of a suitable subsequence, if necessary
see: [7] (theorem, 2-30) uk → u and Duk → Du almost everywhere in Ω
for k →∞ .
thus, from the continuity condition (A3) or (C3) it follows that: σ(x, t, uk,Duk)→
σ(x, t, u,Du) almost everywhere in Ω for k → ∞. Since, by assumption
(A4) or (A5), σk(x, t) is equiintegrable, it follows from the Vitali’s converge
theorem (1− 2− 1) in [6]

that; σ(x, t, uk,Duk) → σ(x, t, u,Du) in L1(ΩT ;M
m×n) which proves the

proposition in this case.

Case (d): Assume that ϑ(x,t) is not a Dirac mass on a set (x, t) ∈ M ⊂
ΩT of positive Lebesgue measure | M |> 0. Then, by the strict p-quasi-
monotonicity of σ(x, t, u, .) and (N2), we have for a.e. (x, t) ∈ M with:
λ = hϑ(x,t); idi = apDu(x, t), by (N3):Z

Mm×n
σ(x, t, u, λ) : λdϑ(x,t)(λ) >

Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)

−
Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)

+

Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)

=

Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)

(6.2)

Where we used (N1), we claim now that we obtain a contradiction. Indeed,
if (C1)− (C8) hold, it follows by second div-curl inequality that:Z

Mm×n
σ(x, t, u, λ) : λdϑ(x,t)(λ) >

Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)

≥
Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ).

On the other hand if (A1) − (A6) hold, by integrating 6.2 over Ω and
using the div-curl inequality in lemma 4.2, we get:
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Z
ΩT

Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)dxdt >

Z
ΩT

Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)dxdt

≥
Z
ΩT

Z
Mm×n

σ(x, t, u, λ) : λdϑ(x,t)(λ)dxdt.

As desired, hence, we have ϑ(x,t) = δλ = δDu(x,t) for almost every
(x, t) ∈ ΩT ; thus, it follows again by proposition (4 − 2 − 1) in [6] that
Duk → Du in measures, The reminder of the proof in this case is exactly
as in case (c).

Case (b): We start by noting that for almost all (x, t) ∈ ΩT , the support
of ϑ(x,t) is contained in the set where W agrees with the supporting hyper-
plane.
L = {(λ,W (x, t, u, λ) + σ(x, t, u, λ)) : (λ− λ)}
in λ = apDu(x, t) i.e, it may be shown see [9]. as in the proof of proposition
6.1 that sptϑ(x,t) ⊂ K(x,t) where.

K(x,t) = {(λ ∈Mm×n/W (x, t, u, λ) =W (x, t, u, λ) + σ(x, t, u, λ) : (λ− λ)}.
By the convexity of W we have:
W (x, t, u, λ) ≥W (x, t, u, λ) + σ(x, t, u, λ) : (λ− λ)}.
For all λ ∈ Mm×nand thus L is a supporting hyper-plane for all λ ∈
K(x,t). Since the mapping λ→W (x, t, u, λ) is by assumptions continuously
differentiable we obtain:

σ(x, t, u, λ) = σ(x, t, u, λ), for allλ ∈ K(x,t) ⊃ sptϑ(x,t)(6.3)

and thus:

σ(x, t) ≡
Z
Mm×n

σ(x, t, u, λ)dϑ(x,t)(λ) = σ(x, t, u, λ)(6.4)

Now consider the Carathéodory function:
ψ(x, t, u, ρ) =| σ(x, t, u, ρ)− σ(x, t) |, the sequence:
ψk(x, t) = ψ(x, t, uk(x, t), λk(x, t)) is equiintegrable and thus ψk → ψ
weakly in L1(ΩT ) and the weak limit ψ is given by:

ψ(x, t) =

Z
Rm×Mm×n

| σ(x, t, η, λ)− σ(x, t) | dδu(x,t)(η)⊗ dϑ(x,t)(λ)

=

Z
spt

ϑ(x,t) | σ(x, t, u(x, t), λ)−σ(x, t) | dϑ(x,t)(λ) = 0 by 6.3 and 6.4. Since

ψk ≥ 0 it follows that ψk → 0 strongly in L1(ΩT ). This again to pass to
the limit and the proof of the case (b)is finished.

Case (a): We claim that in this case for almost all (x, t) ∈ Ω×]0;T [ the
following identity hold for all M ∈Mm×non the support of ϑ(x,t):
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σ(x, t, u, λ) :M = σ(x, t, u, λ) :M + (∇Fσ(x, t, u, λ)M) : (λ− λ),(6.5)

where ∇F is the derivative with respect to the third variable of σ and
λ = apDu(x, t).
Indeed, by the monotonicity of σ we have for all τ ∈ R

(σ(x, t, u, λ)− σ(x, t, u, λ+ τM)) : (λ− λ− τM) ≥ 0,
whence, by 6.1,
−σ(x, t, u, λ) : (τM) ≥ τ((∇Fσ(x, t, u, λ)M)(λ − λ) − σ(x, t, u, λ) : M) +
◦(τ).
The claim follows from this inequality since the sign of τ is arbitrary. Since
the sequence σk(x, t) is equiintegrable by (A4), its weak L

1-limit σ is given
by

σ(x, t) =

Z
sptϑ(x,t)

σ(x, t, u, λ)dϑ(x,t)(λ)

=

Z
sptϑ(x,t)

σ(x, t, u, λ)dϑ(x,t)(λ)+(∇Fσ(x, t, u, λ))
t
Z
sptϑ(x,t)

(λ−λ)dϑ(x,t)(λ)

= σ(x, t, u, λ),

where we used 6.5 in this calculation. This finishes the proof of the case
(c) and hence of the proposition.

Remark 6.1. In case, (b), we remark, that the relation 6.4 already states
that σ(x, t, u, λ) is the weak L1- limit of σk(x, t), which is enough to pass
to the limit in an equation which must hold in the distributional sense.
However, we wanted to point out that in this case, the convergence is even
strong in L1(ΩT ,M

m×n).

7. Galerkin Scheme

Lemma 7.1. Let Ω bounded domain in Rn, p ∈] 2nn+2 ; 2] and ω0j ∈ L1(Ω),

for all j = 1; 2; ....;m, then: L2(Ω, ω0,R
m) → Lp(Ω, ω0,R

m).

Proof of lemma 7.1 The case p = 2 is evident.
For case p ∈] 2nn+2 ; 2[:
Let u ∈ Lp(Ω, ω0,R

m), we have:Z
Ω
| uj |p dx =

Z
Ω
| uj |p (ω0j)

p
2
+ 2−p

2 dx =

Z
Ω
| uj |p (ω0j)

p
2 (ω0j)

2−p
2 dx
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We applied the Hölder inequality we have:Z
Ω
| uj |p (ω0j)

p
2 (ω0j)

2−p
2 dx ≤ (

Z
Ω
| uj |2 ω0j)

p
2 (

Z
Ω
ω0j)

2−p
2

≤ cj(

Z
Ω
| uj |2 ω0j)

p
2

X
j

Z
Ω
ω0j | uj |p dx ≤ maxj(cj)

X
j

(

Z
Ω
| uj |2 ω0j)

p
2 dx

kukLp(Ω,ω0) ≤ maxj(cj)kukL2(Ω,ω0)

Lemma 7.2. Let Ω bounded domain in Rn, p ∈] 2nn+2 ; 2] and ωij ∈ L1(Ω),

for all j = 1; 2; ....;m, and i = 0; 1; ......;n. Then (W r,2
0 (Ω, ωα,R

m) →
W 1,p
0 (Ω, ω,Rm),

for r ≥ 1 + n(12 −
1
P ).

Proof of lemma 7.2 (by the Hölder inequality, and 7.1 By the theorem
(1 − 3 − 1) in [6] and proceeding as [8] (section 4-2) we may choose a set
(δi)i∈N of functions which is an orthogonal basis in L2(Ω, ω0,R

m) and at
the some time an orthogonal basis inW r,2

0 (Ω, ωα,R
m). In particular, δ(i)i∈N

is uniformly bounded in W 1,p
0 (Ω, ω,Rm) and then: k δi k1,ω,p + k δi kp∗≤ c

for all i ∈ N.
We will need bellow the L2(ω0) - orthogonal projector
pk : L

2(Ω, ω0,R
m)→ L2(Ω, ω0,R

m) on to spam (δ1, δ2, ...., δk)k∈N:
of course, the operator norm k pk k=(W r,2

0 (ωα),W
r,2
0 (ωα))

= 1.

(The Galerkin scheme): New we build our Galerkin approximations, we
make the following ansate for approximating solution of
(QPS)ω, uk(x, t) =

Pk
i=1 ak,i(t)δi(x). Where ak,i : [0;T ) → R are sup-

posed to be continuous bounded functions. such that uk satisfies the
boundary condition in (QPS)ω by constructions in the sense that u0 ∈
Lp(0, T,W 1,p

0 (Ω, ω,Rm)), we take core of the initial conditions in (QPS)ω
by choosing the initial coefficients:
ak,i(0) = hu0, δii2,ω0 such that:
uk(., 0) =

Pk
i=1 ak,i(0)δi(.)→ u0, with u0 ∈ L2(Ω, ω0,R

m).
we try to determine the coefficients ak,i(t) in such that a way, that for every
k ∈ N the system of ordinary differential equations

h∂tuk, δji2,ω0 +
Z
Ω
σ(x, t, uk,Duk) : Dδjdx
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= hv(t), δji+
Z
Ω
f(x, t, uk)δjdx−

Z
Ω
g(x, t, uk) : Dδjdx for j ∈ {1; 2; ....; k}.

Now we fix to k ∈ N for the moment. Let 0 < ε < T and J = [0; ε].
Moreover we chose r > 0 large enough; such that the set Br(0) ⊂ Rk

contains the vector (a1k(0), ...., akk(0)), and we set k = Br(0). Then we
have the following result.

Lemma 7.3. The application: F : J × k 7→ Rk given by:

(t, a1, .....ak) 7→ (hv(t), δji +
Z
Ω
f(x, t,Σk

i=1aiδi)δjdx −
Z
Ω
g(x, t,Σk

i=1aiδi) :

Dδjdx−
Z
Ω
(σ(x, t,Σk

i=1aiδi,Σ
k
i=1aiDδi) : Dδj)dx)j=1;2;....k

is a Carathéodory function. Moreover, each components Fj may be esti-
mated on J × k by

| Fj(t, a1, .....ak) |≤ C(r, k).M(t)(7.1)

uniformly on J × k, where C(r, k) is a constant which depends on r and k.
And here M is a functions dependent of j; k and r belonging to L1(J).

Proof of lemma 7.3 The first claim follows from the condition (P1).
For the second claim; we note that the generalized Hölder inequality im-
plies that:
| Ij |=| hv(t), δji |≤k v(t) k−1,p0;ω∗k δj k1,p;ω .

Moreover, on the one hand, if; IIj =

Z
Ω
(σ(x, t,Σk

i=1aiδi,Σ
k
i=1aiDδi) :

Dδj)dx, by the growth condition in (P2) and the Hölder inequality

| IIj |≤ β[k λ1(t) kp0 +c1 k
Pk

i=1 aiδj k
q
p0
1,p,γ +c2 k

Pk
i=1 aiDδju kp−11,p,ω] k

Dδj k1,p,ω
≤ βmax(1, c1, c2).[k λ1 kp0 + k Pk

i=1 aiδj k
q
p0
1,p,γ + k Pk

i=1 aiDδju kp−11,p,ω] k
Dδj k1,p,ω .
And by Hölder inequality we have:

| IIIj |=|
Z
Ω
g(x, t,Σk

i=1aiδi) : Dδjdx |

≤ (k b4(t) kp0 + k b5(t) k n
p−1
k Σk

i=1aiδi k
η
p∗,ω0) k Dδj kp,ω

| IVj |=|
Z
Ω
f(x, t,Σk

i=1aiδi) : δjdx |

≤k b1(t) kp0k δj kp,ω0 + k b2(t) knp k Σ
k
i=1aiδi k

γ
p∗,ω0k δj kp,ω0 Then, in view

of
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k δi k1,ω,p + k δi k1,p∗,ω≤ c for all i ∈ N and since each variable ai satisfies:
| ai |≤ r; for all i = 1; .....; k fora constant r, each component Fj may be
estimated in such a way that

| Fj(t, a1, .....ak) |≤| IIj | + | Ij | + | IIIj | + | IVj |≤ C(r, k).M(t)(7.2)

uniformly on J ×K, where C(r, k) is a constant which depends on r and
k, and where M(t) ∈ L1(J) (independent of j, k)and r Then, in view of
lemma 7.3 the Carathéodory existence result on ordinary differential equa-
tion applied to the system:

a
0
j(t) = Fj(t, a1(t), ..., ak(t))(7.3)

aj(0) = ak,j(0); j ∈ 1; ...; k(7.4)

ensures existence of a distributional, continuous solutions aj (depending on
k) of 7.3 - 7.4 on a time interval [0; ε0[ where ε0 > 0, a priori, may depend
on k. Moreover, the corresponding integral equation

aj(t) = aj(0) +

Z t

0
Fj(t, a1(t), .....ak(t))dt(7.5)

holds on [0; ε0[. Then, uk =
Pk

j=1 aj(t)δj is the desired (short time) solution
of

h∂tuk, δki2,ω0 +
Z
Ω
σ(x, t, uk,Duk) : Dδkdx

=

Z
Ω
v(x, t)δkdx+

Z
Ω
f(x, t, uk).ukdx−

Z
Ω
g(x, t, uk) : Dukdx

with initial condition
uk(0) =

Pk
i=1 ak,i(0)δi(.) → u0, with u0 ∈ L2(Ω, ω0,R

m). Now, we want
to show that the local solution constructed above can be extended to the
whole interval [0;T [ independent of k, as a - word of warning we should
mention, that the solution need not be unique.

Lemma 7.4. We have:

A =

(
t ∈ [0;T [: there exist a weak solutions of 7.3 − 7.4 on [0;T [

)
=

[0;T [.
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Proof of lemma 7.4 The first thing we want to establish is a uniform
bound on the coefficients (aki(t)). Since

h∂tuk, δki2,ω0 +
Z
Ω
σ(x, t, uk,Duk) : Dδkdx

=

Z
Ω
v(x, t)δkdx+

Z
Ω
f(x, t, uk).ukdx−

Z
Ω
g(x, t, uk) : Dukdx.

is linear in δk, it is allowed to use uk as a test function in precedent equation
in place of δk. This gives for a an arbitrary time τ in the existence intervalZ τ

0
h∂tuk, uki2,ω0dt+

Z τ

0

Z
Ω
σ(x, t, uk,Duk) : Dukdxdt

=

Z τ

0
hv(t), ukidt+

Z τ

0

Z
Ω
f(x, t, uk).ukdxdt−

Z τ

0

Z
Ω
g(x, t, uk) : Dukdxdt.

For the first term we have:Z τ

0
h∂tuk, uki2,ω0dt =

X
j

1

2

Z τ

0
∂t(u

j
k)
2ω0jdt

=
X
j

1

2
k ujk(τ) k22,ω0 −

X
j

1

2
k ujk(0) k22,ω0≥

1

2
k uk(τ) k22,ω0 −c

Since uk(., 0) converges in L2(Ω, ω0,R
m). Using the coercivity and the

Hölder inequality in (P2) for the second term, we obtain:Z τ

0

Z
Ω
σ(x, t, uk,Duk) : Dukdxdt ≥ − k λ2 kL1(ΩT ) −A

0α k λ3 kL( pα )0(ΩT )k
uk kαLp(0,T,W 1,p

0 (Ω,ω,Rm))
+c2 k uk kpLp(0,T,W1,p

0 (Ω,ω,Rm))
.

By the the Hölder inequality for the third term we getR τ
0 hv(t), ukidt ≤k v kLp0(0,T,W−1,p0(Ω,ω))k uk kLp(0,T,W 1,p

0 (Ω,ω)) . Using the

growth condition(F1) and the Hölder inequality for the fourth term, we
obtain:Z τ

0

Z
Ω
f(x, t, uk).ukdxdt

≤k b1(t) kLp0(ΩT ) . k uk kLp(0,τ,Lp(Ω,ω0)) +
Z τ

0
k b2(t) kn

p
. k uk kγ+1p∗,ω0 dt.

≤ A0 k b1 kLp0(ΩT ) . k uk kLp(0,τ,W 1,p
0 (Ω,ω)) +A

0γ+1 k b2 k
L1(0,T,L

n
p (Ω))

. k
uk kγ+1Lp(0,τ,W 1,p

0 (Ω,ω))
.

Finally, using the growth condition (G1) for the last term, we obtain:Z τ

0

Z
Ω
g(x, t, uk).Dukdxdt
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≤k b4(t) kLp0(ΩT ) . k Duk kLp(0,τ,Lp(Ω,ω)) +
Z τ

0
k b5(t) k n

p−1
. k uk kηp∗,ω0 . k

Duk kp,ω dt
≤ A0. k b4 kLp0(ΩT ) . k uk kLp(0,τ,W 1,p

0 (Ω,ω))
+A0η k b5 k

L∞(0,τ,L
n

p−1 (Ω))
. k

uk kη+1Lp(0,τ,W 1,p
0 (Ω,ω))

.

The combination of these five estimates gives:
1
2 k uk(τ) k22≤ A0(k b4 kLp0(ΩT ) + k b1 kLp0(ΩT ) + k v kLp0(0,T,W−1,p0(Ω,ω))) k
uk kLp(0,τ,W1,p

0 (Ω,ω)) +(k λ3 kL( pα )0(ΩT ) +A
0γ+1 k b2 k

Lγ∓(0,T,L
n
p (Ω))

+A0η k
b5 k

L∞(0,τ,L
n

p−1 (Ω))
) k uk kκ

0

Lp(0,T,W1,p
0 (Ω,ω,Rm))

+c+ k λ2 kL1(ΩT ) −c2 k
uk kpLp(0,T,W 1,p

0 (Ω,ω,Rm))

≡ ψ(k uk kLp(0,τ,W 1,p
0 (Ω,ω,Rm))

)

where κ0 = max(α, γ + 1, η + 1) Since p > 1, and c2 > 0 we have:

ψ(y)→ −∞; y → +∞(7.6)

and so ψ(k uk kLp(0,T,W1,p
0 (Ω,ω,Rm))) is bounded, since ψ is continuous and

k uk k22≥ 0.

Thus, in view of the definition of ak,i we may conclude that:

| ak,i(τ) |2Rk=k uk(τ) k22≤ c(7.7)

for a constant c which is independent of τ and k. Now, we prove that A is
non empty, open and closed in [0;T ]. First, A is clearly non- empty since
we proved local existence above. Moreover, let t ∈ A and 0 < τ1 < τ2 < T.
Then by 7.5, we have:

| ak,j(τ1)− ak,j(τ2) |≤
Z τ2

τ1
| Fj(τ, ak,i(τ), ....., ak,k(τ)) | dτ

≤ C(c, k)

Z τ2

τ1
|M(τ) | dτ ;

since M ∈ L1(0, T ), this implies that τ 7→ ak,j(τ) is uniformly continu-
ous.Then, we can restart to solve

h∂tuk, δki2,ω0 +
Z
Ω
σ(x, t, uk,Duk) : Dδkdx

=

Z
Ω
v(x, t)δkdx+

Z
Ω
f(x, t, uk).δkdx−

Z
Ω
g(x, t, uk) : Dδkdx
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uk
∗ u in L∞(0, T, L2(Ω, ω0,Rm))

uk u in Lp(0, T,W 1,p
0 (Ω, ω,Rm))

which proves in particular (A1). To verify (A2), observe that the time
derivative

d
dt(j ◦ i ◦ uk) : [0;T [→ B1 = (W

s,2
0 (Ω, ωα,R

m)))
0
is according to

h∂tuk, δji2,ω0 +
Z
Ω
σ(x, t, uk,Duk) : Dδjdx

= hv(t), δji+
Z
Ω
f(x, t, uk).δjdx−

Z
Ω
g(x, t, uk) : Dδjdx

for: j ∈ {1; 2; ....; k}. Given by: we recall that the projection operators Pk
are self adjoint with respect to the L2 inner product.

t 7→ (φ 7→ hv(t), Pkφi−
Z
Ω
σ(x, t, uk,Duk) : D(Pkφ)dx+

Z
Ω
f(x, t, uk).(Pkφ)dx−Z

Ω
g(x, t, uk) : D(Pkφ)dx). Now we have:

h ddt(j ◦ ı ◦ uk)(t), φi = I + II + III + IV where

I =

Z T

0
hv(t), Pkφidt ≤k v kLp0(0,T,(W−1,p0(Ω,ω∗))k Pkφ kLp(0,T,(W 1,p(Ω,ω)) by

the generalized Hölder inequality,

II = −
Z T

0

Z
Ω
σ(x, t, uk,Duk) : D(Pkφ)dxdt

≤ (k λ1 kLp0(ΩT ) +C(c1) k uk kp−1Lp(0,T,W 1,p
0 (Ω,ω)

) k Pkφ kLp(0,T,W 1,p
0 (Ω,ω)) by

the growth conditions in (P2) and the Hölder inequality.

III =

Z T

0

Z
Ω
f(x, t, uk).(Pkφ)dxdt

≤ (k b1 kLp0(ΩT ) +A
0γ+1 k b2 k

Lγ
∓
(0,T,L

n
p (Ω))

. k uk kγLp(0,τ,W 1,p
0 (Ω,ω))

). k
Pkφ kLp(0,τ,W 1,p

0 (Ω,ω)) .

By the growth condition(F1)

IV = −
Z τ

0

Z
Ω
g(x, t, uk).D(Pkφ)dxdt

≤ (k b4 kLp0(ΩT ) +A
0η k b5 k

L∞(0,τ,L
n

p−1 (Ω))
. k uk kηLp(0,τ,W 1,p

0 (Ω,ω))
). k

Pkφ kLp(0,τ,W 1,p
0 (Ω,ω)).

By the growth condition (G1). Since
k Pkφ kLp(0,T,W 1,p

0 (Ω,ω))≤k Pkφ kLp(0,T,W r,2
0 (Ω,ωα))

≤k φ kLp(0,T,W r,2
0 (Ω,ω)),

the claim follows by the uniform bounded 7.8.

Remark 7.1. For further use, we note that from the bounded obtained
for h ddt(j ◦ ı ◦uk)(t), φi in the proof of proposition we can conclude that ∂tu
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convex linear combination of u1, ..., uk such that vk → u in Lp(0, T,W 1,p
0 (Ω, ω)).

In particular, vk(t, .) ∈ span(δ1, δ2, ..., δk) for all t ∈ [0, T ]. Now, we have

Z
ΩT

σk : (Duk −Dvk)dxdt = hv, uk − vki−
X
j

Z
ΩT

(ujk − vjk)∂t(u
j
k)ω0jdxdt

+

Z
ΩT

f(x, t, uk).(uk − vk)dxdt−
Z
ΩT

g(x, t, uk) : (Duk −Dvk)dxdt.

(8.1)

Observe that (uk − vk) ∈ span(δ1, δ2, ..., δk) which allowed to use

h∂tuk, δki2 +
Z
Ω
σ(x, t, uk,Duk) : Dδkdx

=

Z
Ω
v(x, t).δkdx +

Z
Ω
f(x, t, uk).δkdxdt −

Z
Ω
g(x, t, uk) : Dδkdxdt in the

equality above. The term hv, uk−vki in 8.1 converge to zero, since uk−vk
0 in Lp(0, T,W 1,p

0 (Ω, ω)) by the choice of vk and (A1).

Next, defining IIk =

Z
ΩT

f(x, t, uk).(uk − vk)dxdt, we infer by the Hölder

inequality and the growth condition (F1) that

|IIk| ≤
Z T

0
(k b1(t) kp0k uk(t) − vk(t) kp,ω0 + k b2(t) kn

p
k uk(t) kp∗,ω0k

uk(t)− vk(t) k p∗
p−γ
)dt

≤k b1 kLp0(ΩT )k uk − vk kLp(0,T,Lp(Ω,ω0))
+ k b2 k

Lγ∓ (0,T,L
n
p )
k uk kγLp(0,T,Lp∗(Ω,ω))k uk − vk k

Lp(0,T,L
p∗
p−γ (Ω,ω))

.

Since the expression k uk(t) kp∗,ω0 is bounded and we have uk − vk → 0
in Lp(0, T, Lr(Ω, ω0)) for all r < p∗ by the proposition 4.1, the second
term in 8.1 vanishes in the limit. For the third term in 8.1, we note
that gk(x, t) = g(x, t, uk) → g(x, t, u) strongly in Lp0(ΩT ) by (G0), (G1)
and proposition 4.1. To see this, we may assume by proposition 4.1 that
uk → u almost everywhere. Since by (G1), | gk |p

0
is bounded by an inte-

grals function, the claim follows from (G0) and the Dominated Convergence
Theorem. We infer then that

|
Z
ΩT

gk : (Dvk−Duk)dxdt |≤k gk−g(., ., u) kLp0(ΩT )k uk−vk kLp(0,T,W 1,p
0 (Ω,ω))

+ |
Z
ΩT

g : D(vk − uk)dxdt |→ 0,
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since vk − uk 0 in Lp(0, T,W 1,p
0 (Ω, ω)). Thus the third term in 8.1 dis-

appears also.

Finally, for the last therm in 8.1, we have:

−Pj

R
ΩT
(ujk − vjk)∂t(u

j
k)ω0jdxdt = −

P
j

R
ΩT

1
2∂t(u

j
k)
2ω0jdxdt+

P
j

R
ΩT

vjk∂t(uk)ω0jdxdt

= −12 k uk(T ) k22,ω0 +
1
2 k uk(0) k22,ω0 +

P
j

R
ΩT

vjk∂t(u
j
k)ω0jdxdt.

(8.2)

Concerning the last term in 8.1 we claim that for k →∞ we have:

X
j

Z
ΩT

vjk∂t(u
j
k)ω0jdxdt→

X
j

Z
ΩT

uj∂(uj)ω0jdxdt =
1

2
k u(T ) k22,ω0 −

1

2
k u0 k22,ω0

(8.3)
To see this, let ε > 0 be given. Then, there exists M such that for all
l ≥ m ≥M we have:

• (i)Pj |
Z
ΩT

(uj − vjm)∂t(u
j)ω0jdxdt |≤ ε. This is possible, since ∂(j ◦

i ◦ u) ∈ Lp0(0, T,W−1,p0
0 (Ω, ω) and vm → u in Lp(0, T,W 1,p

0 (Ω, ω))

• (ii)Pj |
Z
ΩT

(vjl − vjm)∂t(u
j)ω0jdxdt |≤ ε. This is possible by the

bound obtained for
h ddt(j ◦ i ◦ uk)(t), φi in the proof of proposition 7.1 since (vl − vk) ∈
span(δ1, δ2......., δk) for all fixed t ∈]0, T [.

Now, we fix m ≥M and choose m0 ≥ m such that for all l ≥ m0;P
j |
Z
ΩT

vjm(∂t(u
j −ujl )ω0jdxdt |≤ ε. This is possible, since ∂tul

∗ ∂tu in

Lp0(0, T, (W s,2
0 (Ω, ωα))

0). Combinations yields for all l = l(ε) ≥ m0(ε)

|
X
j

Z
ΩT

vjl ∂t(u
j
l )ω0jdxdt−

X
j

Z
ΩT

uj∂t(u
j)ω0jdxdt |

≤Pj |
Z
ΩT

(vjl − vjm)∂t(u
j
l )ω0j | dxdt+

X
j

|
Z
ΩT

vjm(∂tu
j
l − ∂tu

j)ω0jdxdt |

+
X
j

|
Z
ΩT

(vjm − uj)∂tu
jω0jdxdt ≤ 3ε.
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This establishes 8.3. On the other hand, since (uk)k is bounded in L
∞(0, T, L2(Ω, ω0))

by proposition 7.1 we have that (uk(T ) u(T )) in L2(Ω, ω0)). Hence,

lim inf
k→∞

k uk(T ) k2,ω0≥k u(T ) k2,ω0 .(8.4)

By construction of uk we also have

lim
k→∞

k uk(0) k2,ω0)=k u0 k2,ω0 .(8.5)

Using 8.5, 8.4 and 8.3, in 8.2, we conclude that

lim inf
k→∞

(−
X
j

Z
ΩT

(ujk − vjk)∂t(u
j
k)ω0)dxdt) ≤ 0, thus (A6) is fulfilled.

So, (A1) − (A6) and (N1) − (N3) hold and we may infer from proposi-
tion 7.1 that σk(x, t, uk,Duk) converge to σk(x, t, u,Du) at least weakly in
L1(ΩT ,M

m×n), for k →∞. Since we have that uk → u in measure on ΩT

by proposition 4.1, we may infer that uk → u almost everywhere on ΩT ,
for k →∞.

Thus, for arbitrary ϕ ∈W 1,p
0 (Ω, ω,Rm), it follows from the continuity con-

ditions (F0) and (G0) that f(x, t, uk).ϕ(x)→ f(x, t, u).ϕ(x) and g(x, t, uk).Dϕ(x)→
g(x, t, u) : Dϕ(x) almost everywhere on ΩT . Since, by the growth conditions
in (F1) and (G1) and the uniform bound in proposition 7.1, f(x, t, uk).ϕ(x)
and g(x, t, uk).Dϕ(x) are equiintegrable, it follows that
f(x, t, uk).ϕ(x)→ f(x, t, u).ϕ(x) and g(x, t, uk).Dϕ(x)→ g(x, t, u) : Dϕ(x)
in L1(ΩT ) by Vitali’s converge theorem.

Now, we take a test function ϕ ∈ ∪i∈Nspan(δ1, δ2......., δi) and φ ∈ C∞0 ([0, T ])
in

h∂tuk, ϕ(x)i2,ω0+
Z
Ω
σ(x, t, uk,Duk) : Dδjdx = hv(t), δji+

Z
Ω
f(x, t, uk).δjdx+Z

Ω
g(x, t, uk) : Dδjdx, for:j ∈ {1, 2, ..., k}.

And integrate over the interval ]0, T [ and pass to the limit k → ∞. The
resulting equation isP

j

Z
ΩT

∂tu
j(x, t)φj(t)ϕ(x)ω0j)dxdt+

Z
ΩT

σk(x, t, u,Du) : Dϕ(x)φ(t)dxdt

rvidal
Cuadro de texto
555



rvidal
Cuadro de texto
556

https://bit.ly/2ykRfMj


rvidal
Cuadro de texto
557

https://doi.org/10.1090/pspum/016
https://doi.org/10.1007/PL00004354
https://doi.org/10.1016/j.ajmsc.2013.06.002
https://doi.org/10.1215/S0012-7094-01-10733-3
https://bit.ly/3cL29d7
https://doi.org/10.1007/s002080050277
https://doi.org/10.1007/BF01762360
https://doi.org/10.1007/BFb0084935
https://bit.ly/3g8VNX7
https://doi.org/10.1007/978-1-4612-0985-0
https://doi.org/10.1007/978-1-4612-0985-0

