

(SSN 0717-6279 (On line)

New types of locally connected spaces via clopen set

Ennis Rafael Rosas Rodríguez¹ orcid.org/0000-0001-8123-9344 Sarhad F. Namiq² orcid.org/0000-0001-8747-2542

¹Universidad de la Costa, Dept. de Ciencias Naturales y Exactas, Barranquilla, Colombia.

ennisrafael@gmail.com

²University of Garmian, Dept. of Mathematics, Kurdistan, Kalar, Iraq.

sarhad1983@gmail.com

Received: 20 May 2020 | Accepted: 15 January 2021

Abstract:

In this paper, we define and study a new type of connected spaces called λ_{co} -connected space. It is remarkable that the class of λ -connected spaces is a subclass of the class of λ_{co} -connected spaces. We discuss some characterizations and properties of λ_{co} -connected spaces, λ_{co} components and λ_{co} -locally connected spaces.

Keywords: λ_{co} -connected spaces; λ_{co} -components; λ_{co} -locally connected spaces.

MSC (2020): 54A05, 54D30.

Cite this article as (IEEE citation style):

E. R. Rosas Rodríguez and S. F. Namiq, "New types of locally connected spaces via clopen set", *Proyecciones (Antofagasta, On line)*, vol. 40, no. 3, pp. 671-679, 2021, doi: 10.22199/issn.0717-6279-4198

Article copyright: © 2021 Ennis Rafael Rosas Rodriguez and Sarhad F. Namiq. This is an open access article distributed under the terms of the Creative Commons License, which permits unrestricted use and distribution provided the original author and source are credited.

1. Introduction

Following [3] N. Levine, 1963, defined semi open sets. Similarly, S. F. Namiq [4], defined an operation λ on the family of semi open sets in a topological space called semi operation, denoted by s-operation; via this operation, in his study [7], he defined λ_{sc} -open set by using λ -open and semi closed sets, and also following [5], he defined λ_{co} -open set and investigated several properties of λ_{co} -derived, λ_{co} -interior and λ_{co} -closure points in topological spaces.

In the present article, we define the λ_{co} -connected space, discuss some characterizations and properties of λ_{co} -connected spaces, λ_{co} -components and λ_{co} -locally connected spaces and finally its relations with others connected spaces.

2. Preliminaries

In the entire parts of the present paper, a topological space is referred to by (X,τ) or simply by X. First, some definitions are recalled and results are used in this paper. For any subset A of X, the closure and the interior of A are denoted by Cl(A) and Int(A), respectively. Following [8], the researchers state that a subset A of X is regular closed if A = Cl(Int(A)). Similarly, following [3], a subset A of a space X is semi open if $A \subseteq Cl(Int(A))$. The complement of a semi open set is called semi closed. The family of all semi open (resp. semi closed) sets in a space X is denoted by $SO(X, \tau)$ or SO(X)(resp. $SC(X, \tau)$ or SC(X)). According to [1], a space X is stated to be sconnected, if it is not the union of two nonempty disjoint semi open subsets of X. We consider $\lambda: SO(X) \to P(X)$ as a function defined on SO(X) into the power set of X, P(X) and λ is called a semi-operation denoted by s-operation, if $V \subseteq \lambda(V)$, for each semi open set V. It is assumed that $\lambda(\emptyset) = \emptyset$ and $\lambda(X) = X$, for any s-operation. Let X be a space and λ $SO(X) \rightarrow P(X)$ be an s-operation, following [4], a subset A of X is called a λ -open set, which is equivalent to λ_s -open set [2], if for each $x \in A$, there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ -open set is called a λ -closed. The family of all λ -open (resp., λ -closed) subsets of a space X is denoted by $SO_{\lambda}(X,\tau)$ or $SO_{\lambda}(X)$ (resp. $SC_{\lambda}(X,\tau)$ or $SC_{\lambda}(X)$). Following [4], a λ -open subset A of X is named a λ_c -open set, if for each $x \in A$, there exists a closed set F such that $x \in F \subseteq A$. The family of all λ_c -open (resp., λ_c -closed) subsets of a space X is denoted by $SO_{\lambda_c}(X,\tau)$ or $SO_{\lambda_c}(X)$ (resp., $SC_{\lambda_c}(X,\tau)$ or $SC_{\lambda_c}(X)$). Thus, a number of definitions are presented and some known results are reiterated which will be used in the sequel.

Definition 2.1. [4] Let X be a space and $\lambda:SO(X) \to P(X)$ be an s-operation, then a subset A of X is called a λ -open set if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ -open set is called λ -closed. The family of all λ -open (resp., λ -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda}(X, \tau)$ or $SO_{\lambda}(X)$ (resp., $SC_{\lambda}(X, \tau)$ or $SC_{\lambda}(X)$).

Definition 2.2. [5] A λ -open subset A of X is called a λ_{co} -open (resp., λ_c -open [4]) set if for each $x \in A$, there exists a clopen (resp., closed) set F such that $x \in F \subseteq A$. The family of all λ_c -open (resp., λ_c -closed) subsets of a space X is denoted by $SO_{\lambda_c}(X,\tau)$ or $SO_{\lambda_c}(X)$ (resp $SC_{\lambda_c}(X,\tau)$ or $SC_{\lambda_c}(X)$). The family of all λ_{co} -open (resp., λ_{co} -closed) subsets of a space X is denoted by $SO_{\lambda_{co}}(X,\tau)$ or $SO_{\lambda_{co}}(X)$ (resp $SC_{\lambda_{co}}(X,\tau)$ or $SC_{\lambda_{co}}(X)$).

Proposition 2.3. [4],[5] For a space X, $SO_{\lambda_{co}}(X) \subseteq SO_{\lambda_{c}}(X) \subseteq SO_{\lambda}(X) \subseteq SO(X)$.

Definition 2.4. [2] Let X be a space, an s-operation λ is said to be s-regular if for every semi-open sets U and V containing $x \in X$, there exists a semi-open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$.

Definition 2.5. [6] A space X is said to be λ -connected if there does not exist a pair A, B of nonempty disjoint λ -open subset of X such that $X = A \cup B$, otherwise X is called λ -disconnected. In this case, the pair (A, B) is called a λ -disconnection of X.

Following [5], we used some results:

Definition 2.6. Let X be a space and A a subset of X. Then:

- 1. The λ_{co} -closure of A, denoted by $\lambda_{co}Cl(A)$ is the intersection of all λ_{co} -closed sets containing A.
- 2. The λ_{co} -interior of A, denoted by λ_{co} Int(A) is the union of all λ_{co} open sets of X contained in A.
- 3. A point $x \in X$ is said to be a λ_{co} -limit point of A if every λ_{co} -open set containing x contains a point of A different from x, and the set of all λ_{co} -limit points of A is called the λ_{co} -derived set of A, denoted by $\lambda_{co}D(A)$.

Proposition 2.7. For each point $x \in X$, $x \in \lambda_{co}Cl(A)$ if and only $V \cap A \neq \emptyset$, for every $V \in SO_{\lambda_{co}}(X)$ such that $x \in V$.

Proposition 2.8. Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be any collection of λ_{co} -open sets in a topological space (X,τ) , then $\cup_{{\alpha}\in I} A_{\alpha}$ is a λ_{co} -open set.

Example 2.9. Let $X = \{a, b, c\}$ and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \to P(X)$ as:

$$\lambda(A) = \begin{cases} A & \text{if } A \neq \{a\}, \{b\}, \\ X & \text{otherwise} \end{cases}$$

Now, we have $\{a,b\}$ and $\{b,c\}$ are λ_{co} -open sets, but $\{a,b\} \cap \{b,c\} = \{b\}$ is not λ_{co} -open.

Proposition 2.10. Let λ be an s-operation and s-regular. If A and B are λ_{co} -open sets in X, then $A \cap B$ is also a λ_{co} -open set.

Proposition 2.11. Let X be a space and $A \subseteq X$. Then A is a λ_{co} -closed subset of X if and only if $\lambda_{co}D(A) \subseteq A$.

Proposition 2.12. For subsets A, B of a space X, the following statements are true.

- 1. $A \subseteq \lambda_{co}Cl(A)$.
- 2. $\lambda_{co}Cl(A)$ is a λ_{co} -closed set in X.
- 3. $\lambda_{co}Cl(A)$ is a smallest λ_{co} -closed set, containing A.
- 4. A is a λ_{co} -closed set if and only if $A = \lambda_{co}Cl(A)$.
- 5. $\lambda_{co}Cl(\emptyset) = \emptyset$ and $\lambda_{co}Cl(X) = X$.
- 6. If A and B are subsets of the space X with $A \subseteq B$. Then $\lambda_{co}Cl(A) \subseteq \lambda_{co}Cl(B)$.
- 7. For any subsets A, B of a space X. $\lambda_{co}Cl(A) \cup \lambda_{co}Cl(B) \subseteq \lambda_{co}Cl(A \cup B)$.
- 8. For any subsets A, B of a space X. $\lambda_{co}Cl(A \cap B) \subseteq \lambda_{co}Cl(A) \cap \lambda_{co}Cl(B)$.

Proposition 2.13. Let X be a space and $A \subseteq X$. Then $\lambda_{co}Cl(A) = A \cup \lambda_{co}D(A)$.

3. λ_{co} -Connected Spaces

In this section, we define, study and characterize the λ_{co} -connected space, finally some of its properties are established.

We start this section with the following definitions.

Definition 3.1. Let X be a space and $Y \subseteq X$. Then the class of λ_{co} -open sets in Y denoted by $SO_{\lambda_{co}}(Y)$, is defined in a natural way as: $SO_{\lambda_{co}}(Y) = \{Y \cap V : V \in SO_{\lambda_{co}}(X)\}$. That is, W is λ_{co} -open in Y if and only if $W = Y \cap V$, where V is a λ_{co} -open set in X. Thus, Y is a subspace of X with respect to λ_{co} -open set.

Definition 3.2. A space X is said to be λ_{co} -connected if there does not exist a pair A, B of nonempty disjoint λ_{co} -open subset of X such that $X = A \cup B$, otherwise X is called λ_{co} -disconnected. In this case, the pair (A, B) is called a λ_{co} -disconnection of X.

Definition 3.3. Let X be a space and $\lambda:SO(X) \to P(X)$ an s-operation, then the family $SO_{\lambda_{co}}(X)$ is called λ_{co} -indiscrete space if $SO_{\lambda_{co}}(X) = \{\emptyset, X\}$.

Definition 3.4. Let X be a space and $\lambda:SO(X) \to P(X)$ an s-operation then the family $SO_{\lambda_{co}}(X)$ is called a λ_{co} -discrete space if $SO_{\lambda_{co}}(X) = P(X)$.

Example 3.5. Every λ_{co} -indiscrete space is λ_{co} -connected.

We give in below a characterization of λ_{co} -connected spaces, the proof of which is straight forward.

Theorem 3.6. A space X is λ_{co} -disconnected (resp. λ_{co} -connected) if and only if there exists (resp., does not exist) a nonempty proper subset A of X, which is both λ_{co} -open and λ_{co} -closed in X.

Theorem 3.7. Every λ -connected space is λ_{co} -connected.

Let X be λ -connected, then there does not exist a pair A, B of nonempty disjoint λ -open subset of X such that $X = A \cup B$, but every λ_{co} -open set is a λ -open set by Proposition 2.3, so there does not exist a pair A, B of nonempty disjoint λ_{co} -open subset of X such that $X = A \cup B$. Thus X is λ_{co} -connected.

The converse of Theorem 3.7, is not true in general as it is shown by the following example. **Example 3.8.** Let $X = \{a, b, c\}$, and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. We define an s-operation $\lambda : SO(X) \to P(X)$ as follows:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\}, \\ X & \text{otherwise} \end{cases}$$

 $SO(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}.$ $SO_{\lambda}(X) = \{\emptyset, \{a\}, X\}.$

 $SO_{\lambda_{co}}(X) = \{\emptyset, X\}.$

We have X is λ_{co} -connected, but it is not λ -connected.

Definition 3.9. Let X be a space and $A \subseteq X$. The λ_{co} -boundary of A, denoted by $\lambda_{co}Bd(A)$, is defined as the set $\lambda_{co}Bd(A) = \lambda_{co}Cl(A) \cap \lambda_{co}Cl(X \setminus A)$.

Theorem 3.10. A space X is λ_{co} -connected if and only if every nonempty proper subspace has a nonempty λ_{co} -boundary.

Suppose that a nonempty proper subspace A of a λ_{co} -connected space X has empty λ_{co} -boundary. Then A is λ_{co} -open and $\lambda_{co}\operatorname{Cl}(A)\cap\lambda_{co}\operatorname{Cl}(X\backslash A)=\emptyset$. Let p be a λ_{co} -limit point of A. Then $p\in\lambda_{co}\operatorname{Cl}(A)$, but $p\notin\lambda_{co}\operatorname{Cl}(X\backslash A)$. In particular $p\notin(X\backslash A)$ and so $p\in A$. Thus A is λ_{co} -closed and λ_{co} -open. By Theorem 3.6, X is λ_{co} -disconnected. This contradiction gives that A has a nonempty λ_{co} -boundary.

Conversely, suppose X is λ_{co} -disconnected. Then by Theorem 3.6, X has a proper subspace A which is both λ_{co} -closed and λ_{co} -open. Then $\lambda_{co}\operatorname{Cl}(A) = A$, $\lambda_{co}\operatorname{Cl}(X \setminus A) = (X \setminus A)$ and $\lambda_{co}\operatorname{Cl}(A) \cap \lambda_{co}\operatorname{Cl}(X \setminus A) = \emptyset$. So A has empty λ_{co} -boundary, a contradiction. Hence X is λ_{co} -connected. This completes the proof.

Theorem 3.11. Let (A, B) be a λ_{co} -disconnection of a space X and C be a λ_{co} -connected subspace of X. Then C is contained in A or in B.

Suppose that C is neither contained in A nor in B. Then $C \cap A$, $C \cap B$ are both nonempty λ_{co} -open subsets of C such that $(C \cap A) \cap (C \cap B) = \emptyset$ and $(C \cap A) \cup (C \cap B) = C$. This gives that $(C \cap A, C \cap B)$ is a λ_{co} -disconnection of C. This contradiction proves the theorem.

Theorem 3.12. Let $X = \bigcup_{\alpha \in I} X_{\alpha}$, where each X_{α} is λ_{co} -connected and $\bigcap_{\alpha \in I} X_{\alpha} \neq \emptyset$. Then X is λ_{co} -connected.

Suppose on the contrary that (A, B) is a λ_{co} -disconnection of X. Since each X_{α} is λ_{co} -connected, therefore by Theorem 3.11, $X_{\alpha} \subseteq A$ or $X_{\alpha} \subseteq A$. Since $\bigcap_{\alpha \in I} X_{\alpha} \neq \emptyset$, therefore all X_{α} are contained in A or in B. This gives that, if $X \subseteq A$, then $B = \emptyset$ or if $X \subseteq B$, then $A = \emptyset$. This contradiction proves that X is λ_{co} -connected. Which completes the proof.

Using Theorem 3.12, we give a characterization of λ_{co} -connectedness as follows:

Theorem 3.13. A space X is λ_{co} -connected if and only if for every pair of points x, y in X, there is a λ_{co} -connected subset of X, which contains both x and y.

The necessity is immediate since the λ_{co} -connected space itself contains these two points. For the sufficiency, suppose that for any two points x, y; there is a λ_{co} -connected subspace $C_{(x,y)}$ of X such that $x, y \in C_{(x,y)}$. Let $a \in X$ be a fixed point and $\{C_{(a,x)} : x \in X\}$ a class of all λ_{co} -connected subsets of X, which contain the points a, x. Then $X = \bigcup_{x \in X} C_{(a,x)}$ and $\bigcap_{x \in X} C_{(a,x)} \neq \emptyset$. Therefore, by Theorem 3.12, X is λ_{co} -connected. This completes the proof.

Theorem 3.14. Let C be a λ_{co} -connected subset of a space X and $A \subseteq X$ such that $C \subseteq A \subseteq \lambda_{co}Cl(C)$. Then A is λ_{co} -connected.

It is sufficient to show that $\lambda_{co}\operatorname{Cl}(C)$ is λ_{co} -connected. On the contrary, suppose that $\lambda_{co}\operatorname{Cl}(C)$ is λ_{co} -disconnected. Then there exists a λ_{co} -disconnection (H,K) of $\lambda_{co}\operatorname{Cl}(C)$. That is, $H \cap C$, $K \cap C$ are λ_{co} -open sets in C such that $(H \cap C) \cap (K \cap C) = (H \cap K) \cap C = \emptyset$ and $(H \cap C) \cup (K \cap C) = (H \cup K) \cap C = C$. This gives that $(H \cap C, K \cap C)$ is a λ_{co} -disconnection of C, a contradiction. This proves that $\lambda_{co}\operatorname{Cl}(C)$ is λ_{co} -connected.

4. λ_{co} -components and λ_{co} -locally connected spaces

In this section a new types of λ_{co} -component of a space X and λ_{co} -locally connected space are defined, studied and characterized and finally some of its properties are established.

Definition 4.1. A maximal λ_{co} -connected subset of a space X is called a λ_{co} -component of X. If X itself is λ_{co} -connected, then X is the only λ_{co} -component of X.

Next we study the properties of λ_{co} -components of a space X.

Theorem 4.2. Let (X,τ) be a topological space. Then:

- 1. For each $x \in X$, there is exactly one λ_{co} -component of X containing x.
- 2. Each λ_{co} -connected subset of X is contained in exactly one λ_{co} -component of X.
- 3. A λ_{co} -connected subset of X, which is both λ_{co} -open and λ_{co} -closed is a λ_{co} -component, if λ is s-regular.
- 4. Every λ_{co} -component of X is λ_{co} -closed in X.
- (1)-Let $x \in X$ and $\{C_{\alpha} : \alpha \in I\}$ be a class of all λ_{co} -connected subsets of X containing x. Put $C = \bigcup_{\alpha \in I} C_{\alpha}$, then by Theorem 3.12, C is λ_{co} -connected and $x \in X$. Suppose $C \subseteq C^1$, for some λ_{co} -connected subset C^1 of X. Then $x \in C^1$ and hence C^1 is one of the C_{α} 's and hence $C^1 \subseteq C$. Consequently $C = C^1$. This proves that C is a λ_{co} -component of X, which contains x.
- (2)-Let A be a λ_{co} -connected subset of X, which is not a λ_{co} -component of X. Suppose that C_1, C_2 are λ_{co} -components of X such that $A \subseteq C_1$, $A \subseteq C_2$. Since $C_1 \cap C_2 \neq \emptyset$, $C_1 \cup C_2$ is another λ_{co} -connected set which contains C_1 as well as C_2 , this contradicts the fact that C_1 and C_2 are λ_{co} -components. This proves that A is contained in exactly one λ_{co} -component of X.
- (3)-Suppose that A is a λ_{co} -connected subset of X which is both λ_{co} -open and λ_{co} -closed. By (2), A is contained in exactly one λ_{co} -component C of X. If A is a proper subset of C, and since λ is s-regular, therefore $C = (C \cap A) \cup (C \cap (X \setminus A))$ is a λ_{co} -disconnection of C, a contradiction. Thus, A = C.
- (4)-Suppose a λ_{co} -component C of X is not λ_{co} -closed. Then, by Theorem 3.14, $\lambda_{co}\text{Cl}(A)$ is λ_{co} -connected containing a λ_{co} -component C of X. This implies $C = \lambda_{co}\text{Cl}(A)$ and hence C is λ_{co} -closed. This completes the proof.

We introduce the following definition

Definition 4.3. A space X is said to be locally λ_{co} -connected if for any point $x \in X$ and any λ_{co} -open set U containing x, there is a λ_{co} -connected and λ_{co} -open set V such that $x \in V \subseteq U$.

Theorem 4.4. A λ_{co} -open subset of λ_{co} -locally connected space is λ_{co} -locally connected.

Let U be a λ_{co} -open subset of a λ_{co} -locally connected space X. Let $x \in U$ and V a λ_{co} -open nbd of x in U. Then V is a λ_{co} -open neighborhood of x in X. Since X is λ_{co} -locally connected, therefore there exists a λ_{co} -connected, λ_{co} -open neighborhood W of x such that $x \in W \subseteq V$. So that W is also a λ_{co} -connected and λ_{co} -open neighborhood x in U such that $x \in W \subseteq U \subseteq V$ or $x \in W \subseteq V$. This proves that U is λ_{co} -locally connected.

References

- [1] C. Dorsett, "Semi-connectedness", *Indian journal of mechanic mathematics*, vol. 17, no. 1, pp. 57-63, 1979.
- [2] A. B. Khalaf and S. F. Namiq, "-open sets and -separation axioms in topological spaces", *Journal of advanced studies in topology*, vol. 4, no. 1, pp. 150-158, 2013.
- [3] N. Levine, "Semi-open sets and semi-continuity in topological spaces", *The american mathematical monthly*, vol. 70, no. 1, pp. 36-41, 1963, doi: 10.1080/00029890.1963.11990039
- [4] S. F. Namiq, "New types of continuity and separation axiom based operation in topological spaces", MSc Thesis, University of Sulaimani, 2011.
- [5] S. F. Namiq, "co-open sets and topological properties", Submit.
- [6] S. F. Namiq, "-connected spaces via -open sets", *Journal of Garmian University*, vol. 7, pp. 165-178, 2015.
- [7] S. F. Namiq, "sc-open sets and topological properties", *Journal of Garmian University*, 2014. [On line]. Available: https://bit.ly/3tucwua
- [8] M. H. Stone, "Applications of the theory of boolean rings to general topology", *Transactions of the American Mathematical Society*, vol. 41, no. 3, pp. 375–375, Mar. 1937, doi: 10.1090/S0002-9947-1937-1501905-7