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1. Introduction

Following [3] N. Levine, 1963, defined semi open sets. Similarly, S. F. Namiq
[4], defined an operation λ on the family of semi open sets in a topological
space called semi operation, denoted by s-operation; via this operation,
in his study [7], he defined λsc-open set by using λ-open and semi closed
sets, and also following [5], he defined λco-open set and investigated several
properties of λco-derived, λco-interior and λco-closure points in topological
spaces.

In the present article, we define the λco-connected space, discuss some
characterizations and properties of λco-connected spaces, λco-components
and λco-locally connected spaces and finally its relations with others con-
nected spaces.

2. Preliminaries

In the entire parts of the present paper, a topological space is referred to by
(X, τ) or simply by X. First, some definitions are recalled and results are
used in this paper. For any subset A of X, the closure and the interior of A
are denoted by Cl(A) and Int(A), respectively. Following [8], the researchers
state that a subset A of X is regular closed if A =Cl(Int(A)). Similarly,
following [3], a subset A of a space X is semi open if A ⊆Cl(Int(A)). The
complement of a semi open set is called semi closed. The family of all semi
open (resp. semi closed) sets in a spaceX is denoted by SO(X, τ) or SO(X)
(resp. SC(X, τ) or SC(X). According to [1], a space X is stated to be s-
connected, if it is not the union of two nonempty disjoint semi open subsets
of X. We consider λ:SO(X)→ P (X) as a function defined on SO(X) into
the power set of X, P (X) and λ is called a semi-operation denoted by
s-operation, if V ⊆ λ(V ), for each semi open set V . It is assumed that
λ(∅) = ∅ and λ(X) = X, for any s-operation. Let X be a space and λ
:SO(X)→ P (X) be an s-operation, following [4], a subset A of X is called
a λ-open set, which is equivalent to λs-open set [2], if for each x ∈ A, there
exists a semi open set U such that x ∈ U and λ(U) ⊆ A. The complement of
a λ-open set is called a λ-closed. The family of all λ-open (resp., λ-closed)
subsets of a space X is denoted by SOλ(X, τ) or SOλ(X) (resp, SCλ(X, τ)
or SCλ(X)). Following [4], a λ-open subset A of X is named a λc-open set,
if for each x ∈ A, there exists a closed set F such that x ∈ F ⊆ A. The
family of all λc-open (resp., λc-closed ) subsets of a space X is denoted by
SOλc(X, τ) or SOλc(X) (resp, SCλc(X, τ) or SCλc(X)). Thus, a number of
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definitions are presented and some known results are reiterated which will
be used in the sequel.

Definition 2.1. [4] Let X be a space and λ:SO(X) → P (X) be an s-
operation, then a subset A ofX is called a λ-open set if for each x ∈ A there
exists a semi open set U such that x ∈ U and λ(U) ⊆ A. The complement
of a λ-open set is called λ-closed. The family of all λ-open (resp., λ-closed)
subsets of a topological space (X, τ) is denoted by SOλ(X, τ) or SOλ(X) (
resp., SCλ(X, τ) or SCλ(X)).

Definition 2.2. [5] A λ-open subset A of X is called a λco-open (resp.,
λc-open [4]) set if for each x ∈ A, there exists a clopen (resp., closed) set F
such that x ∈ F ⊆ A. The family of all λc-open (resp., λc-closed) subsets
of a space X is denoted by SOλc(X, τ) or SOλc(X) (resp SCλc(X, τ) or
SCλc(X)). The family of all λco-open (resp., λco-closed) subsets of a space
X is denoted by SOλco(X, τ) or SOλco(X) (resp SCλco(X, τ) or SCλco(X)).

Proposition 2.3. [4],[5] For a spaceX, SOλco(X) ⊆SOλc(X) ⊆SOλ(X) ⊆SO(X).

Definition 2.4. [2] Let X be a space, an s-operation λ is said to be s-
regular if for every semi open sets U and V containing x ∈ X, there exists
a semi open set W containing x such that λ(W ) ⊆ λ(U) ∩ λ(V ).

Definition 2.5. [6] A space X is said to be λ-connected if there does
not exist a pair A,B of nonempty disjoint λ-open subset of X such that
X = A ∪ B, otherwise X is called λ-disconnected. In this case, the pair
(A,B) is called a λ-disconnection of X.

Following [5], we used some results:

Definition 2.6. Let X be a space and A a subset of X. Then:

1. The λco-closure of A, denoted by λcoCl(A) is the intersection of all
λco-closed sets containing A.

2. The λco-interior of A, denoted by λcoInt(A) is the union of all λco-
open sets of X contained in A.

3. A point x ∈ X is said to be a λco-limit point of A if every λco-open
set containing x contains a point of A different from x, and the set
of all λco-limit points of A is called the λco-derived set of A, denoted
by λcoD(A).
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Proposition 2.7. For each point x ∈ X, x ∈ λcoCl(A) if and only V ∩A 6=
∅, for every V ∈SOλco(X) such that x ∈ V .

Proposition 2.8. Let {Aα}α∈I be any collection of λco-open sets in a topo-
logical space (X, τ), then ∪α∈IAα is a λco-open set.

Example 2.9. Let X = {a, b, c} and τ = P (X). We define an s-operation
λ:SO(X)→ P (X) as:

λ(A) =

(
A if A 6= {a}, {b},
X otherwise .

Now, we have {a, b} and {b, c} are λco-open sets, but {a, b} ∩ {b, c} = {b}
is not λco-open.

Proposition 2.10. Let λ be an s-operation and s-regular. If A and B are
λco-open sets in X, then A ∩B is also a λco-open set.

Proposition 2.11. Let X be a space and A ⊆ X. Then A is a λco-closed
subset of X if and only if λcoD(A) ⊆ A .

Proposition 2.12. For subsets A,B of a space X, the following state-
ments are true.

1. A ⊆ λcoCl(A).

2. λcoCl(A) is a λco-closed set in X.

3. λcoCl(A) is a smallest λco-closed set, containing A.

4. A is a λco-closed set if and only if A = λcoCl(A).

5. λcoCl(∅) = ∅ and λcoCl(X) = X.

6. If A and B are subsets of the space X with A ⊆ B. Then λcoCl(A) ⊆
λcoCl(B).

7. For any subsets A,B of a space X. λcoCl(A)∪λcoCl(B) ⊆ λcoCl(A∪
B).

8. For any subsets A,B of a space X. λcoCl(A ∩ B) ⊆ λcoCl(A) ∩
λcoCl(B).

Proposition 2.13. Let X be a space and A ⊆ X. Then λcoCl(A) =
A ∪ λcoD(A).
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3. λco-Connected Spaces

In this section, we define, study and characterize the λco-connected space,
finally some of its properties are established.
We start this section with the following definitions.

Definition 3.1. Let X be a space and Y ⊆ X. Then the class of λco-open
sets in Y denoted by SOλco(Y ), is defined in a natural way as: SOλco(Y ) =
{Y ∩ V : V ∈SOλco(X)}. That is, W is λco-open in Y if and only if
W = Y ∩ V , where V is a λco-open set in X. Thus, Y is a subspace of X
with respect to λco-open set.

Definition 3.2. A space X is said to be λco-connected if there does not
exist a pair A,B of nonempty disjoint λco-open subset of X such that
X = A ∪ B, otherwise X is called λco-disconnected. In this case, the pair
(A,B) is called a λco-disconnection of X.

Definition 3.3. Let X be a space and λ:SO(X) → P (X) an s-operation,
then the family SOλco(X) is called λco-indiscrete space if SOλco(X) =
{∅,X}.

Definition 3.4. Let X be a space and λ:SO(X) → P (X) an s-operation
then the family SOλco(X) is called a λco-discrete space if SOλco(X) = P (X).

Example 3.5. Every λco-indiscrete space is λco-connected.

We give in below a characterization of λco-connected spaces, the proof
of which is straight forward.

Theorem 3.6. A space X is λco-disconnected (resp. λco-connected) if and
only if there exists (resp., does not exist) a nonempty proper subset A of
X, which is both λco-open and λco-closed in X.

Theorem 3.7. Every λ-connected space is λco-connected.

LetX be λ-connected, then there does not exist a pair A,B of nonempty
disjoint λ-open subset of X such that X = A ∪ B, but every λco-open set
is a λ-open set by Proposition 2.3, so there does not exist a pair A,B of
nonempty disjoint λco-open subset of X such that X = A ∪B. Thus X is
λco-connected.

The converse of Theorem 3.7, is not true in general as it is shown by
the following example.
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Example 3.8. Let X = {a, b, c}, and τ = {∅, {a}, {b}, {a, b}, {a, c},X}.
We define an s-operation λ : SO(X)→ P (X) as follows:

λ(A) =

(
A if A = {a},
X otherwise .

SO(X) = {∅, {a}, {b}, {a, b}, {a, c},X}.
SOλ(X) = {∅, {a},X}.
SOλco(X) = {∅,X}.
We have X is λco-connected, but it is not λ-connected.

Definition 3.9. Let X be a space and A ⊆ X. The λco-boundary of A,
denoted by λcoBd(A), is defined as the set λcoBd(A) = λcoCl(A)∩λcoCl(X\
A).

Theorem 3.10. A space X is λco-connected if and only if every nonempty
proper subspace has a nonempty λco-boundary.

Suppose that a nonempty proper subspace A of a λco-connected spaceX
has empty λco-boundary. Then A is λco-open and λcoCl(A)∩λcoCl(X\A) =
∅. Let p be a λco-limit point of A. Then p ∈ λcoCl(A), but p /∈ λcoCl(X\A).
In particular p /∈ (X \A) and so p ∈ A. Thus A is λco-closed and λco-open.
By Theorem 3.6, X is λco-disconnected. This contradiction gives that A
has a nonempty λco-boundary.
Conversely, suppose X is λco-disconnected. Then by Theorem 3.6, X has a
proper subspace A which is both λco-closed and λco-open. Then λcoCl(A) =
A, λcoCl(X\A) = (X\A) and λcoCl(A)∩λcoCl(X\A) = ∅. So A has empty
λco-boundary, a contradiction. Hence X is λco-connected. This completes
the proof.

Theorem 3.11. Let (A,B) be a λco-disconnection of a space X and C be
a λco-connected subspace of X. Then C is contained in A or in B.

Suppose that C is neither contained in A nor in B. Then C ∩A, C ∩B
are both nonempty λco-open subsets of C such that (C∩A)∩(C∩B) = ∅ and
(C∩A)∪(C∩B) = C. This gives that (C∩A,C∩B) is a λco-disconnection
of C. This contradiction proves the theorem.

Theorem 3.12. Let X = ∪α∈IXα, where each Xα is λco-connected andT
α∈I Xα 6= ∅. Then X is λco-connected.
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Suppose on the contrary that (A,B) is a λco-disconnection of X. Since
each Xα is λco-connected, therefore by Theorem 3.11, Xα ⊆ A or Xα ⊆ A.
Since

T
α∈I Xα 6= ∅, therefore all Xα are contained in A or in B. This gives

that, if X ⊆ A, then B = ∅ or if X ⊆ B, then A = ∅. This contradiction
proves that X is λco-connected. Which completes the proof.

Using Theorem 3.12, we give a characterization of λco-connectedness as
follows:

Theorem 3.13. A space X is λco-connected if and only if for every pair
of points x, y in X, there is a λco-connected subset of X, which contains
both x and y.

The necessity is immediate since the λco-connected space itself contains
these two points. For the sufficiency, suppose that for any two points x, y;
there is a λco-connected subspace C(x,y) of X such that x, y ∈ C(x,y). Let
a ∈ X be a fixed point and {C(a,x) : x ∈ X} a class of all λco-connected
subsets of X, which contain the points a, x. Then X = ∪x∈XC(a,x) and
∩x∈XC(a,x) 6= ∅. Therefore, by Theorem 3.12, X is λco-connected. This
completes the proof.

Theorem 3.14. Let C be a λco-connected subset of a space X and A ⊆ X
such that C ⊆ A ⊆ λcoCl(C). Then A is λco-connected.

It is sufficient to show that λcoCl(C) is λco-connected. On the con-
trary, suppose that λcoCl(C) is λco-disconnected. Then there exists a
λco-disconnection (H,K) of λcoCl(C). That is, H ∩ C, K ∩ C are λco-
open sets in C such that (H ∩ C) ∩ (K ∩ C) = (H ∩ K) ∩ C = ∅ and
(H ∩ C) ∪ (K ∩ C) = (H ∪K) ∩ C = C. This gives that (H ∩ C,K ∩ C)
is a λco-disconnection of C, a contradiction. This proves that λcoCl(C) is
λco-connected.

4. λco-components and λco-locally connected spaces

In this section a new types of λco-component of a space X and λco-locally
connected space are defined, studied and characterized and finally some of
its properties are established.

Definition 4.1. A maximal λco-connected subset of a space X is called
a λco-component of X. If X itself is λco-connected, then X is the only
λco-component of X.
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Next we study the properties of λco-components of a space X.

Theorem 4.2. Let (X, τ) be a topological space. Then:

1. For each x ∈ X, there is exactly one λco-component of X containing
x.

2. Each λco-connected subset of X is contained in exactly one λco-
component of X.

3. A λco-connected subset of X, which is both λco-open and λco-closed
is a λco-component, if λ is s-regular.

4. Every λco-component of X is λco-closed in X.

(1)-Let x ∈ X and {Cα : α ∈ I} be a class of all λco-connected subsets
of X containing x. Put C =

S
α∈I Cα, then by Theorem 3.12, C is λco-

connected and x ∈ X. Suppose C ⊆ C1, for some λco-connected subset C
1

of X. Then x ∈ C1 and hence C1 is one of the Cα’s and hence C
1 ⊆ C.

Consequently C = C1. This proves that C is a λco-component of X, which
contains x.
(2)-Let A be a λco-connected subset of X, which is not a λco-component
of X. Suppose that C1, C2 are λco-components of X such that A ⊆ C1,
A ⊆ C2. Since C1 ∩ C2 6= ∅, C1 ∪ C2 is another λco-connected set which
contains C1 as well as C2, this contradicts the fact that C1 and C2 are λco-
components. This proves that A is contained in exactly one λco-component
of X.
(3)-Suppose that A is a λco-connected subset of X which is both λco-open
and λco-closed. By (2), A is contained in exactly one λco-component C
of X. If A is a proper subset of C, and since λ is s-regular, therefore
C = (C ∩ A) ∪ (C ∩ (X \ A)) is a λco-disconnection of C, a contradiction.
Thus, A = C.
(4)-Suppose a λco-component C of X is not λco-closed. Then, by Theorem
3.14, λcoCl(A) is λco-connected containing a λco-component C of X. This
implies C = λcoCl(A) and hence C is λco-closed. This completes the proof.

We introduce the following definition

Definition 4.3. A space X is said to be locally λco-connected if for any
point x ∈ X and any λco-open set U containing x, there is a λco-connected
and λco-open set V such that x ∈ V ⊆ U .
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Theorem 4.4. A λco-open subset of λco-locally connected space is λco-
locally connected.

Let U be a λco-open subset of a λco-locally connected space X. Let
x ∈ U and V a λco-open nbd of x in U . Then V is a λco-open neighborhood
of x in X. Since X is λco-locally connected, therefore there exists a λco-
connected, λco-open neighborhood W of x such that x ∈ W ⊆ V . So
that W is also a λco-connected and λco-open neighborhood x in U such
that x ∈ W ⊆ U ⊆ V or x ∈ W ⊆ V . This proves that U is λco-locally
connected.
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