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Abstract

The multifractal formalism for vector-valued measures holds when-
ever the existence of corresponding Gibbs-like measures, supported on
the singularities sets holds. We tried through this article to improve
a result developed by Menceur et al. in [29] and to suggest a new suf-
ficient condition for a valid mixed multifractal formalism for vector-
valued measures. We describe a necessary condition of validity for the
formalism which is very close to the sufficient one.
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1. Introduction

Recently, multifractal analysis has taken an enormous interest in the math-
ematical literature. Many authors were interested in such analysis and its
applications especially in financial time series, econo-physical data, where
the most used models are based on the past and for a long period are
linear and multi-linear models. These models have shown some inefficien-
cies especially by the discovery and the inclusion of stochastic, chaotic
and fractal factors in the mathematical models. This was one strong
cause and motivation that have led researchers to develop more sophisti-
cated approaches. Multifractal analysis has appeared firstly and has shown
some success in overcoming many problems. However, in some others,
the efforts have to be more and more developed especially for simultane-
ous time series behavior. One simple example is the financial crisis that
appears. Such a crisis like the recent American one did not affect only
the local national market but was spread and thus affected the world-
wide markets, leading thus to a simultaneous or a worldwide crisis. See
[3, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17, 18, 19, 24, 25, 29, 30, 32, 33, 44].

Mixed multifractal analysis as in the case of single one studies both
functions (signals, time series, images, ...) and measures. Indeed, some
geometric sets are essentially known by means of measures that are sup-
ported on, i.e., given a set X and a measure µ, the quantity µ(X) may
be computed as the maximum value µ(F ) for all subsets F ⊂ X. This
means that, we somehow forget the geometric structure of X and focus
instead on the properties of the measure µ. The set X is thus partitioned
into α-level sets Xµ(α) relatively to the regularity exponent of µ (see for
example [1, 2, 9, 21, 22, 23, 27, 31, 39, 40, 42, 43]). In the present work,
we will be interested to the development of a mixed multifractal analysis
of finitely many measures. So, many natural fractal-like objects that one
wants to understand do not come always from simultaneous functions, but
from simultaneous measures. This is why, in [29, 30], a mixed multifractal
formalism associated with the mixed multifractal generalizations of Haus-
dorff and packing measures and dimensions is proved, in some cases, based
on a generalization of the well known large deviation formalism. Further-
more, a mixed multifractal formalism has been proved for the Gibbs-like
measures. In general, one needs some degree of similarity to prove the
existence of Gibbs-like measures. For example, in dynamic contexts, the
existence of such measures are often natural.

As we have noticed, previously, only the scaling behavior of a single



On the mixed multifractal formalism for vector-valued measures 1017

measure by means of its Hölder exponent

αµ(x) = lim
r→0

logµ(B(x, r))

log r

has been investigated (see for example [1, 2, 9, 10, 31]). However, the
mixed multifractal analysis of measures onRn investigates the simultaneous
scaling behavior

αµ(x) = (lim
r→0

logµ1(B(x, r))

log r
, lim
r→0

logµ2(B(x, r))

log r
, . . . , lim

r→0
logµk(B(x, r))

log r
).

of finitely many measures µ1, µ2, . . . , µk, and thus µ is considered as a vec-
tor valued measure µ = (µ1, µ2, . . . , µk). It combines local characteristics
which depend simultaneously on various different aspects of the under-
lying dynamical system and provides the basis for a significantly better
understanding of the underlying dynamics. Olsen [32] conjectured a mixed
multifractal formalism which links the mixed spectrum to the Legendre
transform of mixed Rényi dimensions. Olsen obtained a general upper
bound, he also proved that this bound is equality if both measures are self-
similar with same contracting similarities. We note also that Peyrière [34]
has also guessed a general vectorial multifractal formalism that is valid un-
der some Frostman assumption. The check of this assumption proves to be
very difficult. In [11], the authors conjectured a mixed wavelet multifractal
formalism which links the mixed spectrum to the Legendre transform of a
scaling function on the simultaneous continuous wavelet transforms. They
also proved the validity of that conjecture for pairs of self-similar functions
with the same contracting similarities. In [12], the authors extended the
validity for pairs of some non-selfsimilar functions. In [44], Slimane conjec-
tured mixed wavelet leaders multifractal formalism which involves mixed
wavelet leaders scaling function.

In another context, and to overcome the problem of being non doubling,
non-hölderian measure, the authors in [13, 20, 38] introduced and studied
a relative multifractal analysis by comparing the original measure µ to an
appropriate other ν. The singularity decomposition setsXµ(α) are replaced
by two-parameters ones

Xµ,ν(α, β) =

⎧⎨⎩x
¯̄̄̄
¯̄limr↓0 log(µ(B(x, r)))log r

= α and lim
r↓0

log(µ(B(x, r)))

log(ν(B(x, r)))
= β

⎫⎬⎭.
In [4], a mixed multifractal analysis has been developed by considering
pressure-like quantities instead of Hausdorff measures. Besides, instead of
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evaluating or studying the local behavior of measures (µ(B(x, r))) by means
of diameter power lows rα, the decomposition sets Xµ(α) is replaced by

X(α) =

⎧⎨⎩x
¯̄̄̄
¯̄
Z
X
ϕdµZ

X
ψdµ

= α

⎫⎬⎭,
which yields a mixed analysis of general density-like measures. A similar
example will be explicitly developed next. See also [26], [27], [35], [36], [37],
[38].

In this paper, we have applied the techniques and results from the valid-
ity theory for multifractal formalism developed in [29, 30, 31, 41], especially
in [9] to give a systematic and detailed account of the substantially more
complicated problem of computing the mixed multifractal spectra. The
purpose of this paper is to improve the result of Menceur et al. developed
in [29] and to suggest a new sufficient condition that gives the lower bound
of the validity for the mixed multifractal formalism for vector-valued mea-
sures. We have also observed that this sufficient condition is very close to
being a necessary and sufficient one.

2. Main results

In [31], the author studied some variants of Hausdorff and packing measures
relatively to Borel probability measures on Euclidean space based on some
special set/dimension functions. More precisely, for a Borel probability
measure µ on Rn, and (q, t) ∈ R2, let

hq,t(r) = µ(B(x, r))qrt, r > 0,

Hausdorff and packing measures relatively to hq,t have been studied. One
motivation behind this construction is the fact that Hausdorff and pack-
ing measures associated with this function are in many important cases
supported on the so-called multifractal decomposition sets

Xµ(α) =

⎧⎨⎩x
¯̄̄̄
¯̄limr↓0 log(µ(B(x, r)))log r

= α

⎫⎬⎭(2.1)

for a suitable choice of α and suitable measure µ such as doubling, Holde-
rian, Gibbs, etc, and provide powerful tools for computing the Hausdorff
and packing dimensions of this set. Olsen applied a large deviation formal-
ism to construct Gibbs measures ν on these sets and used the Billingsley
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theorem to deduce the dimension of Xµ(α) from modifid sets Xν(f(α)) for
some suitable function f .

There are several existing extensions of [31] which resemble to the
present one (and thus constitutes motivations also) where the authors con-
sidered the dimension function

hq,t(r) = µ(B(x, r))qrt, r > 0,

which in some sense means that we compare again the measure µ to the
powers of the diameter.

In the present paper, one aim is to investigate Hausdorff and packing
measures based on the following more general dimension function

Hq1,...,qk,t(r) = µ1(B(x, r))
q1 . . . µk(B(x, r))

qkrt, r > 0,

for q1, . . . , qk, t ∈ R and µ1, . . . , µk are Borel probability measures on R
n.

Associated Hausdorff and packing measures are introduced based on the
dimension function Hq1,...,qk,t. Observe that if k = 1, we obtain

Hq,t(r) = hq,t(r)

for all q, t ∈ R, and the Hausdorff and packing measures based on Hq1,...,qk,t

are therefore extensions of the Hausdorff and packing measures based on
hq,t in [31].

We now introduce our main results. Let µ1, µ2, ..., µk be the prob-
ability measures on Rd with a common support equal to K. Let also
q = (q1, q2, ..., qk) ∈ Rk, t ∈ R, E ⊆ Rd be a nonempty set and δ > 0. The
mixed generalized multifractal Hausdorff measure and the mixed general-
ized multifractal packing one are defined as follows. We denote

µ(B(x, r)) =

µ
µ1(B(x, r)), µ2(B(x, r)), . . . , µk(B(x, r))

¶
and the product is

µ(B(x, r))q = µ1(B(x, r))
q1 × µ2(B(x, r))

q2 × . . .× µk(B(x, r))
qk .

We define

Pq,tµ,δ(E) = sup

(X
i

µ(B(xi, ri))
q(2ri)

t

)
,
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where the supremum is taken over all centered δ-packing of E. The mixed
multifractal packing pre-measure is then given by

Pq,tµ (E) = inf
δ>0

Pq,tµ,δ(E).

In a similar way, we define

Hq,tµ,δ(E) = inf

(X
i

µ(B(xi, ri))
q(2ri)

t

)
,

where the infinimum is taken over all centered δ-coverings of E. The mixed
multifractal Hausdorff pre-measure is defined by

Hq,tµ (E) = sup
δ>0

Hq,tµ,δ(E).

Hq,tµ is σ-subadditive but not increasing and Pq,tµ is increasing but not
σ-subadditive. That’s why Menceur et al. introduced the following mod-
ifications on the mixed generalized Hausdorff and packing measures Hq,tµ

and Pq,tµ ,

Hq,tµ (E) = sup
F⊆E

Hq,tµ (F ) and Pq,tµ (E) = inf
E⊆
S

i
Ei

X
i

Pq,tµ (Ei).

The functions Hq,tµ and Pq,tµ are metric outer measures and thus they
are measures on the family of Borel subsets of Rd. An important feature
of the mixed multifractal Hausdorff and packing measures is that,

Hq,tµ ≤ ξPq,tµ ≤ ξPq,tµ ,(2.2)

where ξ is the number related to the Besicovitch covering theorem.

The measures Hq,tµ and Pq,tµ and the pre-measure Pq,t
µ assign in the

usual way a mixed multifractal dimension to each subset E of Rd. They
are respectively denoted by dimqµ(E), Dim

q
µ(E) and ∆

q
µ(E) (see [29]).

1. There exists a unique number dim
q
µ(E) ∈ [−∞,+∞], such that

Hq,tµ (E) =

(
∞ if t < dim

q
µ(E),

0 if dimqµ(E) < t.
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2. There exists a unique number Dim
q
µ(E) ∈ [−∞,+∞], such that

Pq,tµ (E) =

(
∞ if t < Dimqµ(E),
0 if Dimqµ(E) < t.

3. There exists a unique number ∆
q
µ(E) ∈ [−∞,+∞], such that

Pq,tµ (E) =

(
∞ if t < ∆

q
µ(E),

0 if ∆
q
µ(E) < t.

Next, we define the separator functions bµ, Bµ and Λµ : R
k → [−∞,+∞]

by

bµ : q→ dimqµ(K), Bµ : q→ Dim
q
µ(K) and Λµ : q→ ∆qµ(K).

From (2.2) it follows that

bµ(q) ≤ Bµ(q) ≤ Λµ(q).

For x ∈ Rd and j = 1, 2, . . . , k, we denote

αµj (x) = lim infr→0
logµj(B(x, r))

log r
and αµj (x) = lim sup

r→0

logµj(B(x, r))

log r
.

respectively the local lower dimension and the local upper dimension of µj
at the point x and as usually the local dimension αµj (x) of µj at x will be the
common value when these are equal. Next for α = (α1, α2, . . . , αk) ∈ Rk

+,
let us introduce the fractal sets

Eα =

½
x ∈ Rd

¯̄̄
αµj (x) ≥ αj , ∀j = 1, 2, . . . , k

¾

E
α
=

½
x ∈ Rd

¯̄̄
αµj (x) ≤ αj , ∀j = 1, 2, . . . , k

¾
and

E(α) = Eα

\
Eα.

The mixed multifractal spectrum of the vector-valued measure µ is defined
by α 7→ dimH E(α) where dim stands for the Hausdorff dimension. Our
purpose in the following theorem is to improve [29, Theorem 6.1] and to
propose a new sufficient condition that gives the lower bound of the va-
lidity for the mixed multifractal formalism for vector-valued measures. To
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state Theorem 2.1, we need the notion of the Legendre transform of a func-
tion defined on Rk. For a function ϕ : Rk → R we define the Legendre
transform ϕ∗ : Rk → R by

ϕ∗(x) = inf
y

µ
hx, yi+ ϕ(y)

¶
,

where h., .i denotes the usual inner product in Rk. We need also the follow-
ing notions: ∇+ϕ and ∇−ϕ denote the left and right hand sides derivative
of ϕ for vectors inRk, respectively. We denote the derivative of the function
ϕ for vectors in Rk by ∇ϕ,

Rk
− = (−∞, 0]× (−∞, 0]× . . .× (−∞, 0]

and

Rk
+ = [0,+∞)× [0,+∞)× . . .× [0,+∞).

Theorem 2.1. Let µ = (µ1, µ2, . . . , µk) be a vector-valued probability

measure on Rd and q ∈ Rk such that Hq,Bµ(q)
µ (K) > 0. Then,

dimH

µ
E −∇+Bµ(q) ∩E

−∇−Bµ(q)
¶
≥

⎧⎪⎨⎪⎩
h−∇−Bµ(q),qi+Bµ(q), for q ∈ Rk

−,

h−∇+Bµ(q),qi+Bµ(q), for q ∈ Rk
+.

In particular, if Bµ is differentiable at q, one has

dimH E

µ
−∇Bµ(q)

¶
= dimP E

µ
−∇Bµ(q)

¶
= B∗µ(−∇Bµ(q)).

The following result proves that the condition Hq,Bµ(q)
µ (K) > 0 is very

close to being a necessary and sufficient condition for the validity of the
mixed multifractal formalism for vector-valued measures.

Theorem 2.2. Let µ = (µ1, µ2, . . . , µk) be a vector valued probability
measure on Rd and q ∈ Rk. Now, suppose that one of the following
hypotheses is satisfied,

1. dimH

µ
E −∇+Bµ(q)∩E

−∇−Bµ(q)
¶
≥ h−∇+Bµ(q),qi+Bµ(q), for q ∈

Rk
−,
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2. dimH

µ
E −∇+Bµ(q)∩E

−∇−Bµ(q)
¶
≥ h−∇−Bµ(q),qi+Bµ(q), for q ∈

Rk
+.

Then, bµ(q) = Bµ(q). That is, Hq,tµ (K) > 0 for every t < Bµ(q).

Remark 2.1. Let µ = (µ1, µ2, . . . , µk) be a vector valued probability mea-
sure on Rd and q ∈ Rk. We suppose that Bµ is differentiable at q. Then
we have

1. if Hq,Bµ(q)
µ (K) > 0, then

dimH E

µ
−∇Bµ(q)

¶
= dimP E

µ
−∇Bµ(q)

¶
= B∗µ(−∇Bµ(q)) = b∗µ(−∇Bµ(q)).

2. dimH E

µ
−∇Bµ(q)

¶
≥ B∗µ(−∇Bµ(q)), then Hq,tµ (K) > 0 for every

t < Bµ(q).

We apply the techniques of Ben Nasr et al. especially in [8] and [9] with
the necessary modifications to study the existence of an auxiliary Radon
(nontrivial) measure. More specifically, for q ∈ Rk

− by using the hypothesis

Hq,Bµ(q)
µ (K) > 0 and Frostman’s technique, there exists an auxiliary Radon

(nontrivial) measure νq satisfying

νq
³
B(x, r)

´
≤ Cµ

³
B(x, r)

´q
(2r)Bµ(q).(2.3)

In the case q ∈ Rk
+, such a construction is only possible for doubling

measures µ.

Remark 2.2. It is clear that the existence of a nontrivial measure satisfy-

ing (2.3) implies the condition Hq,Bµ(q)
µ (K) > 0. Moreover, the existence of

a measure satisfying (2.3) is strictly weaker than the existence of a Gibbs-
like measure.

Theorem 2.3. The results of Theorems 2.1, 2.2 and Remark 2.1 hold if
we replace the mixed multifractal function Bµ by Λµ.
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3. Proof of the main results

3.1. Proof of Theorem 2.1.

Before proving Theorem 2.1 we need the preliminary lemma.

Lemma 3.1. For all ηj > 0, ∀j = 1, 2, . . . , k, t ∈ R and q ∈ Rk, α ∈ Rk
+

such that hα,qi+ t ≥ 0, we have

1. if E ⊂ E
α
, is Borel then Hhα,qi+t−η(E) ≥ 2hα,qi−η Hq,tµ (E) for q ∈

Rk
−,

2. if E ⊂ Eα, is Borel then Hhα,qi+t−η(E) ≥ 2hα,qi−η Hq,tµ (E) for
q ∈ Rk

+, where η =
Pk

j=1 ηj ,

here Hα denotes the α-dimensional centered Hausdorff measure.

Proof. We treat the case q ∈ Rk
−. The other case is proved similarly. The

result is true for q = 0, so we may assume that q ∈ Rk
− \ {(0, 0, ..., 0)}.

For m ∈ N∗, write

Em =

⎧⎨⎩x ∈ E

¯̄̄̄ log ³µj(B(x, r))´
log r

≤ αj −
ηj
qj
for 0 < r <

1

m
, ∀ 1 ≤ j ≤ k

⎫⎬⎭ .

Given F ⊆ Em, 0 < δ <
1

m
and

µ
B(xi, ri)

¶
i
a centered δ-covering of

F , we have

logµj(B(xi, ri))

log ri
≤ αj −

ηj
q j

.

This implies that

µj(B(xi, ri))
qj ≤ ri

αjqj−ηj .

However, it follows that

µ(B(xi, ri))
q(2ri)

t ≤ 2trihα,qi+t−
Pk

j=1
ηj .
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We now have

Hq,tµ,δ(F ) ≤
X
i

µ(B(xi, ri))
q(2ri)

t

≤ 2−hα,qi+η
X
i

(2ri)
hα,qi+t−η.

We can deduce that

Hq,tµ,δ(F ) ≤ 2−hα,qi+ηH
hα,qi+t−η
δ (F ).

Letting δ & 0 gives that

Hq,tµ (F ) ≤ 2−hα,qi+ηHhα,qi+t−η(F )

≤ 2−hα,qi+ηHhα,qi+t−η(Em)

for all F ⊆ Em. This clearly implies that

Hq,tµ (Em) ≤ 2−hα,qi+ηHhα,qi+t−η(Em)

and the result follows since E =
[
m

Em.

Theorem 2.1 is then an easy consequence of the following lemma.

Lemma 3.2. We have, Hq,Bµ(q)
µ

µ
K \

µ
E −∇+Bµ(q) ∩E

−∇−Bµ(q)
¶¶

= 0.

Proof. Let us introduce, for α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βk)
in Rk

Xα = K \Eα and Y α = K \Eβ
.

We have just to prove that

Hq,Bµ(q)
µ

³
Xα

´
= 0, for all α < −∇+Bµ(q)(3.1)

and

Hq,Bµ(q)
µ

³
Y β
´
= 0, for all β > −∇−Bµ(q).(3.2)
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Indeed,

0 ≤ Hq,Bµ(q)
µ

³
K \

³
E −∇+Bµ(q) ∩E

−∇−Bµ(q)
´´

≤ Hq,Bµ(q)µ

³
K \

³
E −∇+Bµ(q)

´´
+Hq,Bµ(q)

µ

³
K \

³
E
−∇−Bµ(q)

´´
≤ Hq,Bµ(q)

µ

⎛⎝ [
α<−∇+Bµ(q)

Eα

⎞⎠+Hq,Bµ(q)
µ

⎛⎝ [
β>−∇−Bµ(q)

E
β

⎞⎠
≤

X
α<−∇+Bµ(q)

Hq,Bµ(q)
µ

³
Xα

´
+

X
β>−∇−Bµ(q)

Hq,Bµ(q)
µ

³
Y β
´
= 0.

We only have to prove that (3.1), the proof of (3.2) is similar. Let
α < −∇+Bµ(q), then for all 1 ≤ j ≤ k, we can choose t > 0 such that

Bµ(q1, q2, . . . , qj + t, . . . , qk) < Bµ(q)− αjt.

We denote qj + t = (q1, q2, . . . , qj + t, . . . , qk), then

Pqj+t,Bµ(q)−αjt
µ

³
K
´
= 0.

If x ∈ Xα, let δ > 0 we can find j ∈ {1, 2, . . . , k} and 0 < rx < δ such that

µj(B(x, rx)) > r
αj
x .

The family

µ
B(x, rx)

¶
x∈Xα

is then a centered δ-covering of Xα. Using Besi-

covitch’s Covering Theorem (see [28]), we can construct ξ that are finite or
countable sub-families

µ
B(x1p, r1p)

¶
p
, . . . ,

µ
B(xξp, rξp)

¶
p
such that eachXα ⊆

ξ[
i=1

[
p

B(xip, rip)

and

µ
B(xip, rip)

¶
p
is a δ-packing of Xα. Observing that

µ(B(xip, rip))
q(2rip)

Bµ(q) ≤ 2αjtµ(B(xip, rip))qj+t(2rip)Bµ(q)−αjt.

This clearly implies that

Hq,Bµ(q)
µ,δ (Xα) ≤ ξ2αjtPqj+t,Bµ(q)−αjt

µ,δ (Xα).
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Letting δ → 0, we obtain

Hq,Bµ(q)
µ (Xα) ≤ ξ2αjtPqj+t,Bµ(q)−αjt

µ (Xα).

We can replace Xα by any arbitrary subset of Xα. Then by standard argu-
ments we can finally conclude that

Hq,Bµ(q)
µ (Xα) ≤ ξ2αjtPqj+t,Bµ(q)−αjt

µ (K) = 0.

3.2. Proof of Theorem 2.2.

We have, for q ∈ Rk
+

E −∇+Bµ(q) ∩E
−∇−Bµ(q) ⊆ E

−∇−Bµ(q),

this clearly implies that

dimH

³
E
−∇−Bµ(q)

´
≥ dimH

³
E −∇+Bµ(q) ∩E

−∇−Bµ(q)
´
≥ h−∇−Bµ(q),qi+Bµ(q).

Suppose that α = −∇−Bµ(q). We only prove the case where q ∈ Rk
+.

The other one is similar. Then

dimH

µ
E
α
¶
≥ hα,qi+Bµ(q).

For this, we have that
bµ(q) ≤ Bµ(q).

It is, then, sufficient to prove bµ(q) ≥ Bµ(q). Let t < Bµ(q) and choose
β = (β1, . . . , βk) such that β > α and hβ,qi + t < hα,qi + Bµ(q). For
p ∈ N we consider the set

Fp =

½
x ∈ E

α
¯̄̄
µj(B(x, r)) ≥ rβj , 0 < r <

1

p
, ∀ 1 ≤ j ≤ k

¾
.

It is clear that Fp % E
α
as p→∞. It follows that, there exists p > 0, such

that
dimH(Fp) > hβ,qi+ t⇒ Hhβ,qi+t(Fp) > 0.

Let 0 < δ < 1
p and

µ
B(xi, ri)

¶
i
is a centered δ-covering of Fp. Then,X

i

µ(B(xi, ri))
q(2ri)

t ≥ 2−hβ,qi
X
i

(2ri)
hβ,qi+t.

This shows that

Hq,tµ (K) ≥ Hq,tµ (E
α
) ≥ Hhβ,qi+t(Fp) > 0.

It follows that t ≤ bµ(q). Finally, we get bµ(q) = Bµ(q).
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