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1. Introduction

Graph Theory is an important tool for analysing different types of networks.

In this sense, the concept of centrality, introduced by [1] in the context
of social networks, is used to measure the relevance of actors (vertices)
appearing in the network. Some applications of this concept in different
areas can be seen in [11,16,17,9].

Due to the diversity of characteristics that networks modelling real sit-
uations can present, a large number of centrality measures have already

been defined and its properties have been studied [4,7,12]. Among them,
we can mention degree centrality, eigenvector centrality and closeness
centrality. In this work we introduce a new centrality measure: spectral
closeness centrality. Two important concepts in network analysis are
behind these measures: number of connections and distance between
nodes. The first two measures, degree and eigenvector centralities,
concern the amount of connections. The degree centrality of a vertex
considers only the connections of this vertex, whereas the eigenvector
centrality takes into account the degree of the vertex and that of its
neighbours, being, in many applica- tions, a more accurate measurement.
Likewise, the closeness centrality of a vertex considers only the distances
of this vertex to all the others in the network. The measure proposed
here, as well as the eigenvector in relation to degree centrality, also
considers the relative position of the other vertices in the network.

The spectral content of the proposed measure implies that discussing
its properties, necessarily, involve Spectral Graph Theory. In particular, we
use statements about the values assumed by the entries of the eigenvector
associated with the largest eigenvalue of the distance matrix of a graph.

The article is structured in three sections besides this introduction. In
the next section we present the definitions and basic concepts, necessary
for the development of this work.

In Section 3 we introduce the new centrality, the spectral closeness and,
from a computational search, we establish comparisons with the closeness
centrality. Also in this section we provide some properties about this mea-
sure as a consequence of results from literature on the principal eigenvector
of the distance matrix.

In the last section we present a sufficient condition for a graph to have
the same vertex as more central, according to the centralities of closeness
and spectral closeness. Similar problems were considered in the context of
degree and eigenvector centralities [7,8].
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Concluding, we analyze the behavior of this new centrality in certain
families of graphs, comparing the order of the vertices obtained by it and
by the closeness. We obtain results in the class of thresholds and for some
subfamilies of cographs. In addition, we have introduced an infinite family
of graphs for which the ordering by the two centralities is always different.

2. Preliminaries

In this work, G(V,E), or simply G, denotes a simple and undirected graph
on n vertices. We denote the set of neighbours of a vertex v ∈ V (G) by
N(v). For the degree of v, |N(v)|, we use deg(v). If N(v) = V (G)\{v}, v
is called a dominant vertex. If it has exactly 1 neighbour, it is called a
pendant vertex and if it does not have neighbours, it is called an isolated
vertex.

The adjacency matrix of a graph G, A(G) = [ai,j ], is the square matrix
of order n, such that ai,j = 1, if vi and vj are adjacent and ai,j = 0,
otherwise.

The distance matrix of a connected graph G, D(G) = [di,j ], is the
square matrix of order n, such that di,j = d(vi, vj), where d(vi, vj) is the
distance (the length of a shortest path) between vertices vi and vj of G.
For 1 ≤ i ≤ n, the sum of the distances from vi to all other vertices in G
is known as the transmission of the vertex vi and is denoted by Tr(vi). If
all the vertices of the graph have the same transmission then the graph is
said to be regular transmission.

From now on, all the considered graphs are connected. We will refer to
the largest eigenvalue of A(G) and D(G), respectively, as adjacency index
and distance index.

Remark 2.1. If G is a connected graph, both A(G) and D(G) are sym-
metric, irreducible and nonnegative. By Perron-Fronebius Theorem (see
[10], for example), the adjacency and the distance indices of G have mul-
tiplicity equal to 1, each of these indices being associated with a single
positive unitary eigenvector (for a fixed norm), oftenly called the principal
eigenvector of the matrix.

Let G be a connected graph and vi ∈ V (G). The simplest of the cen-

trality measures is the degree, proposed by [21]. We present below
this definition and also the definition of eigenvector centrality,
introduced by[2]:
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• Degree centrality of vi is defined by cd(vi) = deg(vi), that is, the
degree of vertex vi.

• Eigenvector Centrality of vi is defined by cev(vi) = xi =
1

λ

P
k∈N(vi)

xk,

where xi is the i-th coordinate of the unit positive eigenvector asso-
ciated to the adjacency index of the graph.

While the degree centrality takes into account the vertex neighbours,
the eigenvector centrality considers not only the number of neighbours of
the vertex but also its relevance. In this sense, the eigenvector centrality is
considered as an extension of degree centrality.

In many networks the distance between the vertices is an essential in-
formation. In this sense, [19] introduced the closeness centrality:
• Closeness centrality of vi is defined by cc(vi) =

1
nP

k=1
dvi,vk

=
1

Tr(vi)
,

that is, the inverse of the sum of the distances from vi to all other
vertices of the graph.

3. Spectral closeness centrality

Motivated by the fact that the eigenvector centrality extends, in some sense,
the degree centrality, by giving more information about the structure of the
graph, we propose a new centrality measure, called spectral closeness, that
extends the closeness centrality.

Definition 3.1. The spectral closeness of vi is defined by csc(vi) =
1
xi
,

where xi is the i-th coordinate of the unit positive eigenvector associated
with the distance index of the graph.

It follows from Remark 2.1 that the spectral closeness centrality is well
defined. Moreover, if ∂ and x = (x1, . . . , xn) are, respectively, the index
and the unit positive eigenvector associated with the matrix D(G) then,
from Dx = ∂x, we conclude that

xi =
1

∂

nX
k=1

dvi,vkxk ⇐⇒ csc(vi) =
1

xi
=

∂
nP

k=1
dvi,vkxk

.(3.1)
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Thus, from the Equation 1, a vertex vi becomes more central with

respect to spectral closeness if and only if
nP

k=1
dvi,vkxk is minimum among

all the vertices of G, which means that the centrality of vi depends on the
sum of the centralities of all vertices of G, weighted by its entries in the
principal eigenvector. So, reduced value for its transmission (only condition
that was present in closeness centrality) is still important. In addition,
this centrality also attributes importance to vi according to the number of
vertices distant from vi that have small values associated in the principal
eigenvector. That is, if vi has a small transmission and furthermore vi is far
away from other central vertices (therefore, close to less central vertices),
then vi tends to become more important.

From the interprepation above, a natural question to be made is how the
ordering of vertices relevance according to closeness and spectral closeness
are related. Comparing the behavior of these two centralities in an example,
we verify that these two measures differ from each other.

Example 3.2. For the graph of Figure 3.1, we have the followings values
for closeness centrality and spectral closeness centrality.

cc(v1) cc(v6) cc(v7) cc(v2) cc(v5) cc(v8) cc(v9) cc(v3) cc(v4)

0, 067 0, 067 0, 067 0, 059 0, 059 0, 059 0, 055 0, 053 0, 053

csc(v1) csc(v6) csc(v7) csc(v2) csc(v5) csc(v8) csc(v9) csc(v3) csc(v4)

3, 340 3, 332 3, 291 3, 021 3, 014 2, 947 2, 806 2, 744 2, 737

Note that there is a lot of ties in ordering considering closeness cen-
trality, the only vertex that does not admit another one with the same
centrality is v9, while using the spectral closeness, we get a strict ordering
of the vertices.
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Figure 3.1: Only v9 does not admits another vertex with same closeness
centrality.

Computationally, by using the softwares nauty and Traces,[15], and
SageMath[20] we could compare the sets of more central vertices accord-
ing to these measures. The results, concerning all connected graphs on

n vertices, 5 ≤ n ≤ 10, and all trees up to 21 vertices are exhibit in
Table 3.1 and Table 3.2, respectively. For a connected graph G(V,E)
on n vertices with principal distance eigenvector x = (x1, x2, . . . , xn), we
denote by T the set of vertices with greatest closeness centrality, T =½
v ∈ V : Tr(v) = min

1≤k≤n
Tr(xk)

¾
, and by W the set of vertices with great-

est spectral closeness centrality, W =

½
v ∈ V : xv = min

1≤k≤n
xk

¾
.

The computational experiments reinforce the idea that the transmis-
sions and the entries of the main distance eigenvector are related, which, in
the context of centralities, indicates that the spectral closeness could refine
the closeness since the first one consider more elements of the structure of
the graph and, in most of the cases, we get W ⊆ T. More than this, in all
tested cases, |W | ≤ |T |.

In Figure 3.2 we exhibit all 7 connected graphs with 10 vertices with no
intersection between sets T andW. Those are the smallest graphs with such
property. This is also the smallest number of vertices so that a graph has
just one vertex with the largest closeness centrality, just one vertex with

pc
fig-1
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n Graphs W ⊆ T W = T |W | < |T | |W | = |T |
5 21 21 19 2 19

6 112 112 93 19 93

7 853 853 634 219 634

8 11117 11117 7560 3557 7560

9 261080 261080 166573 94507 166573

10 11716571 11716564 7209084 4507486 7209085

Table 3.1: Comparing centralities among connected graphs.

n Trees W ⊆ T W = T |W | < |T | |W | = |T |
11 235 235 235 0 235

12 551 551 361 190 361

13 1301 1301 1301 0 1301

14 3159 3159 2031 1128 2031

15 7741 7741 7741 0 7741

16 19320 19320 12765 6555 12765

17 48629 48620 48620 0 48629

18 123867 123867 83112 40755 83112

19 317955 317641 317641 0 317955

20 823065 823065 564945 258120 564945

21 2144505 2139619 2139619 0 2144505

Table 3.2: Comparing centralities among trees.

the largest spectral closeness centrality, and they are different. Restricting
this search to trees, the smallest one has order 17. In Figure 3.3 we show
one of the 9 trees with this property.
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Figure 3.2: Smallest graphs with W ∩ T = ∅. Red and green vertices rep-
resent, respectively, vertices with greatest closeness and greatest spectral
closeness measures.

Figure 3.3: Tree on 17 vertices where v1 has the largest spectral closeness
centrality and v2 the largest closeness centrality.

pc
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fig-3
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In the remainder of this section, we present some theoretical results
on this new centrality, based on already known properties concerning the
entries of the principal eigenvector for the distance matrix of a graph. We
shall now present some immediate consequences, adapted to the concept of
spectral closeness centrality. For this purpose, it is enough to note that if
vi, vj ∈ V (G) with corresponding entries in the distance principal eigenvec-
tor xi, xj then

xi > xj ⇔ csc(vi) =
1

xi
<
1

xj
= csc(vj).

In [22] it was established a relationship between the entries of the
prin- cipal eigenvector of the distance matrix when there is an
automorphism between the corresponding vertices. In the context of
spectral closenesscentrality, we have the following relation:

Proposition 3.3. Let G be a connected graph and vi, vj ∈ V (G). If there
is an automorphism φ of G such that φ(vi) = vj then csc(vi) = csc(vj).

Note that if G is a regular transmission graph, then all its vertices have
the same spectral closeness centrality. In fact, since the sum of entries in
each line of D(G) is constant, then this matrix has as its principal eigen-
vector 1 = (1, 1, . . . , 1)T . So, regular transmission graphs play an analo-
gous role for the spectral closeness centrality to that performed by regular
graphs with respect to the eigenvector centrality since, in the second case,
the principal eigenvector for A(G) is also 1 and all vertices have the same
eigenvector centrality. Anyway, we point out that the converse of Propo-
sition 3.3 is not true, in general. As an example, we can consider the non
regular graph presented in Figure 3.4. As deg(v1) = deg(v2), there is no
automorphism of G mapping v1 in v2. But, as all vertices have transmission
equal 14, all vertices have the same spectral closeness centrality.
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Figure 3.4: Graph with all vertices having the same spectral closeness cen-
trality, without automorphism between v1 and v2

The next result was presented firstly, in the context of the principal
eigenvector for the distance matrix, in [18].
Proposition 3.4. Let G be a connected graph with n ≥ 3. vertices. If vj
is a pendant vertex adjacent to vi in G, then csc(vi) > csc(vj).

Still in this work, the authors stated other properties concerning trees.

Proposition 3.5. Let T be a tree with n ≥ 3 vertices.
• The vertex of largest spectral closeness centrality occurs at an in-
ner vertex. Moreover, the maximum spectral closeness centrality can
occur in at most two vertices and, in this case, they are adjacents.

• The smallest spectral closeness centrality occurs at a pendant vertex
and it may occur at several vertices.

In[13] and [14] it was proven a relation between the vertices transmis-
sions and also a relation between the entries of the principal eigenvector for
the distance matrix, respectively, when there is an inclusion between the
set of neighbours of the corresponding vertices, implying that:

Proposition 3.6. Let G be a connected graph and vi, vj ∈ V (G). If
N(vj)\{vi}N(vi)\{vj} , then cc(vi)>cc(vj). Moreover, if
N(vi)\{vj} = N(vj)\{vi} , then cc(vi) = cc(vj).

pc
fig-4
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Proposition 3.7. Let G be a connected graph and vi, vj ∈ V (G). If
N(vj)\{vi}N(vi)\{vj} , then csc(vi)>csc(vj). Moreover, if N(vi)\{vj} =
N(vj)\{vi} , then csc(vi) = csc(vj).

As a consequence, we can enunciate:

Proposition 3.8. Let G be a connected graph and S ⊂ V (G), S = ∅,
the set of dominant vertices of G. The more central vertices according to
closeness and spectral closeness centralities are exactly the vertices of S.

Proof. If v1 is a dominant vertex and v2 /∈ S, then N(v2) \ {v1}N(v1) \
{v2} and the result follows from Proposition 3.6 and Proposition 3.7. 2

4. Ordering vertices by closeness and spectral closeness cen-
tralities

As shown before, the vertices of a graph can have different ordering accord-
ing closeness and spectral closeness centralities. In this section we discuss
conditions and families of graphs where it is possible to guarantee that the
more central vertices, according to these centralities, coincide and cases
where it does not coincide.

4.1. Conditions on the distance index

Here, we obtain a similar condition to that presented by [8] comparing
degree and eigenvector centralities, but now considering closeness and
spectralcloseness centralities.

Throughout this subsection, we consider a connected graph G(V,E) on
n vertices, with transmissions Tr1 ≤ Tr2 ≤ . . . ≤ Trn, and unit positive
eigenvector x = (x1, x2, . . . , xn), associated with the distance index ∂. Also,
we denote

U =

½
v ∈ V (G) : xv = max

1≤k≤n
xk,

¾
,

W =

½
v ∈ V (G) : xv = min

1≤k≤n
xk

¾
, Tmin(U) = min {Tr(v) : v ∈ U} and

Tmax(W ) = max {Tr(v) : v ∈W} .We remember that xv = min {xk : 1 ≤ k ≤ n}
means that the largest spectral closeness centrality is attainned in this ver-
tex. Similarly, if Tr(v) = Tr1 then v has the largest closeness centrality in
G.

Initially we get a new bound for the distance index of a connected graph.
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Theorem 4.1. Let G be a connected graph. D(G). Then, Tmax(W ) ≤ ∂ ≤
Tmin(U), with equality occurring if, and only if, G is regular transmission.

Proof. We will prove just the second inequality, since the other can be
get analagously. Let v ∈ U such that Tr(v)=Tmin(U). So,

∂ =
1

xv

nX
k=1

dk,vxk ≤
nX

k=1

dk,v = Tr(v) = Tmin(U).(4.1)

If equality holds in Equation 4.1, then,
nP

k=1
dk,vxk =

nP
k=1

dk,vxv. As 0 <

xk ≤ xv, it implies xk = xv ∀k ∈ V (G) and G is regular transmission. 2
It is well known (see [5], for instance) the following bounds for the

distance index: Tr1 ≤ ∂ ≤ Trn. Actually, whenever the sets W and

T =

½
v ∈ V : Tr(v) = min

1≤k≤n
Tr(xk)

¾
, are disjoint, the lower bound from

Theorem 4.1 improves this bound. It happens for all graphs presented in
Figure 3.2 and Figure 3.3. In the last case, for example, the lower bound
is improved from 31 to 32. Analogously, the same improvement can be
applied to the upper bound.

The next results are essential to ensure a sufficient condition for the
vertex with the largest spectral closeness centrality has also the largest
closeness centrality.

Corollary 4.2. Let G be a connected graph and v ∈ V (G) such that
xv = min

1≤k≤n
xk. If w ∈ V is such that Tr(w) > ∂ then xw > xv.

Proof. If xw = xv, it would imply w ∈ W and Tr(w) ≤ Tmax(W ) ≤ ∂.
Contradiction. 2

Proposition 4.3. Let G be a connected graph and v ∈ V (G) such that
xv = min

1≤k≤n
xk. If Tr1 = Tr2 = . . . = Trk ≤ ∂ < Trk+1 ≤ . . . Trn, for some

1 ≤ k ≤ n− 1, then Tr(v) = Tr1.

Proof. If v ∈ V (G) is such that xv = minxi, by Corollary 4.2, Tr(v) ≤ ∂
and, then, Tr(v) = Tr1. 2

Finally, in the next theorem we have a sufficient condition for a graph
to have exactly one vertex with the largest closeness centrality and spectral
closeness centrality.
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Theorem 4.4. Let G be a connected graph. If Tr2 > ∂ then there is a
unique v ∈ V (G) such that xv < mini=v xi and Tr(v) = Tr1 < Tr2.

Proof. Let v ∈ V (G) such that Tr(v) = Tr1. Then, Tr(v) ≤ ∂ <
Tr2. Moreover, if w ∈ V is such that xw = minxi, from Proposition 4.3,
Tr(w) = Tr(v), and w = v. 2

Example 4.5. Let Sn be a star on n ≥ 3 vertices. Its values for trans-
missions are Tr1 = n − 1 and Tr2 = Tr3 = . . . = Trn = 2n − 3.
More than this, as ρ(Sn) = n − 2 +

p
(n− 2)2 + (n− 1), it follows that

Tr1 < ρ(Sn) < Tr2 = . . . = Trn. So, the dominant vertex of the star is the
only one that attains the largest value for closeness and closeness spectral
centralities.

It is easy to check that the vertices of the star are ordered in the same
way by considering the closeness and the spectral closeness centralities. In
fact, the star is a threshold graph. We prove in the sequence that, for this
family of graphs, both spectral closeness and closeness centralities provide
the same ordering of vertices.

4.2. Threshold Graphs and Cographs

Threshold graphs were introduced in [6] and they have applications in
several areas. We remind that a threshold graph G of order n can be
obtained through an iterative process that begins with an isolated vertex
and, at each step, either a new isolated vertex is added, or a vertex adjacent
to all previous one is added. Thus, a threshold graph can be represented
by a binary sequence (b1, b2, . . . , bn), where bi = 0 means the addition of an
isolated vertex and bi = 1 the addition of a dominant vertex. Considering
a connected threshold graph, we have bn = 1.

We determine how to order the vertices of a threshold graph according
to the closeness centrality and spectral closeness centrality .

Theorem 4.6. LetG be a connected threshold graph with binary sequence
(0, b2, . . . , bn−1, 1). Then, the ordering of the vertices of G, according to
the spectral closeness centrality is csc(v1) ≥ csc(v2) ≥ . . . ≥ csc(vm) ≥
csc(w1) ≥ csc(w2) ≥ . . . ≥ csc(wk), m+ k = n, where:

• All vertices vi, 1 ≤ i ≤ m, correspond to numbers 1 in the binary
sequence of G; all vertices wj , 1 ≤ j ≤ k, correspond to numbers 0 in
the binary sequence of G;



230 C. M. da Silva Jr., R. R. Del-Vecchio and B. B. Monteiro

• csc(vm) = csc(w1) if and only if b2=1;

• csc(vi) ≥ csc(vj) if and only if vi is associated with an entry in the
binary sequence of G after that associated with vj ; csc(vi) = csc(vj) if
and only if vi and vj are vertices associated with consecutive entries
in the binary sequence;

• csc(wi) ≥ csc(wj) if and only if wi is associated with an entry in the
binary sequence of G previous to that associated with wj ; csc(wi) =
csc(wj) if and only if wi e wj are vertices associated with consecutive
entries in the binary sequence.

Proof. Let G be a threshold graph with binary sequence
(0, b2, . . . , bn−1, 1.) Note that the vertices associated with number 1 in the
binary sequence determine, from left to right, an increasing sequence of
“nesting neighbourhood sets” in the sense that, if bi = bj = 1 and i < j,
then N(vi)\ {vj} ⊂ N(vj)\ {vi} . Moreover, N(vi)\ {vj} = N(vj)\ {vi} if,
and only if, j = i + 1. In this way, it follows from Theorem 3.7 that, if
bi = bj = 1 and i < j then csc(vi) ≤ csc(vj), with equality holding if,
and only if, j = i + 1. Still, by analogous argument, the vertices related
with number 0 in the binary sequence determine, from left to right, a
decreasing sequence of “nesting neighbourhood sets”. Again by Theorem
3.7, if bi = bj and i < j then csc(vi) ≥ csc(vj), with equality holding if, and
only if, j = i+ 1. For finishing the proof, it remains to note that if i0 ∈ N
is the smallest index such that bi0 = 1 and j0 ∈ N is the smallest index
such that bj0 = 0, then neste caso, que N(vj)\ {vj0} ⊂ N(vi0)\ {vj0} , with
equality holding if, and only if, j0 = 1 and i0 = 2. 2

By Proposition 3.6, it is possible to obtain an analogous result to The-
orem 4.6 replacing, in its statement, spectral closeness centrality by close-
ness centrality. Therefore, both measures order the vertices of a connected
threshold graph in the same way.

Theorem 4.7. Every connected threshold graph presents the same order-
ing of vertices according to closeness and spectral closeness centralities.

From now on, as usual, we denote by Pn, Cn and Kn, respectively, the
path, cycle and complete graph on n vertices. For graphs G and H and
p ∈ N, pG denotes the disjoint union of p copies of G and G ∨H denotes
the join of the graphs G and H.

A cograph is a graph free of P4. As thresholds are graphs free of P4, C4
and 2K2, a natural question would be to check whether the above result
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can be extended to cographs. The answer is negative, as shown in the
graph presented in Figure 4.1. In this case, the central vertices according to
closeness and spectral closeness centralities are not the same. For closeness,
the largest centrality is attained for {v3, v4, v7, v8, v9, v10}, while for spectral
closeness, the largest centrality is attained just for {v3, v4}.

Figure 4.1: Cograph where the set of more central vertices according to
spectral closeness centrality is strictly included in the set of vertices with
largest closeness centrality.

However, we present below two families of non-threshold cographs where
the ordering of the vertices by the two centralities considered here always
coincide.

Proposition 4.8. For p, q ∈ N, let G = pC4 ∨ Kq. The more central
vertices according to closeness centrality and spectral closeness centrality
coincide.

Proof. In fact, from Corollary 3.8, the set of vertices that induce Kq

are the more central in both centralities. 2

Proposition 4.9. For p, q ∈ N, with p < q, let G = pC4 ∨ qC4. The
more central vertices according to closeness centrality and spectral closeness
centrality coincide.

Proof. Let v1, v2 ∈ V (G) be vertices from the subgraph induced by
pC4 and qC4, respectively. From Proposition 3.3 it is enough to prove that

pc
fig-5
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cc(v1) > cc(v2) and that csc(v1) > csc(v2). For the first inequality, note that
Tr(v1) = 8p+ 4q − 4, Tr(v2) = 8q + 4p− 4 and Tr(v1) < Tr(v2).

For the second one, let M be the natural quotient matrix associated
with D(G). Then,

M =

Ã
8p− 4 4q
4p 8q − 4

!
,

is a matrix with largest eigenvalue ∂ = 4(
p
p2 − pq + q2 + p+ q − 1) asso-

ciated with the eigenvector z =

µ
p−q+
√
p2−pq+q2
p , 1

¶T
. As

p− q +
p
p2 − pq + q2 < p, it follows that csc(v1) > csc(v2). 2

4.3. k-bal Graphs

We finalize this work constructing a family of graphs where the more cen-
tral vertices, according to closeness and spectral closeness centralities, are
always different, called k-bal graphs. Moreover, we completely order the
vertices according these centralities and discuss the vertices pointed as more
central, through the interpretation for the spectral closeness centrality, pre-
sented in Section 3.

For k ∈ N, let Gk = Kk+1 ∪ v2 ∪ Sk+1. Let’s denote V (Kk+1) =
{v1, c1, c2 . . . , ck} and V (Sk+1) = {v3, s1, s2, . . . , sk}, where d(v3) = k. We
call a k-bal the graph on 2k+3 vertices obtained by adding the edges v1v2
and v2v3 in Gk. In Figure 4.2 we exhibit the 8-bal graph.

Figure 4.2: Graph 8-bal.

pc
fig-6
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Theorem 4.10. If G is a k-bal graph on k ≥ 8, then:

• cc(v2) > cc(v1) = cc(v3) > cc(c1) = cc(c2) = . . . = cc(ck) > cc(s1) =
cc(s2) = . . . = cc(sk)

• csc(v3) > csc(v2) > csc(v1) > csc(c1) = csc(c2) = . . . = csc(ck) >
csc(s1) = csc(s2) = . . . = csc(sk)

Proof. For the closeness centrality, by direct calculation, it follows that
cc(v1) = (4k + 3)−1, cc(v2) = (4k + 2)−1, cc(v3) = (4k + 3)−1, cc(ci) =
(5k + 5)−1, cc(si) = (6k + 4)−1, 1 ≤ i ≤ k and the first part of the result is
proven.

For the second part, from Proposition 3.3 it follows that csc(ci) = csc(cj)
and csc(si) = csc(sj) for i, j ∈ {1, ..., k}. So, to completely order the vertices
of G by the spectral closeness centrality, if the principal eigenvector for
D(G) is x = (xs1 , . . . , xsk , xc1 , . . . , xck , xv1 , xv2 , xv3)

T , it is enough to
prove that xsk > xck > xv1 > xv2 > xv3 or, analogously, that all entries
of the vector yk = (xsk − xck , xck − xv1 , xv1 − xv2 , xv2 − xv3 , xv3)

T are
positive.

Let Mk be the natural quotient matrix associated with D(G), that is,

Mk =

⎛⎜⎜⎜⎜⎜⎝
2(k − 1) 4k 3 2 1
4k (k − 1) 1 2 3
3k k 0 1 2
2k 2k 1 0 1
k 3k 2 1 0

⎞⎟⎟⎟⎟⎟⎠ .

Then, zk = (xsk , xck , xv1 , xv2 , xv3)
T is an eigenvector of Mk associ-

ated with its largest eigenvalue ∂ (see, for example, Brouwer and Haemers
[3], Section 2.3). Let P be a matrix, with inverse P−1, as below:

P =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ , P−1 =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

As PMkP
−1 and Mk are similar, these matrices have the same eigen-

values. Moreover, yk is an eigenvector for PMkP
−1 associated with the

eigenvalue ∂, since PMkP
−1yk = PMkzk = ∂Pzk = ∂yk.
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Thus, yk is the eigenvector associated with (∂)
r, r ∈ N, the largest

eigenvalue for (PMkP
−1)r.

We claim that for any k ≥ 8, all the entries of the matrix (PMkP
−1)7

are non negatives. In this case, by Perron-Frobenius Theorem, all entries of
the eigenvector yk are different to zero and must have the same sign. The
result follows from the fact that xv3 > 0, since x is the principal eigenvector
of D(G).

Indeed, let f :R→ R5×5 such that

f(x) =

⎛⎜⎜⎜⎜⎜⎝
−2x− 2 x− 1 x+ 1 x+ 1 x− 1

x x− 1 x x+ 1 x+ 2
x 0 −1 0 1
x 0 −1 −2 −1
x 4x 4x+ 2 4x+ 3 4x+ 3

⎞⎟⎟⎟⎟⎟⎠
7

.

So, f(k) = (PMkP
−1)7, for all k ∈ N. Let fm,n(x), 1 ≤ m,n ≤ 5, be the

function in position (m,n) of f(x). It is easy get computationally the Taylor

Series, centered in x0 = 8, for each fm,n(x). As fm,n(8), f
0
m,n(8), . . . , f

(7)
m,n(8)

are all non negatives, and f
(i)
m,n(x) = 0,∀i > 7, since fm,n(x) are polynomials

with degree no more than 7, it follows that

fm,n(x) =
∞X
i=0

f
(i)
m,n(8)

i!
(x− 8)i ≥ 0,∀x ≥ 8 and 1 ≤ m,n ≤ 5.

Thus, the vector yk has strictly positive entries, for k ≥ 8, and the result
is proven.

2

For a k-bal graph, 2 ≤ k ≤ 7, the more central vertices according
closeness and spectral closeness centralities are the same. In these cases, it
can be computationally determined that:

• cc(v2) > cc(v1) = cc(v3) > cc(c1) = cc(c2) = . . . = cc(ck) > cc(s1) =
cc(s2) = . . . = cc(sk)

• csc(v2) > csc(v3) > csc(v1) > csc(c1) = csc(c2) = . . . = csc(ck) >
csc(s1) = csc(s2) = . . . = csc(sk).

The more central vertex by the spectral closeness centrality, depending
on the value of k, can be discussed from the point of view of the inter-
pretation of this measure. For any k-bal graph, k ≥ 2, the vertex v3 has
a small transmission value, with Tr(v3) = Tr(v2) + 1, where v2 has the
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smallest transmission. Furthermore, as k increases, more pendant vertices
are connected with v3 and more vertices are added in the complete block.
Vertices in the first group have the smallest spectral closeness centrality in
the graph and they are close to v3. The second group is formed by more
central vertices, distant from v3.
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